
The Relaxation E�ect in Dissipative Relativistic Fluid Theories*

Lee Lindblom

Department of Physics, Montana State University
and, D.A.R.C., Observatoire de Paris{Meudon

Abstract: The dynamics of the uid �elds in a large class of causal dissipative
uid theories is studied. It is shown that the physical uid states in these theo-
ries must relax (on a time scale that is characteristic of the microscopic particle
interactions) to ones that are essentially indistinguishable from the simple rel-
ativistic Navier-Stokes descriptions of these states. Thus, for example, in the
relaxed form of a physical uid state the stress energy tensor is in e�ect indis-
tinguishable from a perfect uid stress tensor plus small dissipative corrections
proportional to the shear of the uid velocity, the gradient of the temperature,
etc.

xI Introduction

A simple mathematical model provides an elegant and accurate description of the
common materials called uids. The e�ects of internal dissipation in these materials|
viscosity and thermal conductivity|are also well modeled by a simple generalization of
the basic theory called the Navier-Stokes equations. Unfortunately, the most straightfor-
ward approaches to constructing relativistic generalizations of the Navier-Stokes equations
result in rather pathological theories (Eckart [1], Landau and Lifschitz [2]). These theories
are non-causal, unstable, and without a well posed initial value formulation (see for ex-
ample Hiscock and Lindblom [3]). Less straightforward approaches have succeeded more
recently in producing a class of causal dissipative uid theories (e.g., Israel and Stewart
[4], Carter [5], Liu, M�uller, and Ruggeri [6], Geroch and Lindblom [7], etc.). These the-
ories have eliminated the pathologies of the straightforward relativistic generalizations of
the Navier-Stokes equations, but they do so at the expense of increasing signi�cantly the
number of dynamical �elds needed to describe the uid. Unfortunately the additional
dynamical degrees of freedom associated with these extra �elds have never been directly
observed in real uids. This is probably why these new theories have not found widespread
acceptance.

In this paper the dynamics associated with these additional uid �elds are analyzed
in a very large class of causal dissipative uid theories. It is shown that the physical uid
states relax (on a time scale characteristic of the inter-particle interactions) to ones that
are also well described by the simple relativistic Navier-Stokes theory. For example, the
stress-energy tensor in such a relaxed uid state is well described by the usual perfect
uid stress-energy tensor plus the Navier-Stokes expressions for the dissipative corrections
involving the shear of the uid velocity, the gradient of the temperature, etc. This result
suggests that meaningful di�erences between the causal theories and the non-causal Navier-
Stokes theory can not be observed. The complicated dynamical structure of the causal
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theories is necessary to insure that the uid evolves in a causal and stable way. But this
rich dynamical structure is unobservable, since the physical states of a uid always evolve
in a way that is also well described by the Navier-Stokes expressions for the stress-energy
tensor, etc. The arguments which lead to these conclusions are extremely general: they are
based on a fully non-linear analysis of the equations and do not assume that the uid state
is close to equilibrium. This analysis generalizes signi�cantly the studies of the analogous
relaxation e�ect in the solutions of the hyperbolic heat equation (see Nagy, Ortiz, and
Reula [8]), and the studies of the relationship between the relativistic Navier-Stokes and
the causal uid theories in the near equilibrium uid states (see Hiscock and Lindblom
[9]).

Let us begin by recalling the theory of a perfect uid: the mathematical description
of a uid having negligible internal dissipation. The state of such a uid is determined by
three �elds on spacetime: a future directed unit timelike vector �eld, ua, and two scalar
�elds n and �. These �elds are assumed to be solutions of the di�erential equations

rmN
m = 0; (1)

rmT
ma = 0; (2)

where Na and T ab are given in terms of the uid �elds by

Na = nua; (3)

T ab = (�+ p)uaub + p gab: (4)

Here p is a smooth function of n and � (the equation of state), that is �xed once and
for all for a given type of uid. The conserved vector Na is the particle current of the
uid, and thus ua may be identi�ed as the four-velocity and n as the number density as

measured by an observer co-moving with the uid. The conserved tensor T ab is the stress
energy of uid. Thus from eq. (4), � is identi�ed as the mass-energy density and p as
the pressure of the uid, both as measured by a co-moving observer. These quantities

are all directly observable because the particle current Na and the stress energy T ab are
themselves directly observable.

