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Abstract

After analyzing the implication of investigations on the C, P and T transforma-

tions since 1956, we propose that there is a basic symmetry in particle physics. The

combined space-time inversion is equivalent to particle-antiparticle transformation,

denoted by PT = C. It is shown that the relativistic quantum mechanics and quan-

tum �eld theory do contain this invariance explicitly or implicitly. In particular, (a)

the appearance of negative energy or negative probability density in single particle

theory { corresponding to the fact of existence of antiparticle, (b) spin- statistics

connection, (c) CPT theorem, (d) the Feynman propagator are linked together via

this symmetry. Furthermore, we try to derive the main results of special relativity,

especially, (e) the mass-energy relation, (f) the Lorentz transformation by this one

\relativistic" postulate and some \nonrelativistic" knowledge.
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I. INTRODUCTION

Since the historic discovery of parity violation in week interactions by Lee and Yang

[1] and the experimental veri�cation by Wu et al. [2], the investigation on C,P and T

problems has been attracting serious attention in physics community. In 1964, Christensen

et al. discovered the CP violation in the decay process of neutral K meson [3]. The further

analysis showed that the T inversion is certainly violated whereas the CPT theorem still

remains valid [4].

The purpose of this paper is trying to examine this problem from an alternative point

of view [5]. In section II we suggest that it is the time to propose a new principle

(postulate) as the replacement of CPT theorem. Then in sec.III the Dirac equation is

analyzed in detail from the new point of view, the Klein-Gordon equation and Maxwell

equation are also discussed. The sec. IV is devoting to discussing the connection between

spin and statistics. In sec. V we make an observation on the Feynman propagator and

the arrow of time in physics which are intimately related to this basic symmetry under

consideration. Then in sec. VI we will be able to derive the main results of special

relativity by means of this symmetry with some other "nonrelativistic" knowledge. The

�nal section VII contains brief summary and discussions. Some other details are given in

three appendices.

II. WHERE IS THE PROBLEM?

The discovery of parity violation led directly to the establishment of two component

neutrino theory [6]

j�� >= CPj� > (2:1)

The success of this theory implies the ine�ectiveness of the original de�nition of space

re
ection P and C transformation respectively. After the discovery of CP violation, Lee

and Wu proposed a uni�ed de�nition for particle-antiparticle transformation [7]:

j�a >= CPTja > (2:2)

This is really a very important process of evolution in concept. The physicists have

been correcting a long existing mistake in physics, the latter conceives that the matter is

only located in the space-time and can be detached from it.
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Here two remarks are important to us. (a). The di�erence between a theorem and a law

should be treated carefully. Every quantity in a theorem must be de�ned unambiguously

and separately before the theorem can be proved. Actually, the conclusion of a deduction

method is already contained implicitly in the premise. On the other hand, since a law is

veri�ed by experiments, it is often (not always) capable of accommodating a de�nition

of physical quantity, which is not de�ned independently before the law is established.

(b). As we learn from the development of physics in this century, the de�nition of any

observable in physics must depends on some invariance or dynamical law. Once it fails

to do so, it will cease to be an observable. For example, the energy E (momentum
!

p )

can be de�ned because of the existence of law of energy (momentum) conservation. The

de�nition of inertial mass m in Newtonian mechanics is contained in the law
!

F= m
!

a.

However, in the theory of special relativity, m should be de�ned as m = d
!

p
2
=2dE for

taking the changeableness of mass into account (see Eq. (6.14) below). Therefore, some

time the change of de�nition is necessary and important. To some extent, this is also true

for the de�nition of a transformation, e.g. ,the particle- antiparticle transformation.

The ine�ectiveness of individual de�nitions of P, T and C together with the validity of

CPT theorem [8, 9] enlightened us that one should introduce new de�nition of space-time

inversion and replace the CPT theorem by a fundamental principle (postulate) which can

be stated as follows:

Under the combined space-time inversion, all particles with mutual interactions turn

to their antiparticles respectively.

Here the meaning of inversion needs to be clari�ed. First consider the single particle

quantum mechanics. The space re
ection operator is denoted by P. There are two

equivalent statements:

(A) If there is a physical state described by wave function  (
!

x; t) in the coordinate

system fxg, then after substitution !

x= �
!

x0, the wave function changes to that in reversed

system fx0g as follows:

 (
!

x; t) �!  (�
!

x0; t) =  0(
!

x0; t0); (t = t0) (2:3)

The substitution
!

x= �
!

x0 also has to be made in the equations.

(B) Instead of introducing reversed system fx0g, one may introduce the space re
ected
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state in the same fxg system according to the following rule:

 (
!

x; t) �!  (� !

x; t) =  0(
!

x; t); (2:4)

The corresponding change
!

x! � !

x also has to be made in the equations.

We shall adopt (A) or (B) statement freely in the later discussion.

Similarly, if adopting (B) statement, the time reversal operator T means that

t �! �t;  (!x; t) �!  (
!

x;�t) : (2:5)

Notice that, however, we do not demand that the physical law is invariant under the

P or T inversion individually. In other words, whether the space or time re
ected state in

the right hand side of (2.4) or (2.5) exists or not, a concrete analysis for di�erent situation

is needed.

