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Abstract

We give a general formulation of the quark diagram scheme for the nonleptonic weak
decays of baryons. We apply it to all decays of the antitriplet and sextet charmed baryons
and express their decay amplitudes in terms of the quark-diagram amplitudes, including the
effects of final-state interactions. (We also point out the mistaken results in the literature.)
We obtain many relations among various decay modes. It will be interesting to test them in

future experiments.
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I. Introduction

The study of charmed baryon physics is of current interest [1]. Many nonleptonic weak
decay modes of the charmed baryons A, 224 and Z}4 have been measured [2] and more
data are expected in the near future. Apart from model calculations [3-5], it is useful to
study the nonleptonic weak decays in a way which is as model independent as possible. The
two-body nonleptonic decays of charmed baryons have been analyzed in terms of SU(3)-
irreducible-representation (SU(3)-IR) amplitudes [6,7]. However, the quark-diagram scheme
(i.e., analyzing the decays in terms of quark diagram amplitudes) has the advantage that it
is more intuitive and easier for implementing model calculations. It has been successfully
applied to the hadronic weak decays of charmed and bottom mesons [8,9]. It has provided a
framework with which we not only can do the least-model-dependent data analysis and give
predictions but also make a critical evaluation of theoretical model calculations. Kohara had
given a quark-diagram formulation for the quark-mixing-allowed decays of the antitriplet
charmed baryons [10]; however, his formulation is faulty when the decay product contains
an octet baryon because he used an incorrect basis of quark states, resulted from the fact
that he did not have a general and unified formulation. (For detailed comments, see Sections
I1, ITI, and, in particular, IV.) In this paper we give a general and unified formulation of the
quark diagram scheme for the nonleptonic weak decays of baryons, which can be useful for
all baryon (charm and bottom) non-leptonic decays. Here we apply it to all the two-body
hadronic decays (quark-mixing allowed, suppressed, and doubly-suppressed) of the antitriplet
and sextet charmed baryons and express them in terms of the quark diagram amplitudes.
We find consistent comparisons with the SU(3)-IR results of Ref. [6]. In addition, with the
advantage of being able to implement the specific information of symmetries and the Pati-
Woo theorem [11] in the weak decay interaction, we can obtain more specific results than
those from the SU(3)-IR scheme. We obtain many relations among various decay modes. It

will be interesting to test them in future experiments.

In the framework of the quark-diagram scheme, all nonleptonic meson decays can be
expressed in terms of six quark-diagram amplitudes [8]: A, the external W-emission diagram;

B, the internal W-emission diagram; C, the W-exchange diagram; D, the W -annihilation



diagram; &, the horizontal W-loop diagram; and F, the vertical W-loop diagram. These
quark diagrams are specific and well-defined physical quantities. They are classified according
to the topology of first-order weak interactions, but all QCD strong-interaction effects are
included. It is important to emphasize that strong interactions do not alter the identity of
these diagrams. These quark diagrams have a one-to-one correspondence to those amplitudes

classified according to SU(3) irreducible representations.

For the baryon decays, we can easily show by diagram drawing that the D and the F type
of amplitudes do not contribute. However, there are more possibilities in drawing the C and &
types of amplitudes. More importantly, baryons being made out of three quarks, in contrast
to two quarks for the mesons, bring along many essential complications. Though many
textbooks [12] have discussed the baryon wave functions, we need to carefully develop the
proper formulation suitable for the construction of the quark diagram scheme for the baryon
decays. This is what we discuss in Section II, where the relations between the quark states
and the baryon states are derived. We then apply this general results to the specific decays
of the charmed baryons. In Sections III and IV we give the quark diagram formulation for
the two-body decays of antitriplet charmed baryons into a pseudoscalar meson and a baryon
(decuplet and octet), including the SU(3) violation and final-state-interaction effects. We
discuss their experimental implications and comment on previous related theoretical work.
Section V is devoted to studying the nonleptonic weak decays of sextet charmed baryons. In

Section VI we give a few concluding remarks.
II. Quark States and Particle States

To develop a quark diagram scheme we need to fully understand the relation between
the quark states and the particle states. Baryons are made out of three %—spin quarks.
The baryon states form irreducible representations of SU(3)-flavor and SU(2)-spin from the
tensor-product states of flavor and spin of three quarks which are written as the following

orthonormalized states:

191, 8125 92, 5223 43, S32) = |q1 @2 g3)|S12 Saz Ssz) (1)

There are 3 x 3 x 3 = 27 flavor states |q1 ¢ ¢3) and 2 X 2 x 2 = 8 spin states |S1, Sa. Ss.).



