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Abstract

The operator S in Fock space which describes the scattering and particle
production processes in an external time-dependent electromagnetic poten-
tial A can be constructed from the one-particle S-matrix up to a physical
phase λ[A]. In this work we determine this phase for QED in (2+1) dimen-
sions, by means of causality, and show that no ultraviolet divergences arise,
in contrast to the usual formalism of QED.

PACS. 11.10 - Field theory, 12.20 - Quantum electrodynamics.

1. Introduction

The efforts to test quantum electrodynamics in strong electromagnetic
fields in the late 70’s brought into evidence the external field problem in the
context of the spontaneous dacay of the neutral to a charged vacuum through
pair creation, in heavy-ion collision experiments. Although the physics of the
quantized electron-positron field in interaction with a classical electromag-
netic field is well understood, some mathematical aspects of the theory are
rather involving, particularly the definition of the scattering operator in Fock
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space for time-dependent external fields (for a review see [1] and references
therein).

In this paper we introduce the scattering operator S in Fock space for
quantum electrodynamics in (2+1) dimensional space-time, in an external
time-dependent electromagnetic field A and show that it is unitary and
uniquely determined up to a phase. This phase is related to vacuum fluc-
tuations due to the presence of the external potential Aµ(x) and, therefore,
must depend on it. We then determine the phase λ[A] in lowest order of
perturbation theory, by imposing Bogoliubov’s local causality condition on
S, and show that the vacuum-vacuum amplitude is ultraviolet finite.

The construction of the S-matrix in Fock space is outlined in section
2. In section 3 we present a brief digression on the global as well as the
differential causality conditions for the S-operator in Fock space. Section 4
is devoted to the derivation of the causal phase for QED3 in lowest order
of perturbation theory, applying the concepts introduced in the preceeding
section, and exploiting the connnection with vacuum polarization. In section
5 we summarize our conclusions.

2. The Scattering Operator in Fock Space

We start from the one-particle Hamiltonian

H(t) = H0 + V (t) , (1)

where
V (t) = e(V (t, ~x)− ~α. ~A(t, ~x)) . (2)

The potentials are assumed to vanish for t −→ ±∞ in such a way that the
wave operators

W in
out

= s− lim
t→±∞

U(t, 0)†e−iH0t (3)

exist, together with a unitary S-matrix

S = W †
outWin . (4)

Since by assumption we have the free dynamics for t −→ ±∞, we settle
second quantization on the Fock representation of the free Dirac field

ψ(f) = b(P 0
+f) + d(P 0

−f)† . (5)
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Here P 0
± are the projection operators on the positive and negative spectral

subspaces of the one-particle free Dirac Hamiltonian H0, respectively.
The second quantized S-matrix in Fock space is now defined by

ψ(S†f) = S−1ψ(f)S , (6)

ψ(S†f)† = S−1ψ(f)†S , ∀f ∈ H1 , (7)

if it exists. We have taken the adjoint S† in the test functions since ψ(f)
is antilinear in f . It follows from the above definitions that S is unitary
and uniquely determined up to a phase. In order to prove this assertion we
proceed as in reference [2].

Proposition: S is uniquely determined by (6) and (7) up to a factor.

Proof. If S̃ is another operator in F , satisfying (6), then

S−1ψ(f)S = S̃−1ψ(f)S̃ ,

S̃S−1ψ(f) = ψ(f)S̃S−1 , ∀f ∈ H1 ,

and the same is true for all ψ†(f). From the irreducibility of the Fock repre-
sentation, we have

S̃S−1 = α1 i.e. S̃ = αS . (8)
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Now, taking the adjoint of (6)

ψ(S†f)† = S†ψ(f)†S−1† ,

and comparing with (7), it follows again from the irreducibility of the Fock
representation that

S† = ρS−1 . (9)

If we take the adjoint and the inverse of this equation, namely

S = ρ∗S−1† ,

S†
−1

= ρ−1S ,

3



we find that
ρ∗ = ρ .

