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Abstract

We examine the electric-magnetic duality for a U(1) gauge theory on a general four

manifold which generates the SL(2,Z) group. The partition functions for such a theory

transforms as a modular form of specific weight. However, in the canonical approach, we

show that S-duality for the abelian theory, like T-duality, is generated by a canonical trans-

formation leading to a modular invariant partition function.
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According to the S-duality assertion, certain four-dimensional gauge theories with a θ-

term are invariant under SL(2,Z) modular transformations on the complex coupling

τ =
θ

2π
+ i

4π

g2
, (1)

where θ, g are the theta angle and the coupling constant, respectively [1]. This assertion

has been tested for N=4 supersymmetric Yang-Mills theory by calculating the corresponding

partition function [2] and the result was in favour of S-duality if the gauge group is replaced

by its dual. For an abelian U(1) gauge theory, S-duality extends the electric-magnetic duality

[3],[4] of electromagnetism on R4 to the full action of SL(2,Z) for a general four-manifold.

The corresponding partition function fails to be modular invariant but rather it transforms

as a modular form of specific weight [5]–[7]. This can be seen by compactifing M over a

torus. The reduced two-dimensional theory looks like a linear sigma-model where the internal

components of the photon are scalar fields. S-duality is then reduced to T-duality [8] and

the modular anomaly appears because there is no dilaton field to compensate it [9],[10].

However, when the four manifold is of the form R×X and a time direction can be chosen,

by employing the canonical approach we will see that S-duality, like T-duality [11],[12], is

just a canonical transformation leading to a modular invariant partition function.

Let us consider a U(1) gauge field Aµ, i.e., a connection on a line bundle L over a four

dimensional manifold M with corresponding field strength Fµν = ∂µAν − ∂νAµ. This theory

is described by the action

S[A] =
1

e2

∫
M
F ∧ ∗F − i

θ

8π2

∫
M
F ∧ F , (2)

where F = 1
2
Fµνdx

µ ∧ dxν and ∗F = 1
4
F µνεµνρκdx

ρ ∧ dxκ. We assume that M is Euclidean

so that, the saddle points of (2) turns out to be the Hodge-de Rham equations

dF = 0 , d ∗F = 0 , (3)

for harmonic two-forms. In general, the number of harmonic n-forms on M is bn where bn is

the nth Betti number, i.e., the dimension of the nth de Rham cohomology group H2(M,R)

while the Euler number of M is given by the algebraic sum χ =
∑
n(−1)nbn.

The partition function of the U(1) gauge theory defined on the four-manifold M is given

by

Z = C
1

|G|

∫
M
DAe−S[A] , (4)

where C is a regularization constant, the integration is over all the U(1) gauge fields on

M and we divide by the volume |G| of the gauge group as usual. Moreover, a sum over

1



isomorphic classes of the line bundle L over M is understood. By employing the Faddeev-

Popov procedure to factor out this volume, the partition function may easily be evaluated

to be

Z = C
det′e−1∆FP

(det′e−2∆A)1/2
Zcl , (5)

where

Zcl =
∑

saddle points

e−S[Acl ] , (6)

is the sum of all saddle-point configurations of the action (2). det′e−1∆FP , det
′e−2∆A denote

the Faddeev-Popov determinant and the determinant of the kinetic term for the gauge field

(without counting the zero modes). The former is the determinant of the scalar Laplacian

∆0 while the latter of the Laplacian ∆1 for one-forms. One may easily verify that

det′e−2∆A = (
1

e2
)ζ∆A(0)det′∆A , (7)

where ζ∆(s) is the generalised zeta function for the operator ∆. Since ζ∆(0) is just the

dimension of ∆ (infinite if not properly regularized) without counting the zero modes, we

may write

ζ∆A
(0) = dim∆1 − b1 , (8)

Similarly, we have

det′e−1∆FP = (
1

e2
)

1
2
ζ∆FP (0)det′∆FP , (9)

with

ζ∆FP
(0) = dim∆0 − b0 . (10)