Let us first discuss the flavor irreducible representation states of the three quarks. The
27 tri-quark states can be decomposed into [8]4, [8]s, [1]a, and [10]s, irreducible represen-

tations, denoted by the orthonormalized states

[#(8)4)s [$(8)s), [#(1)a), and [$(10)s,) - (2)

The tranformation between the two bases, Eq. (1) and (2), can be written in a 27 x 27 matrix

which is block-diagonalized into the following sub-matrix transformtions:

[9*(8)s) 7% R 5 |92 9 4a)
[%*(8) 4) = |5 5 O % % 9a) | > (3)
[%*(10)s,) 5 57 |90 90 @)

where k can be the proton, neutron, ¥, ¥~, Z° =~ types and all of which have two

identical quarks. There are 6 of such 3 x 3 matrix equations totalling the transformations
of the 18 states out of the 27. Note that the subscripts A and S signify the antisymmetry
and symmetry, respectively, between the first two quarks; the subscript 5; denotes the total
symmetry among the three quarks. Then there are the following transformations of the 6

states with all three quarks being different:

[%(8)s) = s s s s s |sdu)

[#5(8)a) T 3 3 3 0 0 [dsu)

s | [ 3 3 0 o | | s "

|94(8)4) 5 73 B Um s 7o |usd)

[ (1)) Lot 2o L | du)

$5(10)s) EE A AT

Finally, there are the three states with all three identical quarks:

[ATT) = Juuw) (5)
A7) = [ddd), (6)
) = Jsss) 7

They give three diagonal transformations. These 27 equations, Eqgs. (3) to (7), are actually

equivalent to the following 27 equations:

W*8)a) = . o @2 a3) (@1 g2 g3 [¥F(8)a) (8)

ql :ulsld



9*(8)s) = > o @2 a3) (@1 g2 @5 [¥(8)s) (9)

g;:=u,s,d

D D)a) = Y o @ @) (@ @2 g3 [¥F(1)4) (10)
g;:=u,s,d

W*10)s,) = D @ g2 ¢s) (@1 g2 g5 [¥5(10)s,) (11)
g;:=u,s,d

where the superscript k stands for the particles in the multiplets, respectively. These equa-
tions are obtained simply by multiplying the left hand side (L.h.s.) of these equations by the
identity operator

j = |Q1 q2 Q3> <Q1 q2 Q3| ’ (12)

ql :uldls

which is the completeness of the |g; g2 g3)-basis in the tri-quark vector space. The (q; g2 gs|¥"(- - -

numbers in Egs. (8) to (11) are precisely those matrix elements in Eqgs. (3) to (7).

Since the transformations, Egs. (3) to (7), are between two sets of orthonormal bases we
can easily inverse the transformation expressing the quark states in terms of the irreducible

representation states, i.e., the particle states.

Alternatively, we can also use the basis composed of the quark states that are symmetric

and antisymmetric in the first two quarks, i.e.,

1

o ale) = Zr—pgr (1) +laga)). (13)
o ala) = 5 (laama) = |0 (14)

or inversely

\/5(1 - 6(16) + 26(16

9eab4c) = > (Hao w}ae) + 1ge w)ac))- (15)
In this basis, Eqs. (3) and (4) become

|’¢}k(8)5> % 0 _ie |{Qa Qb} Qa>

[$*(8)4) = 0 1 0 9 @] ) | (16)

|1/}k(10)5t> % 0 % |Qa 9a Qb>



and

B3(8)s) L0 ko0 2 o0y (|sdh
[9%(8)4) 0 _Ti 0 \_/—% 0 0 |[sd]u)
[94(8)s) _ % 0 % 0 0 0 [{su}d) an
BA(8)a) 0o % 0 2 o 2| | s
(1)) 0 % 0 & oo | | idus)
$2(10)s, o0 o0 % o) \dus)
Likewise, in this basis the identity matrix becomes
I= Y (Hoee o)e){ae o)l + lge ola) (2. o) - (18)
Then Eqs.(8)-(11) can be recast into the following form:
[$@®)a) = D lga %)) ([9a 9] e [9"(8)a) (19)
$8)s) = Y. Hae @} 9) ({42 ) @ [9(8)s) (20)
P*Wa) = D l9a @) 4e) ([9a @] g0 [9"(1)a) (21)
|'¢}k(10)5t> = Z |{Qa Qb} QC> <{Qa Qb} qc |'¢}k(10)5t> ’ (22)

where we have used ([q, ¢5)q:|¥*(8)s) = 0 and ({qa ¢}4.|¥*(8)4) = 0. The coefficients on
the right hand side (r.h.s.) of Eqs. (19)-(22) are the matrix elements in Eqs. (16) and (17).

Here we would like to emphasize that it is important to use the orthonomal quark states
as the basis so that the identity operator has the simple expressions of Eq. (12) or Egs. (18).
They provide the proper transformation from the particle states to the quark states and
vice versa as given by Egs. (3) and (4), equivalently by Eq. (8) to (11), or Eqgs. (16) and
(17), equivalently Egs. (19) to (22). These are the crucial relations we shall use in converting
decay amplitudes in terms of particles to decay amplitudes in terms of quarks, i.e., the quark
diagram amplitudes. Since Kohara [10] did not use the orthonormal basis and the correct

identity operator , his results for B.(3) — B(8)M(8) decays are incorrect.

Similarly, we can form irreducible representations for the spin part of the particle from



the tri- %—spin states

WO\ (F % ) (1w A
O | =5 % o | [1Fr 22 o4y |, (23)
x*2(3)s.) A s v/ MEz o3 F3)

giving 6 equations; and

3.3 1 1 1
+ =2
2(— =|+- £- £ 24

giving 2 diagonal ones; totalling 8 equations. The inverse of these equations is also easy to

write out.