From (8) and (9) we obtain

S̃† = |α|2ρS̃−1 . (10)

Therefore, we may choose
|α|2 = ρ−1 (11)

such that the operator S̃ becomes unitary. Since the absolute value of α in
(8) is fixed by (11), S̃ is uniquely determined up to a phase eiλ. However, this
phase λ[A] is physical because it depends on the external potential Aµ(x).
As we shall see this phase will be fixed by the requirement of causality of S.

The S-matrix S in Fock space exists, if and only if P+SP− is a Hilbert-
Schmidt operator. In this case it is given by

S = C eS+−S
−1
−−b

†d† : e(S†−1
++ −1)b†b :: e(1−S−1

−−)dd† : eS
−1
−−S−+db , (12)

where
Sij = PiSPj , i, j = +,− (13)

and
|C|2 = det(1− S+−S

†
−+) . (14)

The first factor in (12) describes electron-positron pair creation, the sec-
ond one electron scattering, the third one positron scattering and the last
one pair annihilation.

3. The Condition of Causality

In the one-particle theory the condition that a change in the interaction
law in any space-time region can influence the evolution of the system only
at subsequent times can be translated into the factorization of the S-matrix

S[A] = S2S1 , Sj
def
= S[Aj] , (15)

where we have written the electromagnetic potential as

Aµ(x) = Aµ
1(x) +Aµ

2(x) , (16)
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which is the sum of two parts with disjoint supports in time

suppA1 ⊂ (−∞, r] , suppA2 ⊂ [r,+∞) . (17)

A similar factorization should hold from Eq.(6) for the S-operator S in
Fock space,

(Ω,SΩ) = (Ω,S2S1Ω) . (18)

We call (18) global causality condition for the Fock space S-operator in con-
trast to the differential condition[4]

δ

δAµ(y)

(
Ω,S†

δS

δAν(x)
Ω

)
= 0, for x0 < y0 . (19)

We have seen in the last section that the S-matrix in Fock space can be
uniquely determined up to a phase,

S = eiϕS̃ , (20)

where S̃ is unitary, and given by expression (12). Inserting (20) into (19) we
obtain

δ

δAµ(y)

(
SΩ,

δS

δAν(x)
Ω

)
=

i
δ2ϕ

δAµ(y)δAν(x)
+

δ

δAµ(y)

(
S̃Ω,

δS̃

δAν(x)
Ω

)
. (21)

It can be shown from the unitarity of S̃ that the last term in (21) is
purely imaginary. Consequently, the real part of the causality condition
(19) is automatically satisfied while for the imaginary part we may choose ϕ
conveniently such that (19) holds.

4. The Causal Phase

We now turn to the determination of the causal phase in lowest order of
perturbation theory. From (6) we have

S̃Ω = C(Ω +
∑
mn

(S+−)mnb
†
md
†
nΩ + . . .) , (22)
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where we have put S−1
−− equal to the unity in lowest order. Taking the

functional derivative of (22) with respect to Aν(x) and keeping only terms of
order O(A) in the resulting expression, we arrive at(

S̃Ω,
δS̃

δAν(x)
Ω

)
= iC2=mTr

(
S†−+

δS+−

δAν(x)

)
. (23)

In lowest order we may set C2 = 1.
The local causality condition (19) together with expressions (21) and (23)

yield

F (x, y)
def
=

δ2ϕ

δAµ(y)δAν(x)
+ =m

δ

δAµ(y)
Tr

(
(S+−)†

δS+−

δAν(x)

)
= 0 (24)

for x0 < y0.
Next we calculate the second term in (24). In lowest order of perturbation

theory, we have

S
(1)
+− = −iP+(p)γ0e /A(p+ q)P−(−q) . (25)

As in reference [3] we use the following representation for the Dirac matrices
in (2+1) dimensions:

γ0 = σ3 , γ
1 = iσ1 , γ

2 = iσ2 (26)

where σj are the Pauli matrices.
From (25) we obtain

Tr
δ

δAµ(y)
(S+−)†

δS+−

δAν(x)
=

e2(2π)−3
∫
d2p

∫
d2q ei(p+q)(x−y)tr[P−(−q)γ0γµP+(p)γ0γνP−(−q)]

= −
∫
d3k eik(x−y)P̂ µν(k) , (27)

P̂ µν(k) is not but the vacuum polarization tensor in (2+1) dimensions, which
is given by[3]

P̂ µν(k) = −e2(2π)−3T νµ(k) , (28)
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where

T νµ(k) =
∫
d3p δ(p2 −m2)Θ(p0)δ[(k− p)2 −m2]

× Θ(k0 − p0) tνµ(k, p) (29)

with
tνµ(k, p) = tr[γµ(/p +m)γν(k/− /p−m)] . (30)

It follows from the gauge invariance of (28) that

P̂ µν(k) = P̂ µν
S (k) + P̂ µν

A (k) (31)

with

P̂ µν
S (k) = (kµkν − k2gµν)B̃(k2) , (32)

P̂ µν
A (k) = imεµναkαΠ̃

(2)(k2) . (33)

Performing the trace in (30) and the resulting momentum integral in (29) we
find that[3]

B̃(k2) =
−e2

2(4π)2

k2 + 4m2

k2
Θ(k2 − 4m2)

Θ(k0)√
k2

, (34)

Π̃(2)(k2) =
−e2

2(2π)2 Θ(k2 − 4m2)
Θ(k0)√
k2

. (35)

Substituting (27) and (28) in (24), we rewrite the causal function F (x, y)
as

F (x, y) =
δ2ϕ

δAµ(y)δAν(x)
+

e2

(2π)3=m
∫
d3k eik(x−y)T νµ(k) . (36)

We can evaluate the imaginary part of the last term in the above equation
taking into account (28) and (31)-(35). Thus, we have

T νµ(k) = T νµS (k) + T νµA (k) , (37)

where T νµS (k) is real and even in k while T νµA (k) is imaginary and odd in k.
Hence,
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F (x, y) =
δ2ϕ

δAµ(y)δAν(x)
+

e2

(2π)3

[∫
k0>0

d3k sin k(x− y)T νµS (k) − i
∫
k0>0

d3k cos k(x− y)T νµA (k)
]
.

(38)
In order to write the last term in (38) as a complex Fourier transform we
must continue T νµ(k) antisymmetrically to k0 < 0

F (x, y) =
δ2ϕ

δAµ(y)δAν(x)
+
i

2

∫
d3k e−ik(x−y)[dµνS (k)− dµνA (k)] , (39)

where

dµνS (k) = (kµkν − k2gµν)B(k2) , (40)

dµνA (k) = imεµναkαΠ
(2)(k2) . (41)

and

B(k2) =
−e2

2(4π)2

k2 + 4m2

k2
Θ(k2 − 4m2)

sgn(k0)√
k2

, (42)

Π(2)(k2) =
−e2

2(2π)2 Θ(k2 − 4m2)
sgn(k0)√

k2
. (43)

The Fourier transform of a causal function vanishing for x0 − y0 = t < 0
satisfies a dispersion relation. Since dµνS (k) and dµνA (k) are real and purely
imaginary, respectively, they cannot be the Fourier transform of a causal
function. The lacking imaginary part of dµνS (k) and the lacking real part of
dµνA (k) must de supplied by the first term containing the phase ϕ[A],

δ2ϕ

δAµ(y)δAν(x)
=
i

2

∫
d3k e−ik(x−y)[irµνS (k)− rµνA (k)] , (44)

where

rµνS (k) =
1

2π

∫ +∞

−∞
dt

dµνS (kt)

(t− i0)2(1− t+ i0)
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=
β

2π
(kµkν − k2gµν)

 1
√
k2

(
1 +

4m2

k2

)
log

1−
√

4m2

k2

1 +
√

4m2

k2

 +
4m

k2

 , (45)

and

rµνA (k) = −
i

2π

∫ +∞

−∞
dt

dµνA (kt)

(t− i0)(1− t+ i0)

=
iβ

2π
4imεµνα

kα√
k2

log

1−
√

4m2

k2

1 +
√

4m2

k2

 , (46)

with β ≡ −e2/[2(4π)2].
The causal phase is obtained by two integrations

ϕ[A] =
1

2

∫
d3x

∫
d3y

δ2ϕ

δAµ(y)δAν(x)
Aµ(y)Aν(x) +O(A4)

= −π2β
∫
d3k

[(
kµkν

k2
− gµν

)
Π

(1)
1 (k) + imεµναkαΠ

(2)
1 (k)

]
Aµ(k)A

∗
ν(k) ,

(47)
where

Π
(1)
1 (k) =

√
k2

(
1 +

4m2

k2

)
log

1−
√

4m2

k2

1 +
√

4m2

k2

 + 4m , (48)

Π(2)
1 (k) = −

4
√
k2

log

1−
√

4m2

k2

1 +
√

4m2

k2

 . (49)

If we decompose the electromagnetic fields which appear in the integrand of
(47) into the respective real and imaginary parts we see that ϕ[A] is indeed
real. The S-operator in Fock space S[A] is then completely determined.

By means of (12) and (20) we obtain the vacuum-vacuum amplitude

(Ω,SΩ) = Ceiϕ(Ω, eS+−S
−1
−−b

†d†Ω) = Ceiϕ . (50)

The absolute square
|(Ω,SΩ)|2 = C2 = 1− P (51)
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must be equal to one minus the total probability P of pair creation,

P = (2π)2
∫
d3k P̂ µν(k)Aµ(k)A

∗
ν(k) , (52)

since the external field can change the vaccum state only into pair states. In
order to combine the normalization constant C with eiϕ we write the former
in the exponential form

C = exp
[
2π2

∫
d3k . . . +O[A4]

]
.

Hence, from (31)-(35) we get

C = exp{−π2β
∫
d3k

[(
kµkν

k2
− gµν

)
Π

(1)
2 (k2) + imεµναkαΠ

(2)
2 (k2)

]

×Aµ(k)A
∗
ν(k)} , (53)

where

Π(1)
2 (k2) = 2

√
k2

(
1 +

4m2

k2

)
Θ(k2 − 4m2) , (54)

Π
(2)
2 (k2) =

8Θ(k2 − 4m2)
√
k2

. (55)

Finally, taking into account (47)-(49),(50) and (53)-(55), we obtain the
vacuum-vacuum amplitude

(Ω,SΩ) = exp{−iπ2β
∫
d3k

[(
kµkν

k2
− gµν

)
Π(1)(k2) + imεµναkαΠ

(2)(k2)

]

×Aµ(k)A
∗
ν(k)} , (56)

where

Π(1)(k2) = Π
(1)
1 (k2)− iΠ(1)

2 (k2) ,

Π(2)(k2) = Π(2)
1 (k2)− iΠ(2)

2 (k2) . (57)
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5. Concluding Remarks

We have considered QED3 in the presence of an external electromag-
netic field A and shown that a unitary scattering operator S which satisfies
the local causality condition can be constructed in Fock space. We have
also derived the vacuum-vacuum amplitude and stablished the connection
with vacuum polarization in lowest order of perturbation theory. In contrast
with the four-dimensional case, the vacuum-vacuum amplitude is ultraviolet
finite and exhibits an additional contribution from the antisymmetric part
of the vacuum polarization tensor in (2+1)-dimensional space-time[3], which
emerges from the topological structure of the theory.
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