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Abstract

We give a general formulation of the quark diagram scheme for the nonleptonic weak

decays of baryons. We apply it to all decays of the antitriplet and sextet charmed baryons

and express their decay amplitudes in terms of the quark-diagram amplitudes, including the

e�ects of �nal-state interactions. (We also point out the mistaken results in the literature.)

We obtain many relations among various decay modes. It will be interesting to test them in

future experiments.
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I. Introduction

The study of charmed baryon physics is of current interest [1]. Many nonleptonic weak

decay modes of the charmed baryons �+

c , �
0A
c and �+A

c have been measured [2] and more

data are expected in the near future. Apart from model calculations [3-5], it is useful to

study the nonleptonic weak decays in a way which is as model independent as possible. The

two-body nonleptonic decays of charmed baryons have been analyzed in terms of SU(3)-

irreducible-representation (SU(3)-IR) amplitudes [6,7]. However, the quark-diagram scheme

(i.e., analyzing the decays in terms of quark diagram amplitudes) has the advantage that it

is more intuitive and easier for implementing model calculations. It has been successfully

applied to the hadronic weak decays of charmed and bottom mesons [8,9]. It has provided a

framework with which we not only can do the least-model-dependent data analysis and give

predictions but also make a critical evaluation of theoretical model calculations. Kohara had

given a quark-diagram formulation for the quark-mixing-allowed decays of the antitriplet

charmed baryons [10]; however, his formulation is faulty when the decay product contains

an octet baryon because he used an incorrect basis of quark states, resulted from the fact

that he did not have a general and uni�ed formulation. (For detailed comments, see Sections

II, III, and, in particular, IV.) In this paper we give a general and uni�ed formulation of the

quark diagram scheme for the nonleptonic weak decays of baryons, which can be useful for

all baryon (charm and bottom) non-leptonic decays. Here we apply it to all the two-body

hadronic decays (quark-mixing allowed, suppressed, and doubly-suppressed) of the antitriplet

and sextet charmed baryons and express them in terms of the quark diagram amplitudes.

We �nd consistent comparisons with the SU(3)-IR results of Ref. [6]. In addition, with the

advantage of being able to implement the speci�c information of symmetries and the Pati-

Woo theorem [11] in the weak decay interaction, we can obtain more speci�c results than

those from the SU(3)-IR scheme. We obtain many relations among various decay modes. It

will be interesting to test them in future experiments.

In the framework of the quark-diagram scheme, all nonleptonic meson decays can be

expressed in terms of six quark-diagram amplitudes [8]: A, the externalW -emission diagram;

B, the internal W -emission diagram; C, the W -exchange diagram; D, the W -annihilation
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diagram; E, the horizontal W -loop diagram; and F , the vertical W -loop diagram. These

quark diagrams are speci�c and well-de�ned physical quantities. They are classi�ed according

to the topology of �rst-order weak interactions, but all QCD strong-interaction e�ects are

included. It is important to emphasize that strong interactions do not alter the identity of

these diagrams. These quark diagrams have a one-to-one correspondence to those amplitudes

classi�ed according to SU(3) irreducible representations.

For the baryon decays, we can easily show by diagram drawing that the D and the F type

of amplitudes do not contribute. However, there are more possibilities in drawing the C and E
types of amplitudes. More importantly, baryons being made out of three quarks, in contrast

to two quarks for the mesons, bring along many essential complications. Though many

textbooks [12] have discussed the baryon wave functions, we need to carefully develop the

proper formulation suitable for the construction of the quark diagram scheme for the baryon

decays. This is what we discuss in Section II, where the relations between the quark states

and the baryon states are derived. We then apply this general results to the speci�c decays

of the charmed baryons. In Sections III and IV we give the quark diagram formulation for

the two-body decays of antitriplet charmed baryons into a pseudoscalar meson and a baryon

(decuplet and octet), including the SU(3) violation and �nal-state-interaction e�ects. We

discuss their experimental implications and comment on previous related theoretical work.

Section V is devoted to studying the nonleptonic weak decays of sextet charmed baryons. In

Section VI we give a few concluding remarks.

II. Quark States and Particle States

To develop a quark diagram scheme we need to fully understand the relation between

the quark states and the particle states. Baryons are made out of three 1

2
-spin quarks.

The baryon states form irreducible representations of SU(3)-
avor and SU(2)-spin from the

tensor-product states of 
avor and spin of three quarks which are written as the following

orthonormalized states:

jq1; S1z; q2; S2z; q3; S3zi = jq1 q2 q3ijS1z S2z S3zi : (1)

There are 3� 3� 3 = 27 
avor states jq1 q2 q3i and 2� 2� 2 = 8 spin states jS1z S2z S3zi.
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Let us �rst discuss the 
avor irreducible representation states of the three quarks. The

27 tri-quark states can be decomposed into [8]A; [8]S; [1]A, and [10]St irreducible represen-

tations, denoted by the orthonormalized states

j (8)Ai; j (8)Si; j (1)Ai; and j (10)Sti : (2)

The tranformation between the two bases, Eq. (1) and (2), can be written in a 27�27 matrix

which is block-diagonalized into the following sub-matrix transformtions:
0
BBB@

j k(8)Si
j k(8)Ai
j k(10)Sti

1
CCCA =

0
BBB@

1p
6

1p
6

� 2p
6

1p
2

� 1p
2

0

1p
3

1p
3

1p
3

1
CCCA

0
BBB@

jqa qb qai
jqb qa qai
jqa qa qbi

1
CCCA ; (3)

where k can be the proton, neutron, �+; ��; �0; �� types and all of which have two

identical quarks. There are 6 of such 3 � 3 matrix equations totalling the transformations

of the 18 states out of the 27. Note that the subscripts A and S signify the antisymmetry

and symmetry, respectively, between the �rst two quarks; the subscript St denotes the total

symmetry among the three quarks. Then there are the following transformations of the 6

states with all three quarks being di�erent:
0
BBBBBBBBBBBBBB@

j �(8)Si
j �(8)Ai
j �(8)Si
j �(8)Ai
j �1(1)Ai
j �(10)Sti

1
CCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBB@

1p
12

1p
12

1p
12

1p
12

�2p
12

�2p
12

�1
2

1

2

�1
2

1

2
0 0

1

2

1

2

�1
2

�1
2

0 0

1p
12

�1p
12

�1p
12

1p
12

�2p
12

2p
12

1p
6

�1p
6

1p
6

�1p
6

1p
6

�1p
6

1p
6

1p
6

1p
6

1p
6

1p
6

1p
6

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

jsdui
jdsui
jsudi
jusdi
jdusi
judsi

1
CCCCCCCCCCCCCCA

: (4)