The baryon states must be totally antisymmetric in interchanging the composing quarks.
Since the color part (which we do not discuss here, see e.g., Ref.[11]) is antisymmetric, the
product of the flavor and the spin parts must be symmetric as the spatial wave function is

symmetric for low-lying baryons. The decuplet baryons are made out of

3 1 3
|Bm’k(10)> = |Xm(§)5t> |'¢}k(10)5t> y T = j:§7j:§7 and k=110 10 . (25)

The octet baryon is a combination of two parts
[B™*(8)) = a |Bm’k( 8)) + b|B5"(8))
= |X()>|¢()> blx()>|¢()> (26)

where

jal* + b = 1. (27)

We do not have concrete information on the precise values of a and b. Actually, our
formalism does not need such information. (If one assumes the SU(6) symmetry, then a =
b= \/— However, SU(6) is not a perfect symmetry and the quark diagram scheme does not
depend on it. Taking the SU(6) values for a and b does not change the results at all. Kohara

was mistaken on and misled by this point, see detailed comments later.)

Besides the | B™*(8)) states as given by Eq. (26), there are the states orthogonal to them,

which are denoted by

BTH(8) = b Ix"(5 )a) [WH8)L) — @ |x’”(%)s> [45(8)s) , (28)



and
(BT*(8) |[B™*(8)) = 0. (29)

Nature does not realize these states, but they are there in the formalism and hence must be

considered when completeness of these states is used.

Likewise, we can formulate the meson case, which is much simpler than the baryon
case. We discuss it here for completeness and for comparison. Mesons are made out of
2-spin quark-antiquark ¢'q pair belonging to the flavor [3] x [3] representation. They form
flavor irreducible representations of the 3 x 3 = 9 = 8 + 1, i.e., the 9 quark-antiquark
states can be decomposed into flavor [8] and [1] irreducible states denoted by |¢?(8)) and
|¢(1)) respectively, where the superscript “;” denotes the eight particles in the [8] irreducible

representations.

The transformation between the two bases, the quark basis and the irreducible-representation

particle basis, can be written in a 9 x 9 matrix

) 1 00000 O 0 O |ud)
|65 010000 0 0 0 |u3)
™ ) 0 01 000 0 o0 O |du)
|p%°) 000 00 0 0 0 |d5)
|57 =10 0 0 0 1 0 0 0 O |sw) (30)
%) 000001 0 0 0 |sd)
™) 000000 5z 5 0 |ui)
|p™) 000000%%‘72 |dd)
|¢p™) 0 0 00 0O % % % |s3)
The nine equations given by the matrix equation can also be written out as
|M7(8)) = >_lag) (aq' | M7(8)) , (31)
g9
and
|M(1)) = > lag) (aq' | M(1)), (32)
3,9’

8



where the summation is for § = @,d, 5 and ¢’ = u, d, s. These equations are obtained simply

by multiplying the left hand side of (31) and (32) by
1=3%laq) (aq', (33)
which is the completeness of the |¢’g)-basis in the quark-antiquark vector space.

The irreducible-representation states in spin are related to the spin-product space by

x*(1)) 10 0 0\ /5%
X~ (1)) 01 0 0 |[|53)
0 - 1 1 _21 _|_21 (34)
x°(1)) 00 = #||IF%)
x(0) ) 00 % 7/ \I53F)
and its inverse is trivially obtained
x*(1)) 10 0 0 /5%
X~ (1)) 01 0 0|53
0 - 11 —21 +21 (35)
x°(1)) 00 = # |5 %)
x(0) ) 00 % 7/ \IF3F)
For pseudoscalar mesons, the wave functions are simply given by

(M(1)) = [x(0)) [¢(8) ),
|M(8)) = |x(0)) [4(8)) , (36)

where the superscript j indicates the eight different particles given in Eq. (30).

ITI. Quark Diagram Scheme for B,.(3) — B(10) + M(8)

The light quarks of the charmed baryons belong to the [3] or the [6] representation of the
flavor SU(3). The A}, =4 | and =24 constitute the [3] representation. They all decay weakly.

(4

The Q0, =%, E05 %++ n+ RO comprise the [6] representation; among them, however, only
Q2 decays weakly (the X110 decay strongly to the A} of the [3] representation and the Z1°
decay electromagnetically). We shall first discuss the simpler case of the decuplet baryon

being in the decay products.