The theory of a perfect uid, eqs. (1){(4), has a number of attractive mathematical
properties. One of the most important of these is that eqs. (1){(2) form a symmetric-
hyperbolic and causal system when suitable restrictions are placed on the equation of state.
Let �� = (n; �; ua) denote the dynamical uid �elds. Then eqs. (1){(2) are equivalent to

Mm
��rm�

� = 0; (5)

where

Mm
�� = P�

@Nm

@��
+ P�a

@T am

@��
: (6)

The quantities P� and P�a (functions of �
� and the spacetime metric gab) may be chosen

so that these equations are symmetric in the sense that Mm
�� =Mm

�� (see Ruggeri and

Strumia [10], Geroch and Lindblom [7], and xIII below). When suitable restrictions are
placed on the equation of state these equations are also hyperbolic and causal, because

�m = Mm
��Z

�Z� is past directed timelike for every choice of Z� 6= 0 in these theories.
Next, let us turn to the main subject of this paper: theories of dissipative uids.

Since there is as yet no universally accepted theory for such uids, a rather broad class
of theories has been included in this discussion. The state of the uid in these theories is
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determined by two sets of �elds, �� and 'A, each representing some collection of tensor
�elds (possibly subject to certain algebraic constraints) on spacetime. The �� are to

represent, as in the perfect uid case, the dynamical uid �elds. The 'A are to represent
additional `dissipation' �elds that are needed to complete an acceptable causal uid theory.

It seems reasonable to restrict the dimension of the combined �� and 'A spaces to be
equal to the number of independent observable �elds in the theory.1 In the case of a
simple dissipative uid|the case that is of primary interest here|the particle current Na

and the stress-energy tensor T ab are the independent observable �elds. Hence the most
appropriate choice for the dimension of these combined spaces is fourteen in this case. For
now, however, neither the structures nor the dimensions of these spaces will be restricted.

The �elds, �� and 'A, are assumed to be solutions of the system of equations

Mm
��rm�

� +Mm
�Arm'

A = 0; (7)

Mm
ABr'

B +Mm
�Arm�

� = �IAB'
B : (8)

The quantities Mm
�� , M

m
�A, M

m
AB , and IAB are assumed to be smooth functions,

�xed once and for all for a given theory, of the �elds ��, 'A, and the spacetime metric gab.
Thus eqs. (7){(8) form a �rst-order system of partial di�erential equations for the uid

�elds �� and 'A. Three conditions are now imposed on this system of equations. These
conditions are very general and should apply to essentially any theory of uids (including
those describing superuids, mixtures of di�erent kinds of uids, etc.).

Condition i) The �rst condition is on the M 's that appear on the left sides of eqs. (7){
(8). Assume that the M 's are symmetric, Mm

�� =Mm
(��) and Mm

AB =Mm
(AB); and

assume that every vector �m given by

�m =Mm
��Z

�Z� + 2Mm
�AZ

�ZA +Mm
ABZ

AZB; (9)

for some (Z�; ZA) 6= 0 is past-directed timelike. This is just the condition needed to insure
that the system (7){(8) is symmetric, hyperbolic, and causal (see for example Geroch and
Lindblom [11] or M�uller and Ruggeri [12]).

Condition ii) The second condition involves the tensor IAB that appears on the right side

of eq. (8). Assume that IABZ
AZB > 0 for every ZA 6= 0.2 This condition is adopted to

insure, as will be seen more clearly below, that this uid theory is strictly dissipative. It is
precisely analogous to requiring that the viscosity coe�cients and the thermal conductivity
not vanish in the Navier-Stokes equation.

Condition iii) The third condition concerns the conservation laws. Assume that there

exist speci�c smooth functions Na and T ab of the �elds ��, 'A, and gab, such that eq. (7)
implies the conservation laws, eqs. (1) and (2). This condition merely insures that the
theory possesses a conserved stress energy tensor and particle current.

1 This restriction is not required in the analysis presented here however. If the number of
uid �elds were taken to be larger than the number of observables then some of the uid
�elds would not be observable. The results derived here would still apply, but some of
them would change character from experimentally testable predictions to mathematical
identities.
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The main result of this paper is derived in xII. It is shown that physical states of the
uid relax|on a time scale � that is characteristic of the inter-particle interactions|to
ones in which the dissipation �eld is determined in e�ect by the dynamical �eld �� and its

derivative. In particular, a bound is derived for the quantity �'A, de�ned by

'A = �

��
I�1

�AB
Mm

�Brm�
�

�
'C=0

+�'A; (10)

in the physical uid states of any uid theory which satis�es Conditions i){iii). This bound

on �'A is smaller by the factor b5=2(�v=L)2 than it is expected to be. The constant v is a
characteristic sound speed, L is a macroscopic length scale that characterizes the particular

state of the uid, and the constant b is a dimensionless bound onMm
AB , M

m
�A, (I

�1)AB

and their derivatives (which will be de�ned precisely in xII). The constant b is expected

to be of order unity for `reasonable' uid theories. Thus the factor b5=2(�v=L)2 should be

extremely small for real uids. For example in water (�v=L)2 � 10�12 for uid states with
L � 0:1cm. Since the dissipation �eld in a relaxed uid state is determined in e�ect by
the dynamical �eld �� and its derivative, then so are all other functions of the uid �elds.