Thus, by choosing the constant C in eq.(4) to be

C = (Imτ )
1
2

(dim∆1−dim ∆0)(4π)
1
2

(dim∆0−dim∆1+b1−b0) , (11)

the partition function is properly regularized and may be written as

Z = (Imτ )
1
2

(b1−b0) det′∆FP

(det′∆A)1/2
Zcl , (12)

where numerical factors have been omitted. Note that we may express the action (2) in

terms of self-dual (F+ = F + ∗F ), anti-self-dual (F− = F − ∗F ) fields and the complex

coupling τ defined in eq.(1) as

S =
i

16π

∫
M

(τ̄F− ∧ F− − τF+ ∧ F+). (13)
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Let us suppose that in M there exist non-trivial two-cycles, that is closed surfaces which

do not bound any 3-dimensional sub-manifold of M . One may then consider the flux of

the Maxwell field strength Fµν, through these cycles which satisfies the Dirac quantization

condition ∫
SI

F = 2πnI , (14)

where nI ∈ Z and I = 1, ..., b2. We may define a basis αI of harmonic two-forms (dαI =

d∗αI = 0) normalised as
∫
SI
αJ = δIJ which generates the harmonic representatives in

H2(M,R) and allows us to express the field strength F as

F = 2π
∑
I

nIαI . (15)

We may also define a basis in the space of self-dual/anti-self-dual harmonic two-forms by

α±I = αI ± ∗αI . (16)

By employing eqs.(15,16), we may express the action (13) as

S[Acl] = i
π

4
τ̄nIH+

IJn
J − i

π

4
τnIH−IJn

J , (17)

where

H±IJ =
∫
M4

α± ∧ α± , (18)

is the intersection form for harmonic self-dual and anti-self-dual two-forms. The partition

function in eq.(12) may then be written as

Z = (Imτ )
1
2

(b1−b0) det′∆FP

(det′∆A)1/2

∑
nI

ei
π
4
τnIH−IJn

J−iπ
4
τ̄nIH+

IJn
J

. (19)

To examine S-duality transformations which are generated by T : τ → τ + 1 and S :

τ → −1/τ , let us recall one of the basic invariants of a 4-manifold M , the intersection form

ω. If M has a smooth structure, it is defined by using the de Rham cohomology H∗(M) as

ω(α, β) =
∫
M
α ∧ β , (20)

for α, β ∈ H2(M,R) [13]. The dimensionality of ω is b2 and the number of its positive

(negative) eigenvalues is b+
2 (b−2 ). The signature σ of ω is defined as the number of positive

eigenvalues minus the negative ones, i.e., σ = b+
2 − b

−
2 and it is a topological invariant. For

a simply-connected spin manifold, ω(α, α) is an even integer, otherwise is odd. Thus, for
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a spin manifold by taking α = F/2π one may verify that the action (2) is invariant under

τ → τ + 1 while for a non-spin manifold (2) is invariant under τ → τ + 2 [2].

To examine the transformation properties of the partition function under τ → −1/τ , let

us consider the dual theory which can be found from the first-order action

S̃ =
1

g2

∫
G ∧ ∗G− i

θ

8π2

∫
G ∧G+

i

2π
dG ∧B , (21)

where G = 1
2
Gµνdx

µ∧dxν and B = Bµdx
µ are a 2-form and a 1-form, respectively. It can be

constructed by requiring invariance under gauge transformations of the “third kind”:A →

A+B [14]. The partition function for this theory is given by

Z = C
∫
M

DB

|G̃|
DGe−S̃ , (22)

where we have divide by the volume |G̃| of the gauge group which transforms B according

to B → B + dΛ. By integrating out the Lagrange multiplier field B on a topologically

trivial manifold M , we get dG = 0 which implies that G = dÃ and the original U(1) gauge

theory described by (2) is recovered. However, in a non-trivial manifold M , in order G to

be the curvature (field strength) of a U(1) connection (gauge field), the Dirac quantization

condition must be taken into account, i.e., eq.(22) must be implemented by the sum∑
nI∈Z