ITT.a. Formalism

Consider a particular charmed baryon B™% decaying into an octet meson M?(8) and a
decuplet baryon B™*(10), where the subscript “0” signifies that we are discussing a specific

baryon and a specific meson. The amplitude with the spin-projection m,m’ summed over is

Alio — jo ko) = D (B |Hy | M%) |B™*(10)) ; using Eq. (25) for |[B™*(10))

R . 03 . .
= 2 (BI [Hw|M*(8)) [X™(5)s:) [9%(10)s,); inserting Eq.(12),
m,i s j m/ 3 0
= 2 (B [Hw|M”(8)) X (3)s) o @ ) (@ @2 gs[*(10)s,) ;
mlmllqi

using Eq. (36) for M”(8) ,

= > (Be [Hwlx(0)) 6°(8)) Ix(g)sJ |91 g2 g3) (a1 g2 ga| $*(10)s,) ;

! .
m,m’,q;

inserting Eq. (33),

= X (BM|Hwl|x(0)) ™ (2)s) 120) 1a: s as) (7167 (8))

m,m’,g,q',g;

X{q1 g2 g3 |1/’k°(10)5t>

= Y A(lo— 39 @1 ¢ @) (3d197°(8)) (@1 a2 g5 [$™(10)s,) , (37)
4,9’ 9:
where
. — m,io | 1) m’ 3 —
Ao — 34 q1 g2 g3) = DY (BI™|Hw|x(0)) |x (3)s:) 129" 01 92 gs) (38)

are the quark-diagram amplitudes. Therefore, Eq. (37) gives the particle amplitudes of B
decaying into particles M%(8) and B*(10) in terms of the quark amplitudes of B® decaying
into quarks 3¢’ ¢1 g2 g3. The coefficients (gq’|¢(8)) and (g1 g2 g3|¥*(10)s,) are those given
in Eq. (30) and Egs. (3) to (7).

Using the orthonormality of the coeflicients, we can easily convert Eq. (37) to express
the quark amplitudes in terms of the particle amplitudes
Ao — 39 @1 @2 g3) = > Ao — jo ko) (¢°(8)|aq") (q19295%™(10)s,) , (39)
Josko
using the orthonormality condition of the coeflicients, which is the result of the orthonor-

mality of the states.

10



We can also formulate the relation (37) in the basis given by Egs. (13) and (14), which
is also more convenient to apply since |)¥(10)s,) is totally symmetric. Replacing “inserting
Eq. (12)” by “inserting Eq. (18)” in Eq. (37), we obtain

A(io — jo ko) = D Aio — 3¢ {da 0}3:)(qTUS"(8))({ga @} gel¥™(10)s,) , (40)
49’19

where

A(io — 44, {ga 5}g.) = Y (B™| Hyw |x(0)) Ixm/(g)sj 139’y {20 B}qe) - (41)

m,m’

Let us look more carefully at the amplitudes. For ¢, = g3,

A(lo — qqu {Qa Qb}QC) = A(7'0 - qq/7qa Ga QC)

= As(B.(3) — B(10) M(8)), (42)
and for ¢, # o,
) _ 1 ) _ ) _
A(to — 39',{¢a B}4q) = 75[/1(10 — 49, 9a @ 9c) + Ao — 49, % 9a 4c)]
= V2 45(B.(3) — B(10) M(3)), (43)
where we have used
) y 1 ... _ . _
Allo — 49190 @ ) = §[A(zo — 4919 @ qc) + A(to — 79 P 9a 9c)autas
= As(B.(3) — B(10) M(8)) . (44)

We shall see later that this assumption gives results consistent with those using the SU(3)-IR
amplitudes. Eqs. (42) and (43) can be combined into one equation

Alio = 3¢, {00 @}9c) = [V2(1 = 800,) + 640a) As(Be(3) — B(10) M(8)) ,

which we substitute into Eq. (40) and obtain

Alio = jo ko) = 2 [V2(1 = b40q,) + 8guq,) As(Be(3) — B(10) M(8))

4,9',9:

¢"(8)) {{da B}acl9™(10)s,) - (45)

X

(q'q

11



Here in Eq. (37) and in Eq. (45) we see the important use of Eq. (12) and of Eq. (18) to

convert particle-amplitudes to the quark-amplitudes.

One can easily show by diagram drawing that the B.(3) — B(10) + M(8) decays have
contributions only from the W-exchange and the horizontal W-loop diagrams, i.e., the C
and & types of amplitudes. In the A and 5 amplitudes, the two spectator quarks that are
antisymmetrized in the initial charmed baryon state remain to be antisymmetrized after
the weak-interaction decay and cannot contribute to make an B(10) whose wave function
is totally symmetric. In the C and & types of amplitudes, an appropriate quark pair gogo
is created so that the gy will combine with one of the quarks originated from the initial
quark to form the meson jo. Depending upon where the pair gogo can be inserted in the
diagrams, we have different types of Cs and &g of amplitudes; C;5 for ¢ forming a meson
with a spectator quark (which does not contribute in this case of B(10) in the final state);
Cas for o forming a meson with the weak-interacting non-charmed quark; Cg for go forming
a meson with the quark decayed from the charmed quark; s for §o forming a meson with the
a spectator quark; and &% for g forming a meson with the quark decayed from the charmed
quark. The quark ¢ from the pair creation will form with the other two quarks to become

the final baryon ky. Thus in Eq. (45) only ¢; and ¢» are summed over and Eq. (45) becomes

A(io —  Joko) (46)
= Ca5(Be(3) = B10)M(8))[V2(1 — 8514) + 810s ) (G00316™ (8)) ({1 g5} ol (10)s,)
(10)M(8)) [V2(L — 8yq1) + S0005) (G0 (8)) ({ar a3} a0l80*(10)s,)

M(8
3) — B(L0)M(8)) [V2(1 — 8430,) + 6as | (2002 ¢” (8)) ({45 a1} a0l (10)s,).