In particular, the particle current Na and stress energy tensor T ab are given by

Na =

�
Na

�
@Na

@'A

�
I�1

�AB
Mm

�Brm�
�

�
'C=0

+�Na; (11)

T ab =

"
T ab �

@T ab

@'A

�
I�1

�AB
Mm

�Brm�
�

#
'C=0

+�T ab: (12)

It is shown that the quantities �Na and �T ab are also smaller than their expected values
by the factor b3(�v=L)2. These results apply to any dissipative uid theory that satis�es
Conditions i){iii) above, and to any physical uid state (i.e., as de�ned more precisely
below, a state in which the spatial and temporal variations of the uid �elds are larger
than the microscopic scales). This result explains why the independent dynamics of the

dissipation �eld 'A is never observed: its value is determined in e�ect by the dynami-
cal �eld �� and its derivative, via eq. (10), on any time scale over which a macroscopic
measurement of the system can be made. Although measurements could in principle be
carried out on uid systems over very short time and distance scales, it is not required or
even expected that such measurements will be modeled in detail by any macroscopic uid
theory.

The results of xII show that a dissipative uid quickly relaxes to a state in which
the particle current and stress-energy tensor are determined (in e�ect) by the dynamical
uid �eld �� and its derivative rm�

�. Such relationships are quite familiar to us; for these
are precisely the forms that the expressions for these quantities take in the Navier-Stokes
theory. Recall that in the relativistic Navier-Stokes theory (as formulated by Eckart [1])
the particle current and stress-energy tensor are given in terms of the �elds �� = (n; �; ua)
by

2 The somewhat more general function �IA(�
�; 'B ; gab) could have been adopted for the

right side of eq. (8) if it satis�ed a few additional constraints. This more general form is
equivalent to that given in eq. (8) if and only if IA satis�es the following three conditions:

a) IA = 0 when 'B = 0, b) IA'
A > 0 when 'B 6= 0, and c) @IA=@'

B is not degenerate

when evaluated at 'C = 0.
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Na = nua; (13)

T ab = (� + p)uaub + pgab + �ab + �qab + 2u(aqb); (14)

where

�ab = 2�1

�
qamqbc �

1

3
qabqcm

�
r(muc); (15)

� = �2rmu
m; (16)

qa = �� (qamrmT + Tumrmu
a) : (17)

The quantities �1, �2, and � (positive functions of n and �) are the viscosities and thermal
conductivity respectively; and, the quantity T (a function of n and �) is the thermodynamic
temperature which satis�es the �rst law of thermodynamics,

d� = nTds +
�+ p

n
dn: (18)

In this theory the conservation laws, eqs. (1){(2), and eqs. (15){(17) are the di�eren-

tial equations that determine the �eld ��. If the dissipation �elds are de�ned as, 'A =

(�; qa; �ab), then this theory is of the same general form as those being considered here.
The conservation laws are precisely in the form of eq. (7), while eqs. (15){(17) have the
form of eq. (8). This theory fails to be an acceptable theory because Mm

AB = 0 and
thus it fails to satisfy Condition i). Note that for this relativistic Navier-Stokes theory, the

quantities �'A, �Na, and �T ab as de�ned in eqs. (10){(12) vanish identically.

The vanishing (e�ectively) of �Na and �T ab for the general dissipative uid theories
considered here implies that the particle current and stress-energy tensor depend (in e�ect)
only on �� and its derivative rm�

� in any physical uid state. In the relativistic Navier-
Stokes theory, however, only certain components of rm�

� appear in these expressions.
For example, in the Navier-Stokes theory rmT appears in these expressions but not the
gradient of any other thermodynamic scalar. It is natural to ask then, what class of
uid theories have the property that their uid states always relax to ones in which the
particle current and stress-energy tensor are in e�ect indistinguishable from those of the

relativistic Navier-Stokes theory? Or in particular, in which theories doNa and T ab depend
on �� and rm�

� in precisely the same way as in the Navier-Stokes theory? The following
two additional conditions are necessary and su�cient to guarantee that a theory will be
indistinguishable from Navier-Stokes in this way:

Condition iv) The fourth condition concerns the space of dynamical �elds ��. Assume
that eq. (7) is precisely equivalent to the conservation laws, eqs. (1){(2). This implies that
the space of the �� consists of one vector and one scalar �eld which may, without loss
of generality (as shown in xIII), be taken to be �� = (n; �; ua), where nua = Na (with

uaua = �1) and � = uaubT
ab.