Finally, there are the three states with all three identical quarks:

j�++i = juuui ; (5)

j��i = jdddi ; (6)

j
�i = jsssi : (7)

They give three diagonal transformations. These 27 equations, Eqs. (3) to (7), are actually

equivalent to the following 27 equations:

j k(8)Ai =
X

qi=u;s;d

jq1 q2 q3i hq1 q2 q3 j k(8)Ai ; (8)
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j k(8)Si =
X

qi=u;s;d

jq1 q2 q3i hq1 q2 q3 j k(8)Si ; (9)

j k(1)Ai =
X

qi=u;s;d

jq1 q2 q3i hq1 q2 q3 j k(1)Ai ; (10)

j k(10)Sti =
X

qi=u;s;d

jq1 q2 q3i hq1 q2 q3 j k(10)Sti ; (11)

where the superscript k stands for the particles in the multiplets, respectively. These equa-

tions are obtained simply by multiplying the left hand side (l.h.s.) of these equations by the

identity operator

Î =
X

qi=u;d;s

jq1 q2 q3i hq1 q2 q3j ; (12)

which is the completeness of the jq1 q2 q3i-basis in the tri-quark vector space. The hq1 q2 q3j k(� � �)i
numbers in Eqs. (8) to (11) are precisely those matrix elements in Eqs. (3) to (7).

Since the transformations, Eqs. (3) to (7), are between two sets of orthonormal bases we

can easily inverse the transformation expressing the quark states in terms of the irreducible

representation states, i.e., the particle states.

Alternatively, we can also use the basis composed of the quark states that are symmetric

and antisymmetric in the �rst two quarks, i.e.,

jfqa qbgqci � 1p
2(1� �ab) + 2�ab

�
jqaqbqci+ jqbqaqci

�
; (13)

j[qa qb]qci � 1p
2

�
jqaqbqci � jqbqaqci

�
; (14)

or inversely

jqaqbqci =
p
2(1� �ab) + 2�ab

2

�
jfqa qbgqci+ j[qa qb]qci

�
: (15)

In this basis, Eqs. (3) and (4) become

0
BBB@

j k(8)Si
j k(8)Ai
j k(10)Sti

1
CCCA =

0
BBB@

1p
3

0 � 2p
6

0 1 0
p
2p
3

0 1p
3

1
CCCA

0
BBB@

jfqa qbg qai
j[qa qb] qai
jqa qa qbi

1
CCCA ; (16)
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and
0
BBBBBBBBBBBBBB@

j �(8)Si
j �(8)Ai
j �(8)Si
j �(8)Ai
j �1(1)Ai
j �(10)Sti

1
CCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBB@

1p
6

0 1p
6

0 �2p
6

0

0 �1p
2

0 �1p
2

0 0

1p
2

0 �1p
2

0 0 0

0 1p
6

0 �1p
6

0 �2p
6

0 1p
3

0 1p
3

0 1p
3

1p
3

0 1p
3

0 1p
3

0

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

jfsdgui
j[sd]ui
jfsugdi
j[su]di
jfdugsi
j[du]si

1
CCCCCCCCCCCCCCA

: (17)

Likewise, in this basis the identity matrix becomes

Î =
X

qa;qb;qc

�
jfqa qbgqcihfqa qbgqcj+ j[qa qb]qcih[qa qb]qcj

�
: (18)

Then Eqs.(8)-(11) can be recast into the following form:

j k(8)Ai =
X

qa;qb;qc

j[qa qb] qci h[qa qb] qc j k(8)Ai ; (19)

j k(8)Si =
X

qa;qb;qc

jfqa qbg qci hfqa qbg qc j k(8)Si ; (20)

j k(1)Ai =
X

qa;qb;qc

j[qa qb] qci h[qa qb] qc j k(1)Ai ; (21)

j k(10)Sti =
X

qa;qb;qc

jfqa qbg qci hfqa qbg qc j k(10)Sti ; (22)

where we have used h[qa qb]qcj k(8)Si = 0 and hfqa qbgqcj k(8)Ai = 0. The coe�cients on

the right hand side (r.h.s.) of Eqs. (19)-(22) are the matrix elements in Eqs. (16) and (17).

Here we would like to emphasize that it is important to use the orthonomal quark states

as the basis so that the identity operator has the simple expressions of Eq. (12) or Eqs. (18).

They provide the proper transformation from the particle states to the quark states and

vice versa as given by Eqs. (3) and (4), equivalently by Eq. (8) to (11), or Eqs. (16) and

(17), equivalently Eqs. (19) to (22). These are the crucial relations we shall use in converting

decay amplitudes in terms of particles to decay amplitudes in terms of quarks, i.e., the quark

diagram amplitudes. Since Kohara [10] did not use the orthonormal basis and the correct

identity operator , his results for Bc(�3)! B(8)M(8) decays are incorrect.

Similarly, we can form irreducible representations for the spin part of the particle from
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the tri-1
2
-spin states

0
BBB@

j�� 1

2 (1
2
)Si

j�� 1

2 (1
2
)Ai

j�� 1

2 (3
2
)Sti

1
CCCA =

0
BBB@

1p
6

1p
6

� 2p
6

1p
2

� 1p
2

0

1p
3

1p
3

1p
3

1
CCCA

0
BBB@

j � 1

2
�1

2
�1

2
i

j � 1

2
�1

2
�1

2
i

j � 1

2
�1

2
�1

2
i

1
CCCA ; (23)

giving 6 equations; and

j�� 3

2 (
3

2
)Sti = j � 1

2
� 1

2
� 1

2
i ; (24)

giving 2 diagonal ones; totalling 8 equations. The inverse of these equations is also easy to

write out.