+ (
+ (
Using (46) for B.(3) — B(10) + M(8) decays, we obtain Tables 1.a, 1.b and l.c. (In these
tables we have dropped the parenthesis that specify the decay of B.(3) — B(10) M(8).) We
see that all B.(3) — B(10) M(8) decays, fifty-five of them, can be expressed in terms of the
three unknown amplitudes: Cyg, Cg and Es. Therefore, we obtain many relations among the

particle decay amplitudes as shown in the next section.

12



ITI.b. Results and Tables

The following SU(3) relations can be obtained from Tables. la-1c, namely
[A(AT — =) = JA(E™ — =),

AEM — @ KH)? = 3JAEM — Ert) = 3|AF — ZOK )
= 6|A(E°A — E*O7r°)|2 = 6|AAf — E*+7r0)|2 = 6|AAS — E*°w+)|2, (47)

|A(A}f — ATTKT)]? = 3JAAf — ATK?))?
=3JA(EM - K )]? = 6|AEM — TK))?
for quark-mixing-allowed modes;

A(E2 — SO0 = 3|AEM — 501,

JAEM — 27 T)? = JA(E™ — 27K = 4|A(A} — A )2
= 4JA(E* - ZOKN)? = 8|AA — ZOKT)?
= 8A(EH - )P = 8JA(E! - T )P, (48)

JA(AT — AT )2 = JAEM - AT K7)? = 3|A(A] — KO
=3JA(E - ATKY)|? = 3|A(E™ — A°K°)|? = 3|A(E% — =K%
=3JA(EM - )2 = 3|A(EM — ATKT))?

for quark-mixing-suppressed modes;

AR = Ang)P = A — A%,)P,
A = A% = 2AEH - AP,

JA(EF4 = At )2 = 3JA(EH — D EO)?

=3|A(E — ATz )P = 6]A(EM™ — =K%, (49)

13



AR — Amt)F = BJAEHA — A%)P

=3JA(E™ - T KT)|? = 6/A(E — 0K T))?

for quark-mixing-doubly-suppressed modes, and many relations between quark-mixing-allowed,

-suppressed, and -doubly-suppressed decay modes, for example

[A(AS — A% PP = 2s7|A(A] — TP a0) P,

[A(AS — AT = STAA] — ATTET)P,
[AEH = KNP = sjAA] - 0P, (50)
)

JA(EF4 = At )2 = stA(AF — AYTE)

Two comments are in order. First, we note that the quark-mixing-allowed decays of
an antitriplet charmed baryon into a decuplet baryon and a pseudoscalar meson can oc-
cur only through W-exchange diagrams. The experimental measurement of AJ — ATtK~
[2] indicates that the W-exchange mechanism plays a significant role in charmed baryon de-
=+A4

cays. Second, the quark-mixing-allowed decays of =7 and Quark-mixing-doubly-suppressed

decays of AT into a decuplet baryon are prohibited in the quark-diagram scheme:
[A(EH — ZFK%))P = 0, [AEM -1 =0,

|JA(Af — ATKO))? = 0, |JAAf — A°KT)? =0. (51)

In the SU(3)-IR approach of Savage and Springer (SS) [6], these decays are governed by the
reduced matrix element o defined in Eq. (17) of Ref. [6]. However, we see that they are
forbidden in the quark-diagram scheme since they are given by the quark diagram A or B’
and they give zero contrition, as we discussed before, because of the un-matching symmetry
properties of the antitriplet charmed baryon and the decuplet baryon. Furthermore, we note
that the SU(3)-IR approach of SS will predict the above SU(3) relations (48-51) only if the
reduced matrix elements o and v make no contributions. As a consequence, there are only
two independent SU(3) reduced matrix elements 8 and §. The quark-diagram amplitudes
and the SU(3)-symmetry parameters are related by

1 1
B = 5(63 +Cas), 6 = 5(63 —Css), a=v=0. (52)

14



IV. Quark Diagram Scheme for B.(3) — B(8) + M(8)
IV.a. The Formalism

The formalism is very similar to that given in Sect. IIl.a. for the decuplet baryon in
the final state except for the complication that the octet baryons are made up with two
orthonormal parts, Eq. (26). We shall see that all it does is that each type of the quark
amplitude A will be made up of two independent ones, the symmetric and the antisymmetric.
Following the similar procedure used in Eqs. (37) and (50), we derive

Ao — jo ko) = 3 (Bl |Hw|M™(8)) |B™"(8))

m,m’

= X (B Ew M) (2 ()RR () + 5 X (G)s)ER8)s)

= X (B M) ) 00 1) (@ 0 O

bX BB ) W (G)s) a0 ) {0 0 ()

= X (B M) W) 0] o) (o ] a0

bL BB M) W G)s) o) ) (0 0) a5 63)