Condition v) The �fth condition concerns the tensor Mm
�A that appears in eqs. (7){(8).

Assume that Mm
�Arm�

� depends on rmn and rm� only in the combination rmT =

(@T=@n)�rmn+(@T=@�)nrm� in the '
A = 0 states of the uid. This condition is required

to insure that heat ow is generated by the gradient of the thermodynamic temperature
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T and not the gradient of some other thermodynamic scalar. This condition is equivalent
to the requirement that the equilibrium states of the uid be `isothermal.'

The theories that satisfy these two additional conditions are the natural causal generaliza-
tions of the Navier-Stokes theory: the causal theories of a simple dissipative uid.

In xIII the expressions for the relaxed forms of the particle current and stress-energy
tensor are evaluated for the theories of simple dissipative uids, i.e., those satisfying Con-
ditions i){v). With the convenient choice of dynamical �elds, �� = (n; �; ua), eqs. (1.11){
(1.12) reduce to

Na = nua; (19)

T ab =(�+ p)uaub + pgab + 2�1

�
qamqbc �

1

3
qabqcm

�
r(muc) + �2rmu

mqab

� 2�u(a
h
qb)mrmT + Tujmjrmu

b)
i
+�T ab;

(20)

for suitably chosen functions (of n and �) p, �1, �2, and �. Since �T ab is extremely small
in the physical uid states of these theories, this shows that the particle current and stress
energy tensor are (in e�ect) indistinguishable from those of the relativistic Navier-Stokes

theory.3

xII The Relaxation E�ect

The key result in this paper is that the physical states of the uid relax to ones in
which the dissipation �eld 'A is determined (in e�ect) by the dynamical uid �eld ��

and its derivative rm�
�. That some form of relaxation should occur in the solutions of

eqs. (7){(8) can be seen fairly easily. Consider the quantity IAB'
B+Mm

�Arm�
�. If this

quantity does not vanish at some point, then the �rst term in eq. (8) causes 'A to evolve
in the direction that tends to make it vanish. The rate at which this evolution occurs is
determined by the time scale that is encoded in the tensor IAB . For uids this time scale
will be determined by the viscosity and thermal conductivity coe�cients contained in IAB ,
and therefore will be characteristic of the inter-particle interaction times for the uid. The
demonstration that the quantity �'A de�ned in eq. (10) is small will be done in two steps.

First, it is shown that a related quantity 'A + �A, de�ned below, is small using a fairly
simple and straightforward argument. Second, a slightly more elaborate argument shows

that the quantities �'A, �Na, and �T ab of eqs. (10){(12) are also small.

Begin by obtaining the following equation for 'A +�A from eq. (8):

rm

h
Mm

AB

�
'A +�A

��
'B +�B

�i
= �2IAB

�
'A +�A

��
'B +�B

�
+
�
'A +�A

�
AA;

(21)

3 Note that �Nm and uaub�T
ab vanish identically as a consequence of the particular choice

of �� made here. Had a di�erent choice been made, such as the one traditionally used in
the Landau-Lifschitz theory [2], then other components of these quantities would have
vanished identically instead.
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where �A and AA are de�ned by

�A =
�
I�1

�AB �
Mm

�Brm�
�
�
1

2
'CrmM

m
BC

�
; (22)

AA = �BrmM
m
AB + 2Mm

ABrm�
B: (23)

Next consider S(0), a bounded open subset of some Cauchy surface. Use the timelike
vector �eld whose divergence appears on the left side of eq. (21) to de�ne a map between
the points on successive Cauchy surfaces. Let S(�) denote the image of S(0) under this
map into the Cauchy surface labeled by the time function �. Choose this time function �
so that it satis�es

IABZ
AZB

� �ZAZBMm
ABrm� (24)

(for every ZA), in the spacetime region (0; �o)�S(�o). Next, de�ne the following L
2 norm

of 'A +�A,

�2(�) =

Z
S(�)

GAB

�
'A +�A

��
'B +�B

�
dV; (25)

where GAB = nmM
m
AB , and nm is the future directed unit vector proportional to rm�.