The baryon states must be totally antisymmetric in interchanging the composing quarks.

Since the color part (which we do not discuss here, see e.g., Ref.[11]) is antisymmetric, the

product of the 
avor and the spin parts must be symmetric as the spatial wave function is

symmetric for low-lying baryons. The decuplet baryons are made out of

jBm;k(10)i = j�m(3
2
)Sti j k(10)Sti ; m = �1

2
;�3

2
; and k = 1 to 10 : (25)

The octet baryon is a combination of two parts

jBm;k(8)i = a jBm;k
A (8)i + b jBm;k

S (8)i
= a j�m(1

2
)Ai j k(8)Ai + b j�m(1

2
)Si j k(8)Si ; (26)

where

jaj2 + jbj2 = 1 : (27)

We do not have concrete information on the precise values of a and b. Actually, our

formalism does not need such information. (If one assumes the SU(6) symmetry, then a =

b = 1p
2
. However, SU(6) is not a perfect symmetry and the quark diagram scheme does not

depend on it. Taking the SU(6) values for a and b does not change the results at all. Kohara

was mistaken on and misled by this point, see detailed comments later.)

Besides the jBm;k(8)i states as given by Eq. (26), there are the states orthogonal to them,
which are denoted by

jBm;k

? (8)i = b� j�m(1
2
)Ai j k(8)Ai � a� j�m(1

2
)Si j k(8)Si ; (28)
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and

hBm;k
? (8) jBm;k(8)i = 0 : (29)

Nature does not realize these states, but they are there in the formalism and hence must be

considered when completeness of these states is used.

Likewise, we can formulate the meson case, which is much simpler than the baryon

case. We discuss it here for completeness and for comparison. Mesons are made out of

1

2
-spin quark-antiquark q0�q pair belonging to the 
avor [3] � [�3] representation. They form


avor irreducible representations of the 3 � �3 = 9 = 8 + 1, i.e., the 9 quark-antiquark

states can be decomposed into 
avor [8] and [1] irreducible states denoted by j�j(8)i and
j�(1)i respectively, where the superscript \j" denotes the eight particles in the [8] irreducible
representations.

The transformation between the two bases, the quark basis and the irreducible-representation

particle basis, can be written in a 9 � 9 matrix

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

j��+i
j�K+i
j���i
j�K0i
j�K�i
j� �K0i
j��0i
j��8i
j��1i

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1p
2

�1p
2

0

0 0 0 0 0 0 1p
6

1p
6

�2p
6

0 0 0 0 0 0 1p
3

1p
3

1p
3

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

ju �di
ju�si
jd�ui
jd�si
js�ui
js �di
ju�ui
jd �di
js�si

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

: (30)

The nine equations given by the matrix equation can also be written out as

jM j(8)i =
X
�q;q0

j�qq0i h�qq0 j M j(8)i ; (31)

and

jM(1)i =
X
�q;q0

j�qq0i h�qq0 j M(1)i ; (32)
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where the summation is for �q = �u; �d; �s and q0 = u; d; s. These equations are obtained simply

by multiplying the left hand side of (31) and (32) by

Î =
X
�q;q0

j�qq0i h�qq0j ; (33)

which is the completeness of the jq0�qi-basis in the quark-antiquark vector space.

The irreducible-representation states in spin are related to the spin-product space by

0
BBBBBBB@

j�+(1)i
j��(1)i
j�0(1)i
j�(0) i

1
CCCCCCCA
=

0
BBBBBBB@

1 0 0 0

0 1 0 0

0 0 1p
2

1p
2

0 0 1p
2

�1p
2

1
CCCCCCCA

0
BBBBBBB@

j+1
2

+1

2
i

j�1
2

�1
2
i

j�1
2

+1

2
i

j+1
2

�1
2
i

1
CCCCCCCA

(34)

and its inverse is trivially obtained

0
BBBBBBB@

j�+(1)i
j��(1)i
j�0(1)i
j�(0) i

1
CCCCCCCA
=

0
BBBBBBB@

1 0 0 0

0 1 0 0

0 0 1p
2

1p
2

0 0 1p
2

�1p
2

1
CCCCCCCA

0
BBBBBBB@

j+1
2

+1

2
i

j�1
2

�1
2
i

j�1
2

+1

2
i

j+1
2

�1
2
i

1
CCCCCCCA
: (35)

For pseudoscalar mesons, the wave functions are simply given by

jM(1) i = j�(0)i j�(8) i ;
jM j(8)i = j�(0)i j�j(8)i ; (36)

where the superscript j indicates the eight di�erent particles given in Eq. (30).

III. Quark Diagram Scheme for Bc(�3)! B(10) +M(8)

The light quarks of the charmed baryons belong to the [�3] or the [6] representation of the


avor SU(3). The �+

c , �
+A
c , and �0A

c constitute the [�3] representation. They all decay weakly.

The 
0

c , �
+S
c , �0S

c , �++

c , �+

c , �
0

c comprise the [6] representation; among them, however, only


0

c decays weakly (the �
++;+;0
c decay strongly to the �+

c of the [�3] representation and the �+;0
c

decay electromagnetically). We shall �rst discuss the simpler case of the decuplet baryon

being in the decay products.
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III.a. Formalism

Consider a particular charmed baryon Bm;i0
c decaying into an octet meson M j0(8) and a

decuplet baryon Bm;k0(10), where the subscript \0" signi�es that we are discussing a speci�c

baryon and a speci�c meson. The amplitude with the spin-projection m;m0 summed over is

A(i0 ! j0 k0) �
X
m;m0

hBm;i0
c jĤW jM j0i jBm0;k0(10)i ; using Eq: (25) for jBm;k0(10)i

=
X
m;m0

hBm;i0
c jĤW jM j0(8)i j�m0

(
3

2
)Sti j k0(10)Sti; inserting Eq:(12);

=
X

m;m0;qi

hBm;i0
c jĤW jM j0(8)i j�m0

(
3

2
)Sti jq1 q2 q3i hq1 q2 q3j k0(10)Sti ;

using Eq: (36) for M j0(8) ;