To decompose the meson state into the ¢’ state, we insert in Eq. (53) the completeness

relation Eq. (33) and obtain

A(io = jo ko) = > b (Bl |Hw|x(07)) lad) ™ (5)a)l a1 2] ao)

m,m’,q,q',g;

(3¢ (8)) ([q1 2] as|¥™(8)4)

Y @ (B (0) 120) X ()s) e @} )

m,m’,g,q',¢;

<(qq'|4°(8)) (a1 g2 qs[¥™(8)s)
= Y A(o— 74 @ ¢l as) (39167 (8)) ([qr 2] gs[2™(8)a)

4,9',9i

+ ) Alio— 74 {a @} @) (716" (8)) ({ar a2} as[¥™(8)s) , (54)

4,9',9i

15



where

AGGo— G 4 [0 @] gs) = b (B [Hw|x(07)) |3q") |Xm/(%)A>|[Q1 g2 gs)

m,m’

= Au(B(3) — B(8)M(8)), (55)
and

AGo — G 4 {@ a2} @s) =y b" (Bl Hw|x(07)) |gq) |Xm/(%)A>|{Q1 %} gs)

m,m’

= [V2(1 = 6yq) + 60l As(Be(3) — B(8)M(8)).  (56)
Now the decay amplitudes into particles are related to decay amplitudes into quarks.

Therefore, the important result we have established is that for the decays into the B(8),
the quark diagrams have two independent types: the symmetric and the antisymmetric, A4
and Ag. This result is independent of what particles the B(8)’s decay from or are associated

with. Here we also see the difference between our formulation and results from those of

Kohara’s [10].

Let us discuss now specifically what types of quark diagram amplitudes will contribute.
For B.(3) — B(8) + M(8), the two initial noncharmed quarks, say ¢; and gs, are antisym-
metric in flavor. In diagram A, ¢; and ¢, are spectators; therefore, they stay antisymmetric
in the final state. We denote the quark arising from the charmed quark decay as g3, and the
quark-antiquark pair from the W as gog,. In diagram B’ (the superscript “’” signifies that
the quark ¢g; coming from the charmed quark decay contributes to the final meson formation
rather than the final baryon formation), ¢; and g, are also spectators; therefore, they stay
antisymmetric in the final product. In diagram B, g5 and g; are forced to be flavor antisym-
metric due to the Pati-Woo theorem [11], so are the quark pair ¢;g¢3 in diagram C;. Note that
the quark-diagram amplitudes B% and C;g vanish because of the Pati-Woo theorem which
results from the fact that the (V — A) x (V — A) structure of weak interactions is invariant
under the Fierz transformation and that the baryon wave function is color antisymmetric.

This theorem requires that the quark pair in a baryon produced by weak interactions be

antisymmetric in flavor. Putting together all these information and referring to Fig. 2, we
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find the detailed expression for Eq. (54)

A(io — joko) = Aa(Bo(3) — B(8)M(8))(dogol¢™(8))([a142)s%*(8))
+ Bly(Be(3) — B(8)M(8))(dogald™ (8)) (a1 216/ (8) )
+ Ba(Bu(3) — B(8)M(8))(dogzl¢™(8))([a146]5%"* (8))
+ Cra(B.(3) = B(8)M(8)) (2a:/¢" (8))([4,d5]90[*(8)a)
+ Caa(B.(3) = B(8)M(8)) (2as|¢”" (8))([0145]90/*(8))
+ Cas(Ba(3) = B(8)M(8)) (d9ald™ (8)) ({919} 9010 (8)s) [V2(L = Saraa) + aran]
+ C4(B.(3) — B(8)M(8))(dogsld™(8)) ({a105} s " (8))
+ Co(Be(3) — B(8)M(8)) (d0s16™ (8)) ({0105} 00 [ (8)3) [V(L — busgy) + Fiugy]
+ Ea(B:(3) — B(8)M(8))(dogz|#™(8)){asrlaol$*(8).4)
+ Es(B.(3) = B(8)M(8))(%0a:/6” (8)) ({as01} 90l (8)5) [V2(L — 810) + S0as]
+ E4(B(3) = B(8)M(8))(20asl¢* (8)){[a1g2)aol ™ (8).). (57)

Applying this to all the B.(3) — B(8) M(8) decays, we can express all the 58 decays in

terms of the eleven unknown amplitudes in (57) (see also Table 2).

Here we can give a more detailed discussion on the comparison of our quark diagram
formulation with that of Kohara [10]. In our scheme we arbitrarily choose a pair of quarks
in the diagrams C; and C» to be flavor symmetric and antisymmetric (see Fig. 2) in accord
with Eq. (54). It can be shown that physics is independent of the choice of the quark pair.
By contrast, Kohara chose two pairs of quarks in the octet baryon to be antisymmetric. This
will encounter the following problems. We note that the orthonormal bases of the spin-flavor
wave functions of the octet baryon are ¢4(12)x4(12) and ¢5(12)xs(12). Assuming SU(6)

symmetry, the octet baryon wave function can be recast to the form

V2 16,(12)a(12) + (13) + (23)], (58)

where (¢j) means permutation of the quark in place ¢ with the quark in place j. The Kohara’s
scheme amounts to choosing two of the quark pairs to be flavor antisymmetric, say ¢(12)
and ¢4(23). However, it is clear that they are not orthonormal and care must be taken to

include possible contributions from the third basis ¢4(13)x4(13). From previous discussions,
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we see that it is most natural and simple to take ¢4 and ¢s as flavor bases. Moreover, this

choice of flavor bases is independent of SU(6) symmetry.