But the fundamental postulate just mentioned before claims that: During

!

x�! � !

x; t �! �t ;

 (
!

x; t) �!  (� !

x;�t) =  c(
!

x; t); (2:6)

where the space-time re
ected state in the right hand side,  c(
!

x; t), is just the antiparticle

state corresponding to  (
!

x; t), i. e. ,

 c(
!

x; t) = C (!x; t) : (2:7)

Here we introduce a new particle- antiparticle conjugate operator C, which is not de�ned

independently because the postulate (2.6) implies that

PT = C : (2:8)

In quantum mechanics, the momentum and energy operators for a particle read:

!̂

p = �i�hr ; Ê = i�h
@

@t
: (2:9)

Note that after the space-time inversion, the components of four momenta of the antipar-

ticle remain unaltered, i.e., (We adopt the Pauli metric. For notation see Ref. [10])

pc� = p� (� = 1; 2; 3; 4) ;
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while

pc� =<  cjp̂c�j c >; p� =<  jp̂�j > : (2:10)

Then from (2.6), we �nd that the momentum and energy operators for an antiparticle

should be:
!̂

p c = i�hr ; Êc = �i�h @
@t

: (2:11)

For example, the plane waves

 (
!

x; t) = expfi(!p � !x �Et)=�hg (2:12)

and

 c(
!

x; t) = expf�i(!p � !x �Et)=�hg (2:13)

describe a particle and an antiparticle with the same momentum
!

p and positive energy

E respectively. thus the phase of wave function is important. From now on, if we meet

a "negative energy" ( � expf(iEt=�h)g; E > 0) in the exponential, we should recognize

it describing an antiparticle. This point had been emphasized by Schwinger[11] and the

expression (2.11) had also been written down by Konopinski and Mahmaud[12]. But here

(2.11) and (2.13) are all the direct corollaries of our fundamental postulate. (From now

on the superscript of an operator, ,̂ will be omitted).

Comparing (2.2) and (2.7), we �nd that

C = PT = CPT: (2:14)

In the following sections we will see that the present particle theory does have such

a corresponding relation. This is not accidental and is not merely a change in de�nition.

(See the discussion after Eq.(3.4) ).

When considering the many-body problem, according to the quantum �eld theory, the

wave function of di�erent kind of �eld is promoted into the �eld operator in Hilbert space.

Because the time inversion not only renders the individual �eld operator to change its

argument from t! �t, but also reverses the order of �eld operators in a product. Hence

under the combined space-time inversion (denoted by x! �x),we have

 1(x1) 2(x2) � � � n(xn) �!  0

n(�xn) � � � 0

2(�x2) 0

1(�x1) ; (2:15)

where the superscript prime \," is added for taking care the change of annihilation and

creation operators, (see sec. IV).
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According to this new de�nition, the con�guration space and Hilbert space are mixed

together, so we do not use two kinds of notation of space-time inversion for single particle

and many particle theory separately, but simply denote them by P; T , and C = PT .
The CPT theorem was proved by Pauli and L�uders [8] according to the original de�-

nitions and making use of so called strong re
ection invariance. Thanks to CPT theorem

and the researches over ten years, the physicists arrive at the correct cognition (2.2).

However, in our point of view, once the relation (2.2)is reached, the historic mission of

CPT theorem is coming to an end. It should be replaced by a fundamental postulate as

shown in (2.8) [i.e. , (2.14)]. In other words, the relation between space-time inversion

and particle- antiparticle conjugation is not a problem of de�nition and a proof of theo-

rem, but a natural law which anyhow must be tested by experiments. In this sense, the

present particle theory which is veri�ed by numerous experimental facts will be the basis

of this postulate. On the other hand, one may get some new insight from it.

III. THE RELATIVISTIC PARTICLE EQUATIONS

A. The particle with spin 1/2

The single particle theory basing on the Dirac equation is asymmetric with respect to

electron and positron. One has to overcome the negative energy di�culty by means of the

hole concept, then throw away the hole by the method of rede�nition when performing

the second quantization in order to obtain the formal symmetry between electron and

positron [10,13]. In our point of view, as the equal existence of electron and positron is a

fact in nature beyond any doubt, our theory should re
ect this symmetry at every step.

Let us start from the new postulate and view the negative energy solution directly as the

wave function of positron. Hence the Dirac equation [10] 
@

@x�
� ie

�hc
A�(

!

x; t)

!

� (

!

x; t) +
mc

�h
 (

!

x; t) = 0 (3:1)

(e < 0; 
k = �i��k; 
4 = �) not only describes the electron, but also describes the

positron. In the "positive energy solution" which describes the electron, the �rst and sec-

ond components of spinor are large components whereas the third and fourth components

are small ones. On the other hand, in the "negative energy solution", i.e., the positron

wave function, the large components of spinor go down to the third and fourth position
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(As to the problem of spin orientation, see Appendix A). Hence we may say that Dirac

equation is mainly for describing the electron. Is there an equivalent equation mainly for

describing the position?

Let us perform a PT inversion for Eq. (3.1):

x� �! �x� ;  (x�) �!  (�x�) =  c(x�) (3:2)

and note that at the same time electromagnetic potential will transform as follows:

A�(
!

x; t) �! A�(� !

x; �t) = �A�(
!

x; t) (3:3)

This is because when we adhere to the fundamental postulate, not only the electron under

observation, but all the charges which create the electromagnetic �elds change their sign

of charge as well. Thus we have 
@

@x�
� ie

�hc
A�(

!

x; t)

!

� c(

!

x; t)� mc

�h
 c(

!

x; t) = 0 (3:4)

which corresponds to the transformation m! �m in (3.1) without the change of e, also

corresponds to the representation transform  = 
5 c, (chirality transformation). In the

past, a combined CPT transformation will lead to CPT= �
5 if suitable phase is chosen
[13]. Therefore, for a particle with spin 1/2 we have illustrated Eq. (2.14).

To our knowledge, Tiomno �rst noticed the equivalence of the Dirac equation under 
5

transformation, Sakurai had written down the Eq. (3.4) in 1958, Nambu and Jona-Lasinio

in 1961 had derived a more general form: [14] 

�

@

@x�
+
mc

�h
(cos 2� + i
5 sin 2�)

!
 (x�) = 0 (3:5)

However, the meaning of either (3.4) or (3.5) had not been clari�ed before, so they did

not get enough emphasis. In our point of view, being the space-time inversed equation of

Dirac equation, Eq. (3.4) describes mainly the positron, but the electron as well. There

is a simple relation under PT inversion between its solution and the solution of Dirac

equation. This relation has nothing to do with the 
 matrices (see Appendix B). For this

reason we suggested to name Eq. (3.4) as the Carid equation.