δ

(
nI −

∫
SI

G

2π

)
=

∑
mI∈Z

e
−imI

∫
SI
G
, (23)

where the sum in the righthand side in the above equation is over the dual lattice. We may

also integrate the G-field and for this it is more convinient to express (21) as

S̃ =
i

16π

∫
M

(
τ̄G− ∧G− − τG+ ∧G+

)
−

i

8π

∫
M

(
G+ ∧W+ +G− ∧W−

)
, (24)

where W = dB and G± = G±∗G, W± = W ±∗W are the self-dual and anti-self-dual parts

of G and W . Since self-dual and anti-self-dual forms are orthogonal, we may integrate them

separately. The result is, ignoring numerical factors,

Z(τ ) = Cτ̄−
1
2
B−2 τ

1
2
B+

2

∫
DB

|G̃|
e−S̃ , (25)

where

S̃ =
i

16π

∫
M

(
(−

1

τ̄
)W− ∧W− − (−

1

τ
)W+ ∧W+

)
, (26)

and B±2 is the number of self-dual, anti-self-dual 2-forms on M in a lattice regulatization.

Note that (26) does describe a U(1) gauge theory since by integrating out G we also get∫
SI

W

2π
= mI ∈ Z ,
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for the fluxes of the dual theory. Thus, eq.(25) is indeed the partition function for a U(1)

gauge theory. As follows now from eqs. (4,11),

Z(−
1

τ
) = C(τ τ̄)−

1
2

(B1−B0)
∫
DA

|G|
e−

i
16π

∫
M

((− 1
τ̄

)F−∧F−−(− 1
τ

)F+∧F+) , (27)

where B1 = dim∆1, B0 = dim∆0. By comparing eqs.(25,27) we get

Z(−
1

τ
) = τ

1
2

(B0−B1+B+
2 )τ̄

1
2

(B0−B1+B−2 )Z(τ ) (28)

= τ
1
4

(χ−σ)τ̄
1
4

(χ+σ)Z(τ ) , (29)

and therefore Z(τ ) transforms as a modular form of weight (1
4
(χ− σ), 1

4
(χ+ σ)).

Let us now examine S-duality in the Hamiltonian approach. We will assume that the

four-manifold M is Lorentzian and by separating space and time, M turns out to be of the

form R×X where X is a three-manifold. We will also assume that M is endowed with the

product metric

ds2 = −dt2 + gijdx
idxj , (30)

where gij is the metric on X. In this case the action (2) turns out to be

S =
∫
dtd3x

√
g

(
−

1

2e2
FµνF

µν +
θ

32π2
εµνρλFµνFρλ

)
, (31)

which is of course real. The canonical momenta are easily found to be

πi =
2

e2
F0jg

ij +
θ

8π2
εijkFij , (32)

and by performing a Legendre transform, the Hamiltonian is given by

H =
e2

4
πiπ

i + πi∂iA0 −
e2θ

16π2
πiε

ijkFjk + (
1

2e2
+

e2θ2

128π4
)FijF

ij , (33)

while the symplectic structure is provided by the equal-time Poisson bracket

{Ai(x), πj(y)} = δji δ
(3)(x− y) . (34)

The partition function is given by

Z = N
∫
DADπ

1

|G|
ei
∫
dtd3x

√
g(πiȦi−H) , (35)

where N is a regularization constant and we have divide as usual by the volume of the U(1)

gauge group. It contains a sum over the isomorphic classes of the line bundle L over X
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and in each class we have to integrate over the momenta πi and Aµ. Every πi integration

produces a factor (1/e2)1/2 ∼ Imτ 1/2 while every Ai one produces a factor ( 1
2e2

+ e2θ2

128π4 )−1/2 ∼

(Imτ/τ τ̄)1/2 (A0 integrations do not produce any factors but simply a delta function). By

using a lattice regularization, the number of Ai integrations is B1 − B0 where B1, B0 is the

number of 1-forms and 0-forms on X, respectively. Since the number of πi integrations

equals the number of Ai ones, the cut-off dependent term coming from the integration is

Imτ
1
2

(B1−B0)Imτ
1
2

(B1−B0)(τ τ̄)−
1
2

(B1−B0) . (36)