IV.b. Results and Tables

From the second column of Tabs. 2a-2c¢

tions:

[A(E — 577 )P
A — KO
A= - 3P
A — pEO)f
A - =K
A~ o)

for quark-mixing-suppressed modes,
A - 5K

[A(E! — ETK)P?

we have the following SU(3)-symmetry predic-

2/ A= — S°K°)P,

2|A(EH4 — X°KH))?,

(59)

(60)

for quark-mixing-doubly-suppressed modes, and relations between the squares of quark-

mixing-allowed, -suppressed, and quark-mixing-doubly-suppressed amplitudes:

IA(A+ — pno)|?
|A(E" — ="K )?
|A(Z — Btr))?
|A(EH — BTK°))?

|A(EF = nr )2

)

)

7)

)

)
|A(E* — =7 KH)P?
|A(E — pr)|?
|A(AT — nKT)[?
|A(AT — pK°)P?
PMo)

[AE! —

| 2

(61)



where s; = sin 6;, and 6, is the usual quark-mxing angle.

Note that the above quark-diagram relations can also be reproduced in the SU(3) Haml-
tonian approach of Savage and Springer (SS) [6] ! except for Eq. (60) and the first and last
relations in Eq. (61). We believe that when the use of the SU(3) Hamiltonian in which the
symmetry amplitudes are tensor decomposed is done correctly to incorporate the symmetry
properties of the baryon wave function, the reduced matrix element a defined in Ref.[6] should

not contribute and all aforementioned SU(3) quark-diagram results will be reproduced.

The relations between the SU(3) reduced matrix elements of Ref.[6] and the quark-

diagram amplitudes are 2

1
43

1
(C5 + Cas), d = ﬁ(cg + Cas),

(C./S' - CZS)7 (62)
b

8v/3

1
a = 07 b= _Z(C;l + CZA) - (C./S' + 625)7

1 . 1
CZZ(AA—I_BA)_ﬁ

1 1

e:§(AA—BA)—I-4\/§

1
f= —§(2C1A +C) —Can) + (Cs — Cas),

1
g = g(AA +2B,4 — B;l)

At first sight, it appears that there are six independent SU(3) parameters, but eight different
quark amplitudes. However, one may make the following redefinition (this redefinition is not
unique):
~ 2 ~ 2
A = Ay — —=C. B' =B, - —
A 3 S A \/g

73 Css, és :C§+C2S,
Cs+Cia, Cp=Caa— —=Cas — Cia, (63)

< 1
¢ =0, —-—

A \/g

so that the amplitudes for the decay modes in Table 2 can be expressed in terms of the six

quark-diagram terms A, B, B4, C', Cs, Cs.

!Note that the reduced matrix elements a, b, c and d introduced in Ref.[6] are associated with the operator

o

75, which transforms as a 15 under flavor SU(3) and is symmetric in color indices and hence cannot induce

a baryon-baryon transition. In other words, baryon-pole diagrams are prohibited by the operator Org.
?Using Table 2 and the relations (62), one can perform a cross check on the SU(3) amplitudes given in

Tables I-IIT of Ref.[6]. For example, we find a sign error in Table III, namely the squared matrix elements

for 2 — A®K? should read %|a —2b+ c+ 2e — 4f — 4g|%.
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In Kohara’s results [10] there are eight quark diagrams ag, bx, ck, dix, dsx, dsx, dax

and eg. ®* We find that his scheme is consistent with the SU(3) approach only if
d2K = 2bK, d3K = €K (64)
and

a=—dsg +ex =0, b=bxg+ (d1K+d3K+d4K)

1 1
c= —ag + §d4K, d=—bg — §d4K7 (65)
SRS f = (dik + dr)
e = 20,1{ 4 41K 5 —4 1K 3K )

1
g= 5(—(11{ + bk — ck),

However, a priori there is no reason to expect that Eq. (64) holds. In fact, these two relations
will lead to vanishing AY — pK°, Z°K° decay rates. Experimentally, A} — pK? is observed
with the branching ratio (2.1 +0.4)% [2].

V. Sextet Charmed Baryon Decays

V.a. Quark Diagram Scheme for B.(6) — B(10) + M(8)

There are six independent quark-diagram amplitudes for B.(6) — B(10) + M(8). The
amplitudes B and C; are forbidden owing to the Pati-Woo theorem. The relevant diagrams
and amplitudes are exhibited in Fig. 3 and Table 3, respectively.