Comparing the  III(x) and  cIII(x) in Appendix B, we see that the relation under

space-time inversion is precisely:  III(x)= cIII(x
0) (x0 = �x). In other words, a positron

in fxg system is just equivalent to an electron (not a negative-energy electron) in inversed
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fx0g system. This implies a modi�cation to the St�ueckelberg-Feynman rule [15] and is

also a special statement of fundamental postulate in this paper.

Therefore, it seems to us that the original positron equation obtained via e ! �e
transformation is incorrect. Positron and electron obey the same equation�Dirac equation
or Carid equation, the latter is obtained from the former via m ! �m transformation.

It is interesting to compare with the classical theory, where the motion of equation for

electron

e

�
!

E +
1

c

!

v � !

B

�
= m

d
!

v

dt
(3:6)

will lead to the motion equation for positron via either e ! �e or m ! �m transfor-

mation. However, we stress here that the di�erence between particle and antiparticle is

not due to the di�erence in some "charge", but due to their opposite space-time phases

in their wave functions. See also the Foldy-Wouthuysen transformation[13].

As in Ref. [13], let us write

 (x) =

0
B@ �(x)

�(x)

1
CA ;  c(x) =

0
B@ �c(x)

�c(x)

1
CA (3:7)

such that the Dirac equation is resolved into two simultaneous equations of two component

spinors �(x) and �(x):

8>>>><
>>>>:
i�h
@�

@t
= c

!

� �
 
�h

i
r� e

c

!

A

!
�(x) + (eV +mc2)�(x)

i�h
@�

@t
= c

!

� �
 
�h

i
r� e

c

!

A

!
�(x) + (eV �mc2)�(x)

: (3:8)

Things become more symmetric in new point of view. For an electron, j�j > j�j;
the �(x) characterizing electron determines the phase of space-time, i.e., � � � �
exp(�iEt=�h); (E > 0). For a positron, the situation is just in the opposite, j�j >
j�j; � � � � exp(iEt=�h); (E > 0). When performing a space-time inversion to a electron

wave function, �(
!

x; t) ! �(� !

x; �t) = �c(
!

x; t) remains as large component, whereas

�(
!

x; t) ! �(� !

x; �t) = �c(
!

x; t) remains small. Hence an electron changes into a

positron. Therefore, in some sense we can say that an electron contains some ingredient

of positron implicitly and coherently. On the contrary, a positron state contains some

ingredient of electron implicitly and coherently too. Any discrimination between par-

ticle from antiparticle is relative. There is no existence of either pure particle or pure

antiparticle even at the single particle level. For further discussion see Appendix C.
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B. The charged particle without spin

The Klein-Gordon equation describes a particle with spin zero:

 
1

c2
@2

@t2
�r2 +

m2c2

�h2

!
�(

!

x; t) = 0 : (3:9)

Obviously, K-G equation remains unaltered under PT inversion, whereas its complex

wave solution does undergo the following change,

�(
!

x; t) �! �(� !

x; �t) = �c(
!

x; t) (3:10)

which denotes a meson (say �� ) changes into antimeson (say �+ ).

Furthermore, the K-G equation with external electromagnetic potential can be recast

into two simultaneous equations of one order [16]. Denote

D� =
@

@x�
� ie

�hc
A� (3:11)

and

8><
>:
� 1
�
D4� = � � � ; (� = mc

�h
)

� = � + �
(3:12)

Instead of �, now one has two parts, � and �, in coupling. Then K-G equation reads

8>>>><
>>>>:
i�h
@�

@t
=

1

2m

 
�h

i
r� e

c

!

A

!2
(� + �) + (eV +mc2)�

i�h
@�

@t
= � 1

2m

 
�h

i
r� e

c

!

A

!2

(� + �) + (eV �mc2)�
: (3:13)

Similar to Eq. (3.8), this time we also see that under the PT inversion:

�(
!

x; t) �! �(� !

x; �t) = �c(
!

x; t); �(
!

x; t) �! �(� !

x; �t) = �c(
!

x; t) :

If the former, �, is the larger one and so dominates the latter, �, then a particle in turn

changes into antiparticle. Moreover, because the probability density [3, 17]

� =
i�h

2mc2

 
��
@�

@t
� �@�

�

@t

!
(3:14)
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changes its sign under PT inversion (� ! �c), as long as we interpret � as a "charge

density" [18], the so called "negative probability di�culty" does not exist even at the

level of single particle theory.

C. The photon

The Maxwell equation in vacuum can be recast in the following form [19]:

i�h
@

@t
� = �i�hc !

S �r� ; (3:15)

where the vector operator
!

S is 3 � 3 hermitian matrices with three components:

S1 = i

0
BBBBB@

0 0 0

0 0 �1
0 1 0

1
CCCCCA ; S2 = i

0
BBBBB@

0 0 1

0 0 0

�1 0 0

1
CCCCCA ; S3 = i

0
BBBBB@

0 �1 0

1 0 0

0 0 0

1
CCCCCA ; (3:16)

while

�(
!

x; t) =

0
BBBBB@
E1 + iB1

E2 + iB2

E3 + iB3

1
CCCCCA ; (3:17)

being the electromagnetic �eld "wave function". As before, it is composed of two parts,
!

E

and
!

B. If introducing the "orbital angular momentum"
!

L, and using the similar method

in App. A, one can easily prove that:

d

dt
(
!

L +�h
!