Thus, a properly regularized, cut-off independent partition function is given by

Z(τ ) = ImτB0−B1(τ τ̄ )
1
2

(B1−B0)
∫
DADπ

1

|G|
ei
∫
dtd3x

√
g(πiȦi−H) . (37)

As usual, A0 has no kinetic term and it is just a Lagrange multiplier leading to the constraint

∇iπ
i = 0 , (38)

where ∇ is the covariant derivative on M . Let us now perform a canonical transformation

generated by

G =
1

4π

∫
X
d3x
√
g(Ãiε

ijkFjk +Aiε
ijkF̃jk) , (39)

so that

πi = δG
δAi

=
1

4π
εijkF̃jk, (40)

π̃i = − δG

δÃi
= −

1

4π
εijkFjk . (41)

It follows from (41) that the dual momenta π̃i satisfy the constraint

∇iπ̃
i = 0 , (42)

which can be incorporated in the dual Hamiltonian by means of a Langrange multiplier Ã0.

Therefore, the dual Hamiltonian is

H̃ = 16π2(
1

2e2
+

e2θ2

128π2
)π̃iπ̃

i +
e2θ

16π2
π̃iεijkF̃jk

+
e2

32π2
F̃ijF̃

ij +
1

4π
εijkF̃jk∂iA0 + Ã0∇iπ̃

i . (43)

The integration of A0 gives the constraint

εijk∇iF̃ijk = 0 , (44)
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which is just the Bianchi identity and allows us to express F̃ij locally as

F̃ij = ∂iÃj − ∂jÃi . (45)

However, such expression will fail in general to hold globally in view of possible non-zero

magnetic fluxes ∫
SI

εijkF̃ijdSk = 4πnI , (46)

through non-trivial two-cycles of X according to the Dirac condition. By performing an

inverse Legendre transform in (43), the dual Lagrangian is found to be

L̃ = −
1

2ẽ2
F̃µνF̃

µν +
θ̃

32π2
εµνρλF̃µνF̃ρλ , (47)

where

ẽ2 = e2(
θ

4π2
+

16π2

e4
) ,

θ̃ = −θ(
θ

4π2
+

16π2

e4
)−1 . (48)

Thus, the classical dual theory is related to the original one by the transformation τ → −1/τ .

Since the partition function is invariant under canonical transformations we get

Z(τ ) = ImτB0−B1(τ τ̄ )
1
2

(B1−B0)
∫
DÃDπ̃

1

V olG
ei
∫
dtd3x

√
g(π̃i

˜̇
Ai−H̃) . (49)

By employing the transformation τ →−1/τ in eq. (37) we get the righthand side of (49) so

that

Z(−1/τ) = Z(τ ) , (50)

and therefore the partition function for the U(1)-gauge theory in the canonical approach is

modular invariant.

Let us also note that there are no quantum corrections to the generating functional since

it is linear to Ai and Ãi [15]. Moreover, physical states φk[Ai] and ψk[Ãi] in the original and

in the dual theory are related through

ψk[Ãi] =
∫
DAeiG(A,Ã)φ[Ai] . (51)

These states are invariant under gauge transformations, i.e. φk[Ai + ∂iε] = φk[Ai] so that

G(A− ∂ε, Ã)−G(A, Ã) = 2πn , n ∈ Z . (52)
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This condition is satisfied as long as the Dirac quantization condition (46) is satisfied.

As we have seen above, the partition function in the canonical approach is modular

invariant. On the other hand, in T-duality the modular anomaly is compensated by a change

of the dilaton field leading to a modular invariant theory. Similarly here, it seems that the

anomaly is compensated by a change of the generalised momenta πi. In this respect, πi

integrations imitates metric integrations in the string case. Finally, one should expect that

the above discussion would also be carried out for the non-abelian case as well. However, in

this case, one cannot non-trivially satisfy the Gauss’ law constraint Diπ
αi = 0 and the dual

theory is identical to the original one. The non-abelian case will be discussed elsewhere.

While the present work was being proof-reading, we became aware of Ref[16] where

S-duality is also confronted as a canonical transformation.
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