The evolution of this norm is determined by integrating eq. (21) over the spacetime region
consisting of points in S(�) that lie between two nearby � = constant slices. The integral
along the timelike boundary of this region vanishes because of the choice of S(�). The
integral of the terms on the right in eq. (21) may be transformed using eq. (24) for the
�rst term and the Schwartz inequality for the second. Taking the limit as the di�erence
between � on these two slices goes to zero, the following di�erential inequality is obtained
for �,

d�

d�
� ��+

1

2
jjAjj; (26)

where

jjAjj(�) =

"Z
S(�)

GABAAABdV

�rm�rm�

#1=2
; (27)

and GAB denotes the inverse of GAB. This ordinary di�erential inequality, eq. (26), can
be integrated to obtain the following bound on �,

�(�o) � �(0)e��o +
1

2

Z �o

0
e�(�o��)jjAjj(�)d�: (28)

To proceed further a bound must be obtained for the quantity jjAjj that appears
in eq. (28). To this end a norm is introduced on tensors: The positive de�nite G�� =

nmM
m
�� and its inverse G�� are used for indices associated with the dynamical �eld,

��; and the positive de�nite GAB = nmM
m
AB and its inverse GAB are used for indices

associated with the dissipation �eld 'A. For spacetime indices the positive de�nite metric

Gab = nanb + v�2(gab + nanb) and its inverse Ĝab = nanb + v2(gab + nanb) are used.
The constant v, with 0 < v < 1, is chosen to be an upper bond on the speed (relative
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to na) of signal propagation, i.e., a number such that (na�
a)2 � v�2(gab + nanb)�

a�b

for every �a given in eq. (9). As examples of this norm, the integrand in eq. (25) can

be written as j'A + �Aj2 = GAB('
A + �A)('B + �B), while jAAj

2 = GABAAAB and

jrm�j
2 = Ĝabra�rb� = �ra�r

a�. Note that jMm
AB j � 4d where d is the dimension of

the space of dissipation �elds. Since d will be some relatively small integer, say d = 9, the
norm of the M 's will be of order unity in these uid theories.

In the uid theories considered here the quantities Mm
AB , M

m
�A and IAB are

assumed to be smooth functions of the uid �elds. Therefore, these quantities and their
derivatives with respect to the uid �elds are bounded. It is convenient to quantify these

bounds in terms of three constants b, � and �. Consider uid �elds �� and 'A that are
bounded by the constant �:

j'Aj � �; j��j � �: (29)

Next de�ne the dimensionless constant b to be a bound on the M 's and their derivatives.
In particular assume that

jMm
AB j � b;

����@Mm
AB

@��

���� � b

�
;

����@Mm
AB

@'C

���� � b

�
;����@2Mm

AB

@��@��

���� � b

�2
;

����@2Mm
AB

@��@'C

���� � b

�2
;

����@2Mm
AB

@'C@'D

���� � b

�2
;

(30)

and

jMm
�Aj � b;

����@Mm
�A

@��

���� � b

�
;

����@Mm
�A

@'B

���� � b

�
: (31)

Finally, the constant � is de�ned as a bound on (I�1)AB and its derivatives

j(I�1)AB j � b�;

�����@(I
�1)AB

@��

����� � b�

�
;

�����@(I
�1)AB

@'C

����� � b�

�
; (32)

for b given above. The constant � that appears in these bounds is the characteristic time
scale on which the dissipative term IAB inuences the evolution of the uid in eq. (8).
This constant also �xes the relationship between physical time and the time function �
because of eq. (24). The time function � can be chosen so that

jrm�j �
1

�
: (33)

This � in e�ect measures time in units of � .
To proceed further bounds must now be placed on the spatial derivatives of the uid

�elds. Assume that there exists a constant L such that

jrm�
�
j �

v�

L
; jrm'

A
j �

v�

L
; jrmrn�

�
j �

v2�

L2
; jrmrn'

A
j �

v2�

L2
: (34)

These inequalities restrict the solutions to the uid equations4 to those which do not vary
appreciably on length scales shorter than L and on time scales shorter than L=v. These