S) = 0 (3:18)

This implies that a "photon" has a spin angular momentum �h
!

S with spin quantum

number S = 1. Eq. (3.15) can also be written as

H� = c
!

S � !p � (3:19)

which bears a close resemblance to the Weyl equation (see Eqs. (6.18), (6.19)). By means

of the uni�ed method in this paper, we see that there are only two basic states of electro-

magnetic wave, i.e., the right and left circular polarization states, (similar conclusion was

arrived at by Hestenes via another method [20]). The corresponding photons are denoted

as 
R and 
L:

j
L >= PT j
R >= Cj
R > : (3:20)
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Note that, however, we have

8><
>:
Pj
R >= j
L > ;

T j
R >= j
R > ;T j
L >= j
L > :
(3:21)

IV. CONNECTION BETWEEN SPIN

AND STATISTICS

In quantum �eld theory, the wave function becomes a �eld operator. In this case we

further assume that under PT inversion an annihilation operator a(
!

k ) of particle with

momentum
!

k and energy E > 0 will change to a creation operator by(
!

k ) of antiparticle

with momentum
!

k and energy E > 0. Thus we see that the complex scalar �eld operator

�(x) =
1p
V

X
!

k

1p
2!

�
a(

!

k )e
ik�x + by(

!

k )e
�ik�x

�
(4:1)

has the invariance of PT = C evidently, i.e., when x! �x; eik�x! e�ik�x; a(
!

k )
! by(

!

k ),

one has

�(x) �! �c(x) = �(x) : (4:2)

The situation for Dirac �eld is a little bit complicated:

 (x) =
1p
V

X
!
p

X
r=1;2

n
cr(

!

p )u(r)(
!

p )eip�x + dyr(
!

p )v(r)(
!

p )e�ip�x
o
; (4:3)

where cr(
!

p ) and dy(
!

p ) are the annihilation operator of electron and the creation operator

of positron respectively. For checking that (4.3) also has the invariance of space-time

inversion, we must also expand the solution of Carid equation as a �eld operator:

 c(x) =
1p
V

X
!
p

X
r=1;2

n
dyr(

!

p )u(r)(
!

p )e�ip�x + cr(
!

p )v(r)(
!

p )eip�x
o
; (4:4)

Then when x! �x; cr(
!

p )
�! dyr(

!

p ), one has

 (x) �!  c(x) = �
5 (x) : (4:5)

So the PT = C invariance exhibit itself as the transformation between Dirac repre-

sentation and Carid representation. From now on, we try to propose an algorithm in
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quantum �eld theory: all �eld operators and the Lagrangian density constructed from

them, all the operator algebra, should respect the invariance of PT = C . In the following
we try to discuss the relation between spin and statistics by means of this invariance.

The spin-statistics connection was proved by Pauli [21] and discussed by Schwinger

and other authors [22, 23]. However, di�erent kinds of proof often carry some argument

with negative character, among them the violation of microcausality seems the strongest.

For instance, the complex K-G �eld is quantized via

[�(x); �y(y)] = i�hc�(x� y) (4:6)

with �(�x) = ��(x) and �(x) = 0 for x2 > 0 (For notation �(x), see Ref.[17]). The

Dirac �eld is quantized via

f (x); � (y)g = �i
 

�

@

@x�
� mc

�h

!
�(x� y) : (4:7)

The other function �1(x) with property �1(�x) = �1(x) is rejected because �1(x) 6= 0

for x2 > 0. Thus one obtains the correct statistics and rejects the wrong ones.

Note that the PT inversion does keep the Eq. (4.6) invariant. It also keep (4.7)

invariant in the sense of transforming the latter into the Carid representation:

f c(x); � c(y)g = �i
 

�

@

@x�
+
mc

�h

!
�(x� y) : (4:8)

On the very general ground we may replace the left hand side of (4.6) or (4.7) by general

bracket [ ; ]! with ! = �1 corresponding to commutation while ! = +1 to anticommu-

tation. Then a strong statement could be that: \ Under the condition of microcausality,

PT = C invariance determine the correct statistics uniquely". At least we have a weak

statement that: \In determining the spin statistics connection, the microcausality is in

conformity with the PT = C invariance or vice versa". This consistency seems to us not

quite a coincidence but has a deep implication as we will show further in the sec. VI.

We would like to point out that the antisymmetrical current which is equivalent to

the normal ordered current [17]:

j� =
1

2
i[ � (x); 
� (x)] = i �: � (x)
� (x)

�: (4:9)

also has the transformation property

Cj�C�1 = �jc� = �j� ; (4:10)
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where the current operator at the right hand side is written in Carid representation which

in turn is equivalent to that in Dirac representation. By this way, the special demand

that all Lagrangians are antisymmetrized in the fermion �elds and symmetrized in the

boson �elds can also be substituted by the uni�ed requirement of PT = C invariance.

V. FEYNMAN PROPAGATOR

AND THE ARROW OF TIME

Carrying on the concept in Newtonian mechanics, in quantum mechanics there is a

time reversal (T) transformation. However, because the Schr�odinger equation has the

time derivative of �rst order, it changes sign under t! �t transformation. So a further

complex conjugate transformation has to be made to cancel the sign change, which in

turn implies some equivalence between  and  �. The whole theory of time reversal in

quantum mechanics seems to us rather arti�cial and deserves to be doubted.