From Table 3 we obtain the following SU(3) relations:

|A(Q2 — ZTKT)P = 2/A(Q2 — K%,
|A(Q) — Z%0)° = 2|A(Q] — %)%,

1
A0 = S0) = SSIAR2 — S 0n)l, (66)
AQ = S )P = S2JA(QD — 2 E)P,

1
A0 = ZTKN = SsA(R — @ KT,

3In order to avoid notation confusion with the SU(3) parameters of SS [6], we add a subscript K to the

Kohara’s quark diagram amplitudes [10].
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It is interesting to note that the Q° decays into A°K® and ATK~ are prohibited in the

quark-diagram scheme
A(QS — AR =0, |AR2 — ATE)P =0, (67)

as the quark diagram C; is not allowed by the Pati-Woo theorem. Consequently, the corre-

sponding reduced matrix element o makes no contribution.

We note that the above quark-diagram relations except for the last one listed in (66)
cannot be reproduced in the SU(3)-IR approach of SS unless the reduced matrix elements
a and § do not contribute. Therefore, in the SU(3) limit there are only four independent
quark-diagram amplitudes or reduced matrix elements. Relations between the quark-diagram

amplitudes and the symmetry parameters (see Eq. (25) of Ref.[6]) are given by

As = /8_2777 B./S':/B—I_2777
Cs = 7+ 2], Cos =7y — 2. (68)

V.b. Quark Diagram Scheme for B.(6) — B(8) + M(8)

We discuss in this section the decays of sextet charmed baryons into an octet baryon and
a pseudoscalar meson. The relevant quark diagrams and amplitudes are shown in Fig. 4 and

Tab. 4, respectively.

In the SU(3)-symmetry approach [6], there exist no any relations between the decays of
Q2 — B(8) + M(8). However, from Tab. 4 we obtain

[A(Q; — nK°)* = |A(Q; — pK )|,
JA(Q0 — SHET)2 = 2/A(Q° — KO (69)

These relations cannot be reproduced in the SU(3) approach [6] unless the contributions
due to the SU(3) parameters a and d vanish. Therefore, Eq. (69) will provide a good test
on the quark-diagram scheme. Unfortunately, these processes are either singly or quark-
mixing-doubly-suppressed. We do not expect that an encouraging experimental verification

will come out soon.
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The relations between quark-diagram amplitudes and SU(3) reduced matrix elements are
found to be
d=0, b= ——(As+BY)
a = =V, = —— y
2,377 T8

1 1
l= ~(C4+Con) — —=

1, L
e—1= ﬁ(CS‘I‘CZS)) f: g(CA_C2A)_

(C./S' + 625)7
1

8\/5(0'5 — Cas), (70)

1 1
= (As— BY) + —=(Cls — Cs),
g 4\/5( S S)+4\/§(S 25)
1 1 1
h= —=(C — —— (C. — _
S(CA C2A)+8\/§(CS C2S)+4C1A7
1 1
k= ——(As— BY) — ~Ba.
4\/5( S S) 4 A

Therefore, there are seven independent SU(3) parameters and quark-diagram amplitudes.
VI. Conclusions

In this paper we have given a general and unified formulation useful for the quark di-
agram scheme for baryons. Here we apply it to the two-body nonleptonic weak decays of
charmed baryons and express their decay amplitudes in terms of the quark diagram ampli-
tudes. The effects of the SU(3) violation and final-state interactions are included. We have
obtained many relations among various decay modes. They will be interesting to test in

future experiments.

All of our results are consistent with those from the SU(3)-IR scheme. In addition,
because of the advantage of being able to implement the specific information of symmetries

and the Pati-Woo theorem in the weak decay interactions, we have obtained more specific

results then those from the the SU(3)-IR scheme.

We also note that the quark-mixing-allowed decays of the antitriplet charmed baryon
into a decuplet baryon and a pseudoscalar meson can only proceed through the W-exchange
diagram. Hence, the experimental measurement of AT — ATTK~ implies that the W-

exchange mechanism plays a significant role in charmed baryon decays.
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FIGURE CAPTIONS

1. Quark diagrams for the decay B.(3) — B(10) + M(8).
2. Quark diagrams for the decay B.(3) — B(8) + M(8).
3. Quark diagrams for the decay B.(6) — B(10) + M(8).

4. Quark diagrams for the decay B.(6) — B(8) + M(8).

TABLE CAPTIONS

la. Quark-diagram amplitudes for the quark-mixing-allowed decays of B.(3) — B(10)+
M(8).

1b. Quark-diagram amplitudes for the quark-mixing-suppressed decays of B.(3) —
B(10) + M(8).

lc. Quark-diagram amplitudes for the quark-mixing-doubly-suppressed decays of B.(3) —
B(10) + M(8).

2a. Quark-diagram amplitudes for the quark-mixing-allowed decays of B.(3) — B(8)+
M(8).

2b. Quark-diagram amplitudes for the quark-mixing-suppressed decays of B.(3) —
B(8)+ M(8).

2¢. Quark-diagram amplitudes for the quark-mixing-doubly-suppressed decays of B.(3) —
B(8)+ M(8).

. 3. Quark-diagram amplitudes for B.(6) — B(10) + M(8).

. 4. Quark-diagram amplitudes for B.(6) — B(8) + M(8).
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