=
X

m;m0;qi

hBi0
c jĤW j�(0)i j�j0(8)i j�(3

2
)Sti jq1 q2 q3i hq1 q2 q3j  k0(10)Sti ;

inserting Eq: (33);

=
X

m;m0;�q;q0;qi

hBm;j0
c jĤW j�(0)i j�m0

(
3

2
)Sti j�qq0i jq1 q2 q3i h�qq0j�j0(8)i

�hq1 q2 q3 j k0(10)St i
� X

�q;q0;qi

A(i0 ! �q q0 q1 q2 q3) h�q q0j�j0(8)i hq1 q2 q3 j k0(10)Sti ; (37)

where

A(i0 ! �q q0 q1 q2 q3) �
X
m;m0

hBm;i0
c jĤW j�(0)i j�m0

(
3

2
)Sti j�q q0 q1 q2 q3i (38)

are the quark-diagram amplitudes. Therefore, Eq. (37) gives the particle amplitudes of Bi0
c

decaying into particles M j0(8) and Bk0(10) in terms of the quark amplitudes of Bi0
c decaying

into quarks �q q0 q1 q2 q3. The coe�cients h�qq0j�j0(8)i and hq1 q2 q3j k0(10)St i are those given
in Eq. (30) and Eqs. (3) to (7).

Using the orthonormality of the coe�cients, we can easily convert Eq. (37) to express

the quark amplitudes in terms of the particle amplitudes

A(i0 ! �q q0 q1 q2 q3) =
X
j0;k0

A(i0 ! j0 k0) h�j0(8)j�qq0i hq1q2q3j k0(10)St i ; (39)

using the orthonormality condition of the coe�cients, which is the result of the orthonor-

mality of the states.
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We can also formulate the relation (37) in the basis given by Eqs. (13) and (14), which

is also more convenient to apply since j k0(10)Sti is totally symmetric. Replacing \inserting

Eq. (12)" by \inserting Eq. (18)" in Eq. (37), we obtain

A(i0 ! j0 k0) �
X
�q;q0;qi

A(i0 ! �q q0 fqa qbgqc)hq0�qj�j0(8)ihfqa qbgqcj k0(10)Sti ; (40)

where

A(i0 ! �qq0; fqa qbgqc) �
X
m;m0

hBm;i0
c jĤW j�(0)i j�m0

(
3

2
)Sti j�qq0; fqa qbgqci : (41)

Let us look more carefully at the amplitudes. For qa = qb,

A(i0 ! �qq0; fqa qbgqc) = A(i0 ! �qq0; qa qa qc)

� AS

�
Bc(�3)! B(10) M(8)

�
; (42)

and for qa 6= qb,

A(i0 ! �qq0; fqa qbgqc) =
1p
2
[A(i0 ! �qq0; qa qb qc) +A(i0 ! �qq0; qb qa qc)]

�
p
2 AS

�
Bc(�3)! B(10) M(8)

�
; (43)

where we have used

A(i0 ! �qq0; qa qb qc) =
1

2
[A(i0 ! �qq0; qa qb qc) +A(i0 ! �qq0; qb qa qc)]qa 6=qb

� AS

�
Bc(�3)! B(10) M(8)

�
: (44)

We shall see later that this assumption gives results consistent with those using the SU(3)-IR

amplitudes. Eqs. (42) and (43) can be combined into one equation

A(i0 ! �qq0; fqa qbgqc) = [
p
2(1� �qaqb) + �qaqb] AS

�
Bc(�3)! B(10) M(8)

�
;

which we substitute into Eq. (40) and obtain

A(i0 ! j0 k0) � X
�q;q0;qi

[
p
2(1 � �qaqb) + �qaqb] AS

�
Bc(�3)! B(10) M(8)

�

� hq0�qj�j0(8)ihfqa qbgqcj k0(10)Sti : (45)
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Here in Eq. (37) and in Eq. (45) we see the important use of Eq. (12) and of Eq. (18) to

convert particle-amplitudes to the quark-amplitudes.

One can easily show by diagram drawing that the Bc(�3) ! B(10) +M(8) decays have

contributions only from the W -exchange and the horizontal W -loop diagrams, i.e., the C
and E types of amplitudes. In the A and B amplitudes, the two spectator quarks that are

antisymmetrized in the initial charmed baryon state remain to be antisymmetrized after

the weak-interaction decay and cannot contribute to make an B(10) whose wave function

is totally symmetric. In the C and E types of amplitudes, an appropriate quark pair �q0q0

is created so that the �q0 will combine with one of the quarks originated from the initial

quark to form the meson j0. Depending upon where the pair �q0q0 can be inserted in the

diagrams, we have di�erent types of CS and ES of amplitudes; C1S for �q0 forming a meson

with a spectator quark (which does not contribute in this case of B(10) in the �nal state);

C2S for �q0 forming a meson with the weak-interacting non-charmed quark; C 0S for �q0 forming

a meson with the quark decayed from the charmed quark; ES for �q0 forming a meson with the
a spectator quark; and E 0S for �q0 forming a meson with the quark decayed from the charmed

quark. The quark q0 from the pair creation will form with the other two quarks to become

the �nal baryon k0. Thus in Eq. (45) only q1 and q2 are summed over and Eq. (45) becomes

A(i0 ! j0k0) (46)

= C2S
�
Bc(�3)! B(10)M(8)

�
[
p
2(1� �q1q3) + �q1q3 ]h�q0q02j�j0(8)ihfq1 q3gq0j k0(10)Sti

+ C0S
�
Bc(�3)! B(10)M(8)

�
[
p
2(1 � �q1q02) + �q1q02]h�q0q3j�j0(8)ihfq1 q02gq0j k0(10)Sti

+ ES
�
Bc(�3)! B(10)M(8)

�
[
p
2(1 � �q3q1) + �q3q1]h�q0q2j�j0(8)ihfq3 q1gq0j k0(10)Sti:

Using (46) for Bc(�3) ! B(10) +M(8) decays, we obtain Tables 1.a, 1.b and 1.c. (In these

tables we have dropped the parenthesis that specify the decay of Bc(�3)! B(10) M(8).) We

see that all Bc(�3)! B(10) M(8) decays, �fty-�ve of them, can be expressed in terms of the

three unknown amplitudes: C2S; C0S and ES . Therefore, we obtain many relations among the

particle decay amplitudes as shown in the next section.

12



III.b. Results and Tables

The following SU(3) relations can be obtained from Tables. 1a-1c, namely

jA(�+

c ! ��+�8)j2 = jA(�0A ! ��0�8)j2;

jA(�0A
c ! 
�K+)j2 = 3jA(�0A

c ! ����+)j2 = 3j�+

c ! ��0K+)j2

= 6jA(�0A
c ! ��0�0)j2 = 6jA(�+

c ! ��+�0)j2 = 6jA(�+

c ! ��0�+)j2; (47)

jA(�+

c ! �++K�)j2 = 3jA(�+

c ! �+ �K0)j2

= 3jA(�0A
c ! ��+K�)j2 = 6jA(�0A

c ! ��0 �K0)j2

for quark-mixing-allowed modes;

jA(�0A
c ! ��0�0)j2 = 3jA(�0A

c ! ��0�8)j2;

jA(�0A
c ! ����+)j2 = jA(�0A

c ! ���K+)j2 = 4jA(�+

c ! �0�+)j2

= 4jA(�+A
c ! ��0K+)j2 = 8jA(�+

c ! ��0K+)j2

= 8jA(�+A
c ! ��0�+)j2 = 8jA(�+A

c ! ��+�0)j2; (48)

jA(�+

c ! �++��)j2 = jA(�+A
c ! �++K�)j2 = 3jA(�+

c ! ��+K0)j2

= 3jA(�+A
c ! �+ �K0)j2 = 3jA(�0A

c ! �0 �K0)j2 = 3jA(�0A
c ! ��0K0)j2

= 3jA(�0A
c ! ��+��)j2 = 3jA(�0A

c ! �+K�)j2

for quark-mixing-suppressed modes;

jA(�+A
c ! �+�8)j2 = jA(�0A

c ! �0�8)j2;
jA(�0A

c ! �0�0)j2 = 2jA(�+A
c ! �+�0)j2;

jA(�+A
c ! �++��)j2 = 3jA(�+A

c ! ��+K0)j2

= 3jA(�0A
c ! �+��)j2 = 6jA(�0A

c ! ��0K0)j2; (49)
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jA(�0A
c ! ���+)j2 = 3jA(�+A

c ! �0�+)j2

= 3jA(�0A
c ! ���K+)j2 = 6jA(�+A

c ! ��0K+)j2

for quark-mixing-doubly-suppressed modes, and many relations between quark-mixing-allowed,

-suppressed, and -doubly-suppressed decay modes, for example

jA(�+

c ! �0�+)j2 = 2s2
1
jA(�+

c ! ��+�0)j2;
jA(�+

c ! �++��)j2 = s2
1
jA(�+

c ! �++K�)j2;
jA(�+A

c ! ��0K+)j2 = s4
1
jA(�+

c ! ��+�0)j2; (50)

jA(�+A
c ! �++��)j2 = s4

1
jA(�+

c ! �++K�)j2:

Two comments are in order. First, we note that the quark-mixing-allowed decays of

an antitriplet charmed baryon into a decuplet baryon and a pseudoscalar meson can oc-

cur only through W -exchange diagrams. The experimental measurement of �+

c ! �++K�

[2] indicates that the W -exchange mechanism plays a signi�cant role in charmed baryon de-

cays. Second, the quark-mixing-allowed decays of �+A
c and Quark-mixing-doubly-suppressed

decays of �+

c into a decuplet baryon are prohibited in the quark-diagram scheme:

jA(�+A
c ! ��+ �K0)j2 = 0; jA(�+A

c ! ��0�+)j2 = 0;

jA(�+

c ! �+K0)j2 = 0; jA(�+

c ! �0K+)j2 = 0: (51)

In the SU(3)-IR approach of Savage and Springer (SS) [6], these decays are governed by the

reduced matrix element � de�ned in Eq. (17) of Ref. [6]. However, we see that they are

forbidden in the quark-diagram scheme since they are given by the quark diagram A or B0

and they give zero contrition, as we discussed before, because of the un-matching symmetry

properties of the antitriplet charmed baryon and the decuplet baryon. Furthermore, we note

that the SU(3)-IR approach of SS will predict the above SU(3) relations (48-51) only if the

reduced matrix elements � and 
 make no contributions. As a consequence, there are only

two independent SU(3) reduced matrix elements � and �. The quark-diagram amplitudes

and the SU(3)-symmetry parameters are related by

� =
1

2
(C0S + C2S); � =

1

2
(C0S � C2S); � = 
 = 0: (52)

14



IV. Quark Diagram Scheme for Bc(�3)! B(8) +M(8)

IV.a. The Formalism

The formalism is very similar to that given in Sect. III.a. for the decuplet baryon in

the �nal state except for the complication that the octet baryons are made up with two

orthonormal parts, Eq. (26). We shall see that all it does is that each type of the quark

amplitude A will be made up of two independent ones, the symmetric and the antisymmetric.

Following the similar procedure used in Eqs. (37) and (50), we derive

A(i0 ! j0 k0) =
X
m;m0

hBm;i0
c jĤW jM j0(8)i jBm0;k0(8)i

=
X
m;m0

hBm;i0
c jĤW jM j0(8)i

�
a j�m0

(
1

2
)Aij k0(8)Ai + b j�m0

(
1

2
)Sij k0(8)Si

�

=
X

m;m0;qi

a hBm;i0
c jHW jM j0(8)i j�m0

(
1

2
)Ai jq1 q2 q3i hq1 q2 q3j k0(8)Ai

+
X

m;m0;qi

b hBm;i0
c jHW jM j0(8)i j�m0

(
1

2
)Si jq1 q2 q3i hq1 q2 q3j k0(8)Si

=
X

m;m0;qi

a hBm;i0
c jHW jM j0(8)i j�m0

(
1

2
)Ai j[q1 q2] q3i h[q1 q2] q3j k0(8)Ai

+
X

m;m0;qi

b hBm;i0
c jHW jM j0(8)i j�m0

(
1

2
)Si jfq1 q2g q3i hfq1 q2g q3j k0(8)Si: (53)

To decompose the meson state into the q0�q state, we insert in Eq. (53) the completeness

relation Eq. (33) and obtain

A(i0 ! j0 k0) =
X

m;m0;�q;q0;qi

b� hBm;i0
c jĤW j�(0�)i j�qq0i j�m0

(
1

2
)Aij[q1 q2] q3i

�h�qq0j�j0(8)i h[q1 q2] q3j k0(8)Ai
� X
m;m0;�q;q0;qi

a� hBm;i0
c jĤW j�(0�)i j�qq0i j�m0

(
1

2
)Si jfq1 q2g q3i

�h�qq0j�j0(8)i hq1 q2 q3j k0(8)Si
� X

�q;q0;qi

A(i0 ! �q q0 [q1 q2] q3) h�qq0j�j0(8)i h[q1 q2] q3j k0(8)Ai

+
X
�q;q0;qi

A(i0 ! �q q0 fq1 q2g q3) h�qq0j�j0(8)i hfq1 q2g q3j k0(8)Si ; (54)
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where

A(i0 ! �q q0 [q1 q2] q3) �
X
m;m0

b� hBm;i0
c jĤW j�(0�)i j�qq0i j�m0

(
1

2
)Aij[q1 q2] q3i

= AA(Bc(�3)! B(8)M(8)); (55)

and

A(i0 ! �q q0 fq1 q2g q3) �
X
m;m0

b� hBm;i0
c jĤW j�(0�)i j�qq0i j�m0

(
1

2
)Aijfq1 q2g q3i

= [
p
2(1� �q1q2) + �q1q2]AS(Bc(�3)! B(8)M(8)): (56)

Now the decay amplitudes into particles are related to decay amplitudes into quarks.

Therefore, the important result we have established is that for the decays into the B(8),

the quark diagrams have two independent types: the symmetric and the antisymmetric, AA

and AS. This result is independent of what particles the B(8)'s decay from or are associated

with. Here we also see the di�erence between our formulation and results from those of

Kohara's [10].

Let us discuss now speci�cally what types of quark diagram amplitudes will contribute.

For Bc(�3) ! B(8) +M(8), the two initial noncharmed quarks, say q1 and q2, are antisym-

metric in 
avor. In diagram A, q1 and q2 are spectators; therefore, they stay antisymmetric

in the �nal state. We denote the quark arising from the charmed quark decay as q3, and the

quark-antiquark pair from the W as �q0q00. In diagram B0 (the superscript \0" signi�es that

the quark q3 coming from the charmed quark decay contributes to the �nal meson formation

rather than the �nal baryon formation), q1 and q2 are also spectators; therefore, they stay

antisymmetric in the �nal product. In diagram B, q3 and q00 are forced to be 
avor antisym-

metric due to the Pati-Woo theorem [11], so are the quark pair q0
1
q3 in diagram C1. Note that

the quark-diagram amplitudes B0S and C1S vanish because of the Pati-Woo theorem which

results from the fact that the (V �A)� (V �A) structure of weak interactions is invariant

under the Fierz transformation and that the baryon wave function is color antisymmetric.

This theorem requires that the quark pair in a baryon produced by weak interactions be

antisymmetric in 
avor. Putting together all these information and referring to Fig. 2, we
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�nd the detailed expression for Eq. (54)

A(i0 ! j0k0) = AA

�
Bc(�3)! B(8)M(8)

�
h�q0q00j�j0(8)ih[q1q2]q3j k0(8)Ai

+ B0A
�
Bc(�3)! B(8)M(8)

�
h�q0q03j�j0(8)ih[q1q2]q00j k0(8)Ai

+ BA

�
Bc(�3)! B(8)M(8)

�
h�q0q2j�j0(8)ih[q1q3]q00j k0(8)Ai

+ C1A
�
Bc(�3)! B(8)M(8)

�
h�q0q2j�j0(8)ih[q01q3]q0j k0(8)Ai

+ C2A
�
Bc(�3)! B(8)M(8)

�
h�q0q02j�j0(8)ih[q1q3]q0j k0(8)Ai

+ C2S
�
Bc(�3)! B(8)M(8)

�
h�q0q02j�j0(8)ihfq1q3gq0j k0(8)Si[

p
2(1� �q1q3) + �q1q3]

+ C0A
�
Bc(�3)! B(8)M(8)

�
h�q0q3j�j0(8)ihfq1q02gq3j k0(8)Ai

+ C0S
�
Bc(�3)! B(8)M(8)

�
h�q0q3j�j0(8)ihfq1q02gq0j k0(8)Si[

p
2(1 � �q1q02) + �q1q02]

+ EA
�
Bc(�3)! B(8)M(8)

�
h�q0q2j�j0(8)ih[q3q1]q0j k0(8)Ai

+ ES
�
Bc(�3)! B(8)M(8)

�
h�q0q2j�j0(8)ihfq3q1gq0j k0(8)Si[

p
2(1 � �q3q1) + �q3q1]

+ E 0A
�
Bc(�3)! B(8)M(8)

�
h�q0q3j�j0(8)ih[q1q2]q0j k0(8)Ai: (57)

Applying this to all the Bc(�3) ! B(8) M(8) decays, we can express all the 58 decays in

terms of the eleven unknown amplitudes in (57) (see also Table 2).

Here we can give a more detailed discussion on the comparison of our quark diagram

formulation with that of Kohara [10]. In our scheme we arbitrarily choose a pair of quarks

in the diagrams C1 and C2 to be 
avor symmetric and antisymmetric (see Fig. 2) in accord

with Eq. (54). It can be shown that physics is independent of the choice of the quark pair.

By contrast, Kohara chose two pairs of quarks in the octet baryon to be antisymmetric. This

will encounter the following problems. We note that the orthonormal bases of the spin-
avor

wave functions of the octet baryon are �A(12)�A(12) and �S(12)�S(12). Assuming SU(6)

symmetry, the octet baryon wave function can be recast to the form
p
2

3
[�A(12)�A(12) + (13) + (23)]; (58)

where (ij) means permutation of the quark in place i with the quark in place j. The Kohara's

scheme amounts to choosing two of the quark pairs to be 
avor antisymmetric, say �A(12)

and �A(23). However, it is clear that they are not orthonormal and care must be taken to

include possible contributions from the third basis �A(13)�A(13). From previous discussions,

17



we see that it is most natural and simple to take �A and �S as 
avor bases. Moreover, this

choice of 
avor bases is independent of SU(6) symmetry.

IV.b. Results and Tables

From the second column of Tabs. 2a-2c we have the following SU(3)-symmetry predic-

tions:

jA(�0A
c ! ���+)j2 = jA(�0A

c ! ��K+)j2;
jA(�0A

c ! n �K0)j2 = jA(�0A
c ! �0K0)j2;

jA(�0A
c ! �+��)j2 = jA(�0A

c ! pK�)j2; (59)

jA(�+A
c ! p �K0)j2 = jA(�+

c ! �+K0)j2;
jA(�+A

c ! �0K+)j2 = jA(�+

c ! n�+)j2;
jA(�0A

c ! �0�8)j2 = jA(�0A
c ! �0�0)j2;

for quark-mixing-suppressed modes,

jA(�+A
c ! �+K0)j2 = 2jA(�0A

c ! �0K0)j2;
jA(�0A

c ! ��K+)j2 = 2jA(�+A
c ! �0K+)j2; (60)

for quark-mixing-doubly-suppressed modes, and relations between the squares of quark-

mixing-allowed, -suppressed, and quark-mixing-doubly-suppressed amplitudes:

jA(�+

c ! p�0)j2 = s2
1
jA(�+

c ! �+�0)j2;
jA(�0A

c ! ��K+)j2 = s2
1
jA(�0A

c ! ���+)j2;
jA(�0A

c ! �+��)j2 = s2
1
jA(�0A

c ! �+K�)j2;
jA(�+A

c ! �+K0)j2 = s4
1
jA(�+

c ! p �K0)j2;
jA(�+A

c ! n�+)j2 = s4
1
jA(�+

c ! �0K+)j2;
jA(�0A

c ! ��K+)j2 = s4
1
jA(�0A

c ! ���+)j2; (61)

jA(�0A
c ! p��)j2 = s4

1
jA(�0A

c ! �+K�)j2;
jA(�+

c ! nK+)j2 = s4
1
jA(�+A

c ! �0�+)j2;
jA(�+

c ! pK0)j2 = s4
1
jA(�+A

c ! �+ �K0)j2;
jA(�+

c ! p�0)j2 = s4
1
jA(�+

c ! �+�0)j2;
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where s1 = sin �1, and �1 is the usual quark-mxing angle.

Note that the above quark-diagram relations can also be reproduced in the SU(3) Haml-

tonian approach of Savage and Springer (SS) [6] 1 except for Eq. (60) and the �rst and last

relations in Eq. (61). We believe that when the use of the SU(3) Hamiltonian in which the

symmetry amplitudes are tensor decomposed is done correctly to incorporate the symmetry

properties of the baryon wave function, the reduced matrix element a de�ned in Ref.[6] should

not contribute and all aforementioned SU(3) quark-diagram results will be reproduced.

The relations between the SU(3) reduced matrix elements of Ref.[6] and the quark-

diagram amplitudes are 2

a = 0; b = �1

4
(C0A + C2A)� 1

4
p
3
(C0S + C2S);

c =
1

4
(AA + B0A)�

1

2
p
3
(C0S + C2S); d =

1

2
p
3
(C0S + C2S);

e =
1

8
(AA �B0A) +

1

4
p
3
(C0S � C2S); (62)

f = �1

8
(2C1A + C0A � C2A) + 1

8
p
3
(C0S � C2S);

g =
1

8
(AA + 2BA � B0A):

At �rst sight, it appears that there are six independent SU(3) parameters, but eight di�erent

quark amplitudes. However, one may make the following rede�nition (this rede�nition is not

unique):

~A = AA � 2p
3
C0S ; ~B0 = B0A �

2p
3
C2S ; ~CS = C0S + C2S;

~C0 = C0A �
1p
3
C0S + C1A; ~C2 = C2A � 1p

3
C2S � C1A; (63)

so that the amplitudes for the decay modes in Table 2 can be expressed in terms of the six

quark-diagram terms ~A; ~B0, BA; ~C0; ~C2; ~CS .
1Note that the reduced matrix elements a; b; c and d introduced in Ref.[6] are associated with the operator

O
15
, which transforms as a 15 under 
avor SU(3) and is symmetric in color indices and hence cannot induce

a baryon-baryon transition. In other words, baryon-pole diagrams are prohibited by the operator O
15
.

2Using Table 2 and the relations (62), one can perform a cross check on the SU(3) amplitudes given in

Tables I-III of Ref.[6]. For example, we �nd a sign error in Table III, namely the squared matrix elements

for �0

c
! �0K0 should read 1

6
ja� 2b+ c+ 2e � 4f � 4gj2.
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In Kohara's results [10] there are eight quark diagrams aK; bK; cK, d1K, d2K , d3K; d4K

and eK. 3 We �nd that his scheme is consistent with the SU(3) approach only if

d2K = 2bK; d3K = eK (64)

and

a = �d3K + eK = 0; b = bK +
1

2
(d1K + d3K + d4K);

c = �aK +
1

2
d4K; d = �bK � 1

2
d4K; (65)

e = �1

2
aK +

1

4
d4K; f =

1

4
(d1K + d3K);

g =
1

2
(�aK + bK � cK);

However, a priori there is no reason to expect that Eq. (64) holds. In fact, these two relations

will lead to vanishing �+

c ! p �K0; �0 �K0 decay rates. Experimentally, �+

c ! p �K0 is observed

with the branching ratio (2:1� 0:4)% [2].