Actually, there is time asymmetry rather than symmetry in quantum mechanics. This

can obviously be seen from the Feynman path integral formalism:

 (
!

x; t) =
Z
K(

!

x; tj
!

x0; t0) (
!

x0; t0)d
!

x0 ; (5:1)

K(
!

x; tj
!

x0; t0) =
Z
�
D !

x eiS=�h : (5:2)

In the expression of kernelK, the path � takes every zigzag way leading from point (
!

x0; t0)

to (
!

x; t) but without the reversal in time direction. Alternatively, we may look at the

corresponding Green function for Schr�odinger Equation:

 
i�h
@

@t
�H

!
G(

!

x; tj
!

x0; t0) = �(
!

x �
!

x0)�(t� t0) : (5:3)

Then

G(
!

x; tj
!

x0; t0) = � i
�h
K(

!

x; tj
!

x0; t0)�(t� t0)

can be expanded by eigenfunctions of H as follows:

G(
!

x; tj
!

x0; t0) = � i
�h

X
n

�n(
!

x)��n(
!

x0) expf� i
�h
En(t� t0)g�(t� t0) : (5:4)

The existence of �(t� t0) re
ects the time asymmetry.
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In relativistic quantum mechanics, let us look at the Feynman propagator KF for

Dirac equation: [10]

 

�

@

@x�
+m

!
KF (x;

!

x) = �i�(4)(x� x0) ; (5:5)

KF (x; x
0) =

X
!
p ; s

m

EV

n
u(s)(

!

p )�u(s)(
!

p )eip�(x�x
0)�(t� t0)� v(s)(!p )�v(s)(!p )e�ip�(x�x0)�(t0 � t)

o
:

(5:6)

It is still time asymmetric. But what new symmetry is there? Let us perform a PT
inversion on (5.5) and (5.6), we get

 
�
�

@

@x�
+m

!
Kc
F (x;

!

x) = �i�(4)(x� x0) ; (5:7)

and

Kc
F (x; x

0) =
X
!
p ; s

m

EV

n
u(s)(

!

p )�u(s)(
!

p )e�ip�(x�x
0)�(t0 � t)� v(s)(!p )�v(s)(!p )eip�(x�x0)�(t� t0)

o
:

(5:8)

respectively. Notice that Kc
F = 
5KF (x; x

0)
5. So except for the representation transfor-

mation, (Dirac! Carid), Kc
F (x; x

0) is essentially the same as KF (x; x
0). In other words,

it is the PT = C invariance that forms the basis of selecting the Feynman propagator

instead of simple advanced or retarded one. This observation was put forward in Ref.[24],

where the relation between PT (i.e., CPT)invariance and the arrow of time is discussed.

At the microscopic level, the t asymmetry, i.e., the arrow of time is dictated by a

larger symmetry, the PT = C invariance. While at the level of classical electrodynamics,

PT = C =CPT invariance can still play the role of excluding the symmetric potential and

selecting the correct retarded potential in the sense of calculating the energy radiation

rate [24]. But the problem of how the macroscopic arrow of time, in the sense of ther-

modynamics, will be related to the microscopic arrow of time, is still controversial. It is

well known that the H-theorem (i.e., the entropy increase principle) can only be proved

in statistical mechanics after a coarse grain density is de�ned in the phase space. Van

Hove generalized this theorem for quantum statistical case by de�ning a coarse density

matrix [25]. But what is the meaning of performing an averaging procedure for de�ning

the coarse grain density (matrix)? We conjecture that the averaging procedure corre-

sponds to some operation which washes out the information of quantum phase and then
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destroys the quantum coherence. Some preliminary discussion was made via a simple

system composed of two level atoms, radiations and thermal reservoirs [26].

VI. THE SPECIAL RELATIVITY

A. Where is the crucial point?

We are now in a position to search for a new derivation of the theory of special

relativity. In his classical paper, Einstein introduced two postulates: (A). the principle of

the constancy of the speed of light; (B). the principle of relativity. Since 1905 till recent

years, some authors felt that there is some logic cycle in these two relativistic postulates,

so they tried to derive the theory of special relativity without the postulate (A). At �nal

they all failed to do so. In fact, Einstein had considered the problem from all aspects.

While talking about the principle of relativity, one needs the de�nition of coordinates

fxg and fx0g of two inertial systems, say S and S0, moving with relative velocity
!

v . The

Lorentz transformation is no more than the de�nition of fx0g with respect to fxg or vice
versa. So the constant c in Lorentz transformation must be �xed in advance not only in

meaning but also in magnitude, otherwise one will have no real physics in the principle

of relativity. Einstein did the best work in his time. He was the �rst physicist who

emphasized the necessity of distinguishing the observables from nonobservables.

Now we are living after the quantum theory and particle physics all have been well

established. Can we derive the theory of special relativity by only one "relativistic"

postulate rather than two? Then it is clear that we need a basic postulate stated only

in one inertial system (S). In our opinion, this postulate is nothing but the PT = C
symmetry discussed in previous sections.

B. The relativistic wave equation for spin zero particle

and the mass- energy relation

We will approach this problem by considering the special cases individually to see the

role played by the PT = C symmetry. In some sense, we will go along the opposite way

in sec. III. Of course, in each case the special postulate of nonrelativistic nature should

be supplemented.
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Consider spin zero case �rst. A particle is resting in an inertial system S. Assume

its energy E0 is proportional to its rest mass m0; E0 = m0c
2
1; where c1 being merely a

constant with the dimension of velocity. Notice that, however, this is not an independent

postulate (input), because we will soon derive in general E = mc21, with mass m de�ned

as m = 1
2
(dp

2

dE
). Indeed, when particle is in slow motion, its energy reads:

E = m0c
2
1 +

p2

2m0

; (
!

p! 0) : (6:1)

The rest mass does obey the relation:

m0 =
1

2
(
dp2

dE
) ; (

!

p! 0) : (6:2)

The particle velocity v equals to the group velocity of de Broglie wave associated with it:

v = vg =
d!

dk
=
dE

dp
=

p

m0

; (v! 0) ; (6:3)

where the general quantum relations E = �h! ; p = �hk and (6.1) have been used.