4 It is expected that large numbers of solutions to the uid equations exist which satisfy
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inequalities select, therefore, the set of solutions that represent real physical uid states.
Fluid states in which rapid variations of the uid �elds occur on time and length scales
smaller than the microscopic particle interaction scales probably can not be adequately
modeled by any macroscopic uid theory. Thus, solutions to the uid equations having
these properties are not considered physical. The inequalities in eq. (34) therefore select
out the physical solutions of the uid equations when L is larger than the microscopic
interaction length scale. For these solutions the quantity jjAjj can be bounded by using
eqs. (30){(34) in eq. (27):

jjAjj(�) � 26b3�
��v
L

�2
V 1=2(�); (35)

where V (�) is the volume of the region S(�):

V (�) =

Z
S(�)

dV: (36)

Including this bound into eq. (28) the following bound is then obtained for �:

�(�o) � �(0)e��o + 13b3�
��v
L

�2 Z �o

0
e�(�o��)V 1=2(�)d�: (37)

This bound consists of two pieces. The �rst is simply the initial value of � multiplied by
e��o . This term falls exponentially to zero on the characteristic time scale � . The second
term is a constant multiplied by the time average of the spatial volume over which the
norm � is de�ned. This second term, the asymptotic bound on the norm �, is smaller

than the a priori expectation of its value, �(bV )1=2, by the factor b5=2(�v=L)2. This factor
will be extremely small, being proportional to the square of the ratio of the characteristic
dissipation time scale � to the characteristic dynamical time scale L=v, as long as the
constant b is of order unity and the constant v is comparable to the sound speed in the
material. The constant b is a measure of the M 's and I and their derivatives with respect
to the uid �elds. This constant will be of order unity unless these quantities depend
on the uid �elds in a very perverse way (e.g. if the M 's dependence on the �elds were
highly oscillatory). The constant v will be comparable to the sound speed of the material
as long the foliation of Cauchy surfaces is chosen so that the uid motion is not highly
supersonic, and as long as the characteristic speeds associated with the dissipation �elds
are comparable to the usual sound speed. In this case the bound on � derived in eq. (37)

implies that the dissipation �eld 'A relaxes in the physical states of these uid theories in

such a way that the quantity 'A +�A becomes extremely small.
To complete the argument that the quantities �'A, �Na, and �T ab of eqs. (10){

(12) are small, additional L2 and L4 bounds are needed on the dissipation �eld 'A. To
obtain these bounds the following identities are derived from eq. (8),

rm

h
Mm

AB'
A'B

i
= �2IAB'

A'B + 'ABA; (38)

rm

h
Mm

ABGCD'
A'B'C'D

i
= �2IABGCD'

A'B'C'D + 'A'B'CCABC ; (39)

these conditions. In particular, it is expected that initial data satisfying these conditions
on a Cauchy surface will evolve (for some macroscopic time) as a solution that satis�es
these conditions everywhere in the development of these data. There do not exist theorems
at present, however, which prove the existence of solutions having these properties.
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where BA and CABC are de�ned by

BA = 'BrmM
m
AB � 2Mm

�Arm�
�; (40)

CABC = GABBC + 2Mm
ABGCDrm'

D +Mm
AB'

D
rmGCD: (41)

Next an integral norm, analogous to � above, is de�ned for the �eld 'A:

�2(�) =

Z
Ŝ(�)

�
K2
1

���'A +�A
���2 +K2

2

���'A���2 +K2
3

���'A���4� dV; (42)

where K1 > 0, K2 > 0, and K3 > 0 are constants whose values will be speci�ed later. The
time evolution of � is determined in analogy with eq. (26) by integrating K2

1 multiplied

by eq. (21), plus K2
2 multiplied by eq. (38), plus K2

3 multiplied by eq. (39), over the

spacetime region consisting of points in Ŝ(�) that lie between two nearby � = constant

slices. The sequence of spatial sections Ŝ(�) is chosen in this case so that the timelike
boundary integral vanishes identically here as well. The integrations on the right side of
this equation may be simpli�ed, again in analogy with eq. (26), by using eq. (24) and the
Schwartz inequality. The result is the following di�erential inequality on �,

d�

d�
� �� +

1

2
(K1jjAjj+K2jjBjj) +

1

2
K3

2
64Z

Ŝ(�)

jCABC j
2
���'D���2 dV

jrm�j
2

3
75
1=2

; (43)

where jjAjj is given by eq. (27) and jjBjj is

jjBjj(�) =

"Z
Ŝ(�)

jBAj
2 dV

jrm�j
2

#1=2
: (44)

The quantities that appear on the right side of eq. (43) can be bounded if one additional
restriction is made on the physical solutions of the uid theory. Assume that the extrinsic
curvature and acceleration of the � = constant surfaces are bounded by

jranbj �
v

L
: (45)