V. Sextet Charmed Baryon Decays

V.a. Quark Diagram Scheme for Bc(6)! B(10) +M(8)

There are six independent quark-diagram amplitudes for Bc(6) ! B(10) +M(8). The

amplitudes B and C1 are forbidden owing to the Pati-Woo theorem. The relevant diagrams

and amplitudes are exhibited in Fig. 3 and Table 3, respectively.

From Table 3 we obtain the following SU(3) relations:

jA(
0

c ! ��+K�)j2 = 2jA(
0

c ! ��0 �K0)j2;
jA(
0

c ! ��0�0)j2 = 2jA(
0

c ! ��0�8)j2;
jA(
0

c ! ��0�0)j2 =
1

2
s2
1
jA(
0

c ! ��0�0)j2; (66)

jA(
0

c ! ��+��)j2 = s2
1
jA(
0

c ! ��+K�)j2;
jA(
0

c ! ���K+)j2 =
1

3
s2
1
jA(
0

c ! 
�K+)j2:
3In order to avoid notation confusion with the SU(3) parameters of SS [6], we add a subscript K to the

Kohara's quark diagram amplitudes [10].
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It is interesting to note that the 
0

c decays into �0 �K0 and �+K� are prohibited in the

quark-diagram scheme

jA(
0

c ! �0 �K0)j2 = 0; jA(
0

c ! �+K�)j2 = 0; (67)

as the quark diagram C1 is not allowed by the Pati-Woo theorem. Consequently, the corre-

sponding reduced matrix element � makes no contribution.

We note that the above quark-diagram relations except for the last one listed in (66)

cannot be reproduced in the SU(3)-IR approach of SS unless the reduced matrix elements

� and � do not contribute. Therefore, in the SU(3) limit there are only four independent

quark-diagram amplitudes or reduced matrix elements. Relations between the quark-diagram

amplitudes and the symmetry parameters (see Eq. (25) of Ref.[6]) are given by

AS = � � 2�; B0S = � + 2�;

C0S = 
 + 2�; C2S = 
 � 2�: (68)

V.b. Quark Diagram Scheme for Bc(6)! B(8) +M(8)

We discuss in this section the decays of sextet charmed baryons into an octet baryon and

a pseudoscalar meson. The relevant quark diagrams and amplitudes are shown in Fig. 4 and

Tab. 4, respectively.

In the SU(3)-symmetry approach [6], there exist no any relations between the decays of


0

c ! B(8) +M(8). However, from Tab. 4 we obtain

jA(
0

c ! n �K0)j2 = jA(
0

c ! pK�)j2;
jA(
0

c ! �+K�)j2 = 2jA(
0

c ! �0 �K0)j2: (69)

These relations cannot be reproduced in the SU(3) approach [6] unless the contributions

due to the SU(3) parameters a and d vanish. Therefore, Eq. (69) will provide a good test

on the quark-diagram scheme. Unfortunately, these processes are either singly or quark-

mixing-doubly-suppressed. We do not expect that an encouraging experimental veri�cation

will come out soon.
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The relations between quark-diagram amplitudes and SU(3) reduced matrix elements are

found to be

a = d = 0; b = � 1

2
p
3
(AS + B0S);

c+ l =
1

4
(C0A + C2A)� 1

4
p
3
(C0S + C2S);

e� l =
1

2
p
3
(C0S + C2S); f =

1

8
(C0A � C2A)� 1

8
p
3
(C0S � C2S); (70)

g =
1

4
p
3
(AS � B0S) +

1

4
p
3
(C0S � C2S);

h = �1

8
(C0A � C2A) + 1

8
p
3
(C0S � C2S) + 1

4
C1A;

k = � 1

4
p
3
(AS � B0S)�

1

4
BA:

Therefore, there are seven independent SU(3) parameters and quark-diagram amplitudes.

VI. Conclusions

In this paper we have given a general and uni�ed formulation useful for the quark di-

agram scheme for baryons. Here we apply it to the two-body nonleptonic weak decays of

charmed baryons and express their decay amplitudes in terms of the quark diagram ampli-

tudes. The e�ects of the SU(3) violation and �nal-state interactions are included. We have

obtained many relations among various decay modes. They will be interesting to test in

future experiments.

All of our results are consistent with those from the SU(3)-IR scheme. In addition,

because of the advantage of being able to implement the speci�c information of symmetries

and the Pati-Woo theorem in the weak decay interactions, we have obtained more speci�c

results then those from the the SU(3)-IR scheme.

We also note that the quark-mixing-allowed decays of the antitriplet charmed baryon

into a decuplet baryon and a pseudoscalar meson can only proceed through the W -exchange

diagram. Hence, the experimental measurement of �+

c ! �++K� implies that the W -

exchange mechanism plays a signi�cant role in charmed baryon decays.
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FIGURE CAPTIONS

Fig. 1. Quark diagrams for the decay Bc(�3)! B(10) +M(8).

Fig. 2. Quark diagrams for the decay Bc(�3)! B(8) +M(8).

Fig. 3. Quark diagrams for the decay Bc(6)! B(10) +M(8).

Fig. 4. Quark diagrams for the decay Bc(6)! B(8) +M(8).

TABLE CAPTIONS

Tab. 1a. Quark-diagram amplitudes for the quark-mixing-allowed decays ofBc(�3)! B(10)+

M(8).

Tab. 1b. Quark-diagram amplitudes for the quark-mixing-suppressed decays of Bc(�3) !
B(10) +M(8).

Tab. 1c. Quark-diagram amplitudes for the quark-mixing-doubly-suppressed decays of Bc(�3)!
B(10) +M(8).

Tab. 2a. Quark-diagram amplitudes for the quark-mixing-allowed decays ofBc(�3)! B(8)+

M(8).

Tab. 2b. Quark-diagram amplitudes for the quark-mixing-suppressed decays of Bc(�3) !
B(8) +M(8).

Tab. 2c. Quark-diagram amplitudes for the quark-mixing-doubly-suppressed decays of Bc(�3)!
B(8) +M(8).

Tab. 3. Quark-diagram amplitudes for Bc(6) ! B(10) +M(8).

Tab. 4. Quark-diagram amplitudes for Bc(6) ! B(8) +M(8).
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