Consider that the wave is described by �(
!

x; t) and obeys the following \nonrelativistic

quantum equation"

i�h
@

@t
�(

!

x; t) = m0c
2
1�(

!

x; t)� �h2

2m0

r2�(
!

x; t) ; (6:4)

where the quantum rules

E �! i�h
@

@t
;
!

p�! �i�hr (6:5)

have been used. It is just at this moment we introduce the \relativistic principle" into the

formula. That is PT = C symmetry. Corresponding to the particle state �(
!

x; t) , there

is an antiparticle state �(
!

x; t) hiding inside a particle. and will couple to each other via

the motion (kinetic energy). So instead of (6.4), we should have a couple of equations:

8>>><
>>>:
i�h
@

@t
� = m0c

2
1� �

�h2

2m0

r2� � �h2

2m0

r2� :

i�h
@

@t
� = �m0c

2
1�+

�h2

2m0

r2�+
�h2

2m0

r2� :

(6:6)

Now Eqs. (6.6) respect the PT = C symmetry because

�(
!

x; t) = �(� !

x; �t) : (6:7)
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Let � = 1
2
(� + i�) with � and � being real functions of (

!

x; t) and notice from (6.6) that

�(
!

x; t) = ��(
!

x; t) = 1
2
(�� i�) we have

8><
>:

�h _� = m0c
2
1� ;

�h _� = �m0c
2
1�+

�h2

m0

r2� :
(6:8)

Then the Klein-Gordon equation follows immediately:

 
1

c2
@2

@t2
�r2 +

m2
0c

2
1

�h2

!
�(

!

x; t) = 0 : (6:9)

Generalizing to the case of complex � �eld, we set from the beginning that

8><
>:
� = 1

2
(�+ i �h

m0c
2

1

_�)

� = 1
2
(�� i �h

m0c
2

1

_�)
(6:10)

and still get the K-G Eq. (6.9). Note also that � ; � and � all satisfy K-G equation. j�j
will increase from zero to j�j when the particle energy E increases from m0c

2
1 to in�nity.

Substituting the plane wave solution

�(
!

x; t) = exp[i(
!

p � !x �Et)=�h] (6:11)

into (6.9), one obtains easily

E2 =
!

p
2

c21 +m2
0c

4
1 : (6:12)

Now the implication of constant c1 has not been explored yet. The velocity of particle

corresponds to the group velocity as in (6.3):

v =
d!

dk
=
dE

dp
=
pc21
E

; (j !p j = p) : (6:13)

De�ne the inertial mass as in (6.2):

m =
p

v
= p=

dE

dp
=

1

2

dp2

dE
: (6:14)

Combining (6.13), (6.14) and (6.12), one obtains

E = mc21 (6:15)

and

m = m0

 
1� v2

c21

!
�

1

2

(6:16)
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as expected. Evidently, c1 is nothing but the limiting speed of particle. According to the

experiments on � meson beam, we know that c1 equals to the speed of light, i.e.,

c1 = c = 3 � 1010 cm=sec : (6:17)

In some sense, from Ejv!0 = m0c
2
1 to E = mc21, we are using a trick similar to the

inductive method in mathematics. But the \relativistic hormone" is just the symmetry

PT = C.

C. The relativistic wave equations for spin 1/2

The present experiment and theory reveal that the neutrino is likely a particle with

spin 1/2 and zero rest mass. So its wave equation may be

E�R = i�h
@

@t
�R = c2

!

p � !� �R = �ic2 !

� �r�R (6:18)

or

E�L = i�h
@

@t
�L = �c2

!

p � !� �L = ic2
!

� �r�L (6:19)

As before, here c2 is still an un�xed constant with dimension of velocity. Both these two

Weyl equations respect the PT = C symmetry, but the nature seems to favor (6.19) and

discard (6.18), as we learn from the two-component neutrino theory.

Now consider a particle with spin 1/2 and rest mass m0. Then two-component spinors

�L and �R will couple each other via m0 (rather than via the \kinetic energy c2
!

p � !� "):

8><
>:
i�h @

@t
�R = �ic2 !

� �r�R +m0c
2
2�L ;

i�h @
@t
�L = ic2

!

� �r�L +m0c
2
2�R :

(6:20)

De�ning four-component spinor

 =

0
B@ �

�

1
CA =

0
B@ �R + �L

�R � �L

1
CA : (6:21)

one recovers the Dirac equation again[10]: 

�

@

@x�
+
m0c2

�h

!
 = 0 : (6:22)

The equation obeyed by � and � in external �elds had been written in (3.8). The experi-

ments on electron beam verify that the limiting speed c2 = c = 3� 1010 cm=sec:
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The important thing here is never looking at a wave function (like  ) as a whole

entity but an object composed of two parts in contradiction ( � and �, or �R and �L),

while respecting the PT = C symmetry at the same time.

The similar experience used to spin 1 particle, photon, had been written in Eqs.(3.15)-

(3.21). This time the wave function � = (
!

E +i
!

B) is composed of the real and imaginary

parts with
!

E and
!

B being observables.

D.The Lorentz transformation.

As explained at the beginning of this section, in Einstein's theory, the principle of the

constancy of light speed must be put ahead of the principle of relativity. Now we are

going to derive the Lorentz transformation after some knowledge about the dynamics of

particles is known. Nevertheless, we still need an invariance to de�ne the coordinates fxg
and fx0g in S and S0 systems. Once again, we resort to the brilliant idea of de Broglie,

who named it as \the law of phase harmony" and was explained by Lochak as follows

[27]. For any Galilean observer, the phase of the \internal clock" of the particle is, at each

instant, equal to the value of the phase of the wave calculated at the same point at which

the particle lies. (de Broglie considered this law to be the fundamental achievement in

his life and it was appreciated very much by Einstein. However, it was nearly forgotten

in most text books.).

The phase of wave reads (
!

p � !x �Et)=�h = (
!

k � !x �!t), while the phase of \internal
clock" (a stationary wave associated with the particle) will be �Et0=�h = �!0t0. The

equality means:

(
!

p � !x �Et) = �E0t
0 : (6:23)

Consider that the momentum p = mv is along the x axis. Substituting the expressions

for
!

p ; E and E0 into (6.23), one �nds

t0 =
�
t� v

c2
x

� 
1� v2

c2

!
�

1

2

: (6:24)

Now our laboratory is S system, while S0 system resting on particle is moving with velocity

v. The clock is located at the origin of S0 system, so x0 = 0 and a generic point at S0

system will have the coordinate

x0 = a(x� vt) ; (6:25)
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where a is a constant. Because the di�erence between S and S 0 is relative in direction,

we anticipate

t =

�
t0 +

v

c2
x

� 
1 � v2

c2

!
�

1

2

: (6:26)

Substituting (6.24) and (6.25) into (6.26), one �nds

a =

 
1� v2

c2

!
�

1

2

: (6:27)

Alternatively, one may use more abstract language. The phase, i.e. ,the right hand side

of (6.23) is an invariant in the sense of being a constant with respect to the change of
!

v .

On the other hand, we have already

!

p
2
+

�
iE

c

�2
= �m2

0c
2 = const: : (6:28)

Rewriting (6.23)in the form as

!

p � !x +
�
iE

c

�
(ict) = const: ; (6:29)

we see that there is a four dimensional vector (
!

p ; iE=c) in Minkowski space with its

length �xed. This vector and (
!

x; ict) construct a scalar product which is also invariant

with respect to the transformation of coordinates between S and S 0. This means that

(
!

x; ict) is also a four vector in Minkowski space with its length �xed. To be precise, the

four dimensional interval between two space-time points is an invariant:

(�
!

x)2+(ic�t)2 = (
!

x1 � !

x2)
2+[ic(t1�t2)]2 = (

!

x01 �
!

x02)
2+[ic(t01�t02)]2 = const: : (6:30)

This equation together with (6.24) uniquely determines the Lorentz transformation:

8>>>>>>>><
>>>>>>>>:

x0 =
x� vtq
1 � v2

c2

t0 =
t� v

c2
xq

1 � v2

c2

y0 = y; z0 = z

8>>>>>>>>><
>>>>>>>>>:

x =
x0 + vt0q
1� v2

c2

t =
t0 + v

c2
x0q

1� v2

c2

y = y0; z = z0

(6:31)

Note that the constant c has the meaning of limiting speed of the particle, it equals

to the speed of light experimentally. Moreover, the time dilatation e�ect can now be

understood as follows. A particle state characterizing by �(
!

x; t) is always accompanying

with some antiparticle ingredient characterizing by �(
!

x; t) which has the opposite space-

time phase dependence essentially(implicitly). The observer in S system looks at the
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moving "internal clock" with its phase change as the time record. It seems slower and

slower as the magnitude of � increases larger and larger together with the increase of

velocity v. In the limiting case, v ! c; j�j ! j�j; the moving "clock" tends to stop and

its mass approaches to in�nity. So we �nd that the kinetic e�ect in special relativity does

have its universal dynamical origin. In some sense, the special relativity is more quantum

than quantum mechanics.

VII. SUMMARY AND DISCUSSION.

(1) It is shown from sec. II to sec. V that the relativistic quantum mechanics and

quantum �eld theory all contain a basic invariance� PT = C symmetry � explicitly or

implicitly. In particular, the following four things are linked together via this postulate

quite naturally:

(a) The appearance of negative energy or negative probability density, which corre-

sponds to the fact of existence of antiparticle in single particle equations;

(b) Spin-statistics theorem in many particle theory;

(c) CPT theorem;

(d) The Feynman propagator.

(2) Now a question arises. If the new postulate is used to replace the CPT theorem,

the number of input to our foundation of physics would be increased. This could make the

situation even worse in view of the criterion��less input, more output��long established
in theoretical physics. So in sec. VI we devote to deriving the special relativity via the

only \relativistic principle" in microscopic sense, i.e. , the PT = C postulate. Especially,
we obtain:

(e) The mass-energy relation;

(f) The Lorentz transformation.

Of course, we stress again, some well established "nonrelativistic" knowledge (postu-

late) and/or special prescription for individual case are needed.

Therefore, as a whole, the number of input to our foundation of physics is less ( at

least no more) than before.

(3) Evidently, we are treating the wave function, especially its phase, much more

seriously than before. This is relevant to the basic explanation of quantum mechanics
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and deserves further investigation.

(4) What we have done could be depicted by a diagram, see FIG.1 [28]. The lower

part of this diagram is unobservable. Once when a particle is excited from the vacuum,

it becomes observable. How can one detects a particle in experiments? One is relying on

its apparent momentum or energy. So the momentum or energy is the existence form of

a particle. In some sense we would also say that the space- time is the existence form of

vacuum. There are two dotted lines connecting the lower part to upper part. The left

one implies the quantum operator rule:

!

p�! �i�hr ;
!

p c�! i�hr ; (7:1)

while the right one implies:

E �! i�h
@

@t
; Ec �! �i�h @

@t
; (7:2)

Now a universal constant, the Planck constant (�h = h=2�), emerges as a vertical link. On

the other hand, the horizontal link on this diagram is provided by an another universal

constant, the light speed c. Historically, Einstein discovered the horizontal link, �rst in

the lower part, then in the upper part. Only after the knowledge about the content{ how

the particles exhibit themselves as the excitation states of vacuum{ together with the

quantum theory (the vertical link) have been accumulating in the past ninety years, can

we try to examine this diagram via some what di�erent way from that of Einstein.
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APPENDIX A. THE ORIENTATION OF SPIN

Dirac Equation Carid Equation

H = i�h@ 
@t

Hc c = �i�h@ c@t
H = c

!

� � !p +�mc2;
!

p= �i�hr Hc = c
!

� � !p c +�mc2;
!

p c= i�hr
A physical observable F will A physical observable F will

change with time as change with time as

dF
dt

= @F
@t

+ i
�h
[H; F ] dF

dt
= @F

@t
� i

�h
[Hc; F ]

From the orbital angular From the orbital angular

momentum of an electron momentum of a positron
!

L=
!

x � !

p
!

Lc=
!

x � !

p c

and spin and spin

!

�=

0
B@

!

� 0

0
!

�

1
CA !

�=

0
B@

!

� 0

0
!

�

1
CA

one has one has

d
dt
(
!

L +�h
2

!

�) = 0 d
dt
(
!

Lc ��h
2

!

�) = 0

This means the conservation of total This means the conservation of total

angular momentum. The �rst and angular momentum. The �rst and

third components of spinor third components of spinor

correspond to spin along the z axis correspond to spin along (�z) axis
(up, ") while the second and fourth (down, #) while the second and fourth

ones to spin down (#) states of ones to spin up (") states of
electron. positron.

For positron, the �rst and third For electron, the �rst and third

components imply spin down (#) states state components imply spin up (")
while the second and fourth ones while the second and fourth ones

being up (") states. being down (#) states.
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APPENDIX B.THE SOLUTIONS OF DIRAC EQUATION

AND CARID EQUATION

Dirac equation Carid equation


�
@
@x�

 (x) + mc
�h
 (x) = 0 
�

@
@x�

 c(x)� mc
�h
 c(x) = 0

There are four independent solutions There are four independent solutions

 I(x) = u(1)(
!

p ) expfi(!p � !x �Et)=�hg  cI(x) = u(1)(
!

p ) expf�i(!p � !x �Et)=�hg
 II(x) = u(2)(

!

p ) expfi(!p � !x �Et)=�hg  cII(x) = u(2)(
!

p ) expf�i(!p � !x �Et)=�hg
 III(x) = v(1)(

!

p ) expf�i(!p � !x �Et)=�hg  cIII(x) = v(1)(
!

p ) expfi(!p � !x �Et)=�hg
 IV (x) = v(2)(

!

p ) expf�i(!p � !x �Et)=�hg  cIV (x) = v(2)(
!

p ) expfi(!p � !x �Et)=�hg
The former two solutions describe 2 The former two solutions describe

the electron, while latter two the positron, while latter two

describe positron. describe electron.

u(1)(
!

p ) = N

0
BBBBBBBBB@

1

0
p3c

E +mc2
(p1 + ip2)c

E +mc2

1
CCCCCCCCCA
; u(2)(

!

p ) = N

0
BBBBBBBBB@

0

1

(p1 � ip2)c
E +mc2�p3c
E +mc2

1
CCCCCCCCCA
;

v(1)(
!

p ) = N

0
BBBBBBBBB@

p3c

E +mc2
(p1 + ip2)c

E +mc2

1

0

1
CCCCCCCCCA
; v(2)(

!

p ) = N

0
BBBBBBBBB@

(p1 � ip2)c
E +mc2�p3c
E +mc2

0

1

1
CCCCCCCCCA
;

E =
q
p2c2 +m2c4 > 0 ; N =

s
E +mc2

2mc2
;

u(r)
y

(
!

p )u(r)(
!

p ) =
E

mc2
; v(r)(

!

p ) = �
5u(r)(
!

p ); (r = 1; 2):
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APPENDIX C. FURTHER DISCUSSION ON DIRAC PARTICLES

It is well known that the negative-energy solution become appreciable during the

compression of a electron packet and is responsible for the phenomena of zitterbewegung

[10, 13, 29]. The interpretation will be inconsistent if the negative states are all �lled as

in the hole theory.

Either in free case or in an external �eld, the positive and negative solutions together

constitute a complete set. Starting from this point, Ma and Ni derived the Levinson

theorem for Dirac particles [30]. In Eq. (20) of Ref. [30], it was shown that when the

particle is moving in a short range attractive central potential V (r) the phase shift is

positive for the positive-energy states and negative for the negative-energy states. This

implies that for the latter case the particle is repulsed by the potential and so behaves as

an antiparticle.

In this paper, we show that it is the coherent excitation of antiparticle ingredient inside

a particle state which is responsible for the generation of "kinetic mass" of the particle.

Where the rest mass comes from?

Let us look at the mass-energy relation again:

E2 = m2c4 = m2
0c

4 + p2c2 : (C:1)

Notice that in a composite particle , the "total mass" m of a constituent particle becomes

part of the "rest mass" m0 of composite particle. This fact implies that the rest mass

m0 and the "kinetic mass" (p=c) must be stemming from the same origin. However, the

right triangle relation between m0 and (p=c), Eq. (C.1), strongly hints that they must be

generated from di�erent (orthogonal) mechanism.

In Ref. [31], basing on NJL model [14c], we redrive the formula (C.1) with m0 being

an energy gap in the new vacuum, which is formed after the condensation of massless

particle-antiparticle pairs in original (naive) vacuum. So we see that the rest mass and

kinetic mass are generated via di�erent orthogonal mechanism (many body e�ect versus

single particle e�ect), while both of them are stemming from the common origin�the
coexistence of particle-antiparticle and the PC = T symmetry.
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Figure Caption

FIG.1. The special relativity and quantum mechanics are two pillars of modern physics

as viewed by the achievement of particle physics. However, it is just the development of

particle physics which reveals the microscopic essence of special relativity. For more detail,

see text.
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