Using the bounds given in eqs. (29){(33), (34), and (45), the following bounds can be
obtained for the quantities that appear on the right side of eq. (43):

jjBjj � 4b�
�v

L
V̂ 1=2(�); (46)

2
64Z

Ŝ(�)

jCABC j
2
���'D���2 dV

jrm�j2

3
75
1=2

� 9b2�
�v

L

�

K2
: (47)

Combining these bounds with eq. (35), the di�erential inequality for � can be simpli�ed
to the following

10



d�

d�
� �

�
1�

9

2
b2�

�v

L

K3

K2

�
� +

h
13b2

��v
L

�
K1 + 2K2

i
b�
��v
L

�
V̂ 1=2(�): (48)

The constants K1, K2 and K3 are now chosen to be

K1 =
1

13b2
; K2 =

1

2

��v
L

�
; K3 =

1

18b2�
: (49)

With these choices eq. (48) becomes

d�

d�
� �

�

2
+ 2b�

��v
L

�2
V̂ 1=2(�): (50)

Integrating this inequality, the desired bound on the norm � is obtained:

�(�o) � �(0)e��o=2 + 4b�
��v
L

�2
< V̂ 1=2 >; (51)

where < V̂ 1=2 > denotes the time average of the spatial volume,

< V̂ 1=2 >=
1

2

Z �o

0
e�(�o��)=2V̂ 1=2(�)d�: (52)

This bound on � implies an L2 bound on 'A+�A, and simultaneously L2 and L4 bounds
on 'A. The asymptotic values of these bounds are given by

"Z
Ŝ(�)

j'A +�Aj2dV

#1=2
� 52b3�

��v
L

�2
< V̂ 1=2 >; (53)

"Z
Ŝ(�)

j'Aj2dV

#1=2
� 8b�

��v
L

�
< V̂ 1=2 >; (54)

"Z
Ŝ(�)

j'Aj4dV

#1=2
� 72b3�2

��v
L

�2
< V̂ 1=2 > : (55)

These bounds on 'A are smaller by the factor �v=L than their a priori expected values.

The bound on 'A+�A is even smaller, however, being reduced from its a priori expected
value by the factor (�v=L)2. Thus 'A + �A becomes small not simply because 'A and

�A get small individually. Rather, this quantity becomes small because 'A approaches

�A asymptotically. Note that the region Ŝ(�) over which these norms are computed may

be chosen arbitrarily on any particular slice.5 Also note that < V̂ 1=2(�) >� V̂ 1=2(�) if

V̂ (�)� (�v)3. The time average used here is exponentially weighted and hence only those
slices within about one microscopic interaction time � of � contribute signi�cantly.

5 The regions Ŝ(�) on the other slices in the foliation are then �xed, however, in order to
eliminate the spatial boundary terms from the integration.
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The main results of this section are bounds on the quantities �'A, �Na, and �T ab

de�ned in eqs. (10){(12). These bounds are obtained beginning with the quantity �'A,

�'A = 'A +
h
(I�1)ABMm

�Brm�
�
i
'C=0

: (56)

This quantity can be re-written as the sum of 'A + �A, a quantity whose bound was

established above, plus �A:

�'A = 'A +�A + �A; (57)

where �A may be written (using the standard expression for the remainder in a Taylor
expansion) as

�A =
1

2
(I�1)AB'CrmM

m
BC

� 'Crm�
�
Z 1

0

�
@

@'C

h
(I�1)ABMm

�B

i
(�� ; �'D)

�
d�:

(58)

Now, using eqs. (30){(32) and (34) it is straightforward to obtain the following bound on

�A,

j�Aj � 3b2
��v
L

�
j'Aj: (59)

Using the triangle inequality for L2 norms, the norm of �'A can be expressed as the sum
of the norms for 'A +�A, from (53), and the norm of �A, using (54) and (59):"Z

Ŝ(�)
j�'Aj2dV

#1=2
� 38b3�

��v
L

�2
< V̂ 1=2 > : (60)

Thus, the norm of �'A is smaller than its a priori expected value by the factor b5=2(�v=L)2.

Turn next to the quantity �T ab,

�T ab = T ab �

"
T ab �

@T ab

@'A
(I�1)ABMm

�Brm�
�

#
'C=0

: (61)

This quantity may be re-written (using eq. [56] and again the standard expression for the
remainder in a Taylor expansion) as

�T ab = �'A

"
@T ab

@'A

#
'C=0

+ 'A'B
Z 1

0

(
(1� �)

@2T ab

@'A@'B
(��; �'C)

)
d�: (62)

The norm of this quantity can easily be bounded by

j�T abj �
�

�
j�'Aj+

�

2�2
j'Aj2; (63)

if the �eld derivatives of T ab satisfy the following bounds
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�����@T
ab

@'A

����� � �

�
;

����� @2T ab

@'A@'B

����� � �

�2
: (64)

The constant � is a characteristic internal energy density. Using the expressions for the

bound on �'A from eq. (60) and the bound on j'Aj2 from eq. (55), the following bound

on �T ab is obtained,

"Z
Ŝ(�)

j�T abj2dV

#1=2
� 112b3

��v
L

�2
� < V̂ 1=2 > : (65)

This equation provides a bound on �T ab that is smaller than its a priori expected value,

� < V̂ 1=2 >, by the factor b3(�v=L)2.
An exactly analogous bound can be obtained for �Na if the �eld derivatives of Na

are bounded by ����@Na

@'A

���� � �

�
;

���� @2Na

@'A@'B

���� � �

�2
; (66)

where � is a characteristic number density. The bound on �Na is obtained in precisely

the same way as the bound on �T ab, with the result

"Z
Ŝ(�)

j�Na
j
2dV

#1=2
� 112b3

��v
L

�2
� < V̂ 1=2 > : (67)

Thus the bound on �Na is also smaller than its a priori expected value by the factor
b3(�v=L)2.

xIII Simple Dissipative Fluids

In this section the relaxed expressions for the particle current and stress energy
tensor, eqs. (11){(12), are evaluated for the theories of a simple dissipative uid. Condi-
tion iv) guarantees that eq. (7) is equivalent to the conservation laws in this case. This
implies that the space of the �� must consist of one vector and one scalar �eld. The
form of eqs. (7){(8) is unchanged if the uid �elds are transformed in the following way:

�̂� = �̂�(�� ; 'B) and '̂A = '̂A('B). The choice �̂� = (n; �; ua) and '̂A = 'A, where

nua = Na(�� ; 'B; gbc); (68)

� = uaubT
ab(�� ; 'B; gcd); (69)

is a transformation of this form. Thus �� may be chosen to be �� = (n; �; ua), without loss

of generality. With this choice @Na=@'A = 0 and uaub@T
ab=@'A = 0. Evaluating eq. (11)

for this case we obtain Na = nua + �Na, hence eq. (19). The quantity �Na vanishes
identically as a consequence of the choice of �� used here. Condition iv) also implies that
the tensors Mm

�� and Mm
�A of eq. (7) must be given by
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Mm
�� = P�

@Nm

@��
+ P�a

@T am

@��
; (70)

Mm
�A = P�a

@T am

@'A
; (71)

where P� and P�a are suitably chosen functions of ��, 'A and gab. Note that the term

proportional to P� is missing from eq. (71) because @Na=@'A = 0 for our choice of ��.

Using this expression for Mm
�a, the general expression for T ab in eq. (12) reduces to

T ab =

"
T ab �

@T ab

@'A

�
I�1

�AB @T cm

@'B
P�crm�

�

#
'C=0

+�T ab: (72)

Condition v) places restrictions on the allowed forms of Mm
�Arm�

� in the uid

states where 'A = 0. From eq. (71) it follows that this quantity is determined by P�a.

In the 'A = 0 uid states the tensor Mm
�� is identical to the tensor that governs the

evolution of a perfect uid via eqs. (5){(6). The most general P 's that make Mm
��

symmetric in this case are given by

P�d�
� = �Q1

"�
@p

@n

�2

�

+Q2

�
�+ p

n

�2
#
dn�Q1

"�
@p

@�

�
n

�
@p

@n

�
�

�Q2
�+ p

n

#
d�; (73)

P�ad�
� = uaQ1

"�
@p

@�

�
n

�
@p

@n

�
�

�Q2
�+ p

n

#
dn+ uaQ1

"�
@p

@�

�2

n

+Q2

#
d�

�Q1(� + p)

�
@p

@�

�
s

qabdu
b;

(74)

where Q1 and Q2 are arbitrary functions of n and �, and qab = gab + uaub (see Geroch
and Lindblom [7]). The hyperbolicity and causality conditions for Mm

�� in this case are
simply, Q1 > 0 and Q2 > 0, and the equation of state must satisfy

0 <

�
@p

@�

�
s

� 1; (75)

with n > 0 and �+ p > 0. Thus the tensors Mm
�� and Mm

�A are determined completely

(up to the arbitrary overall factor Q1) in these uid states by the function Q2.
Condition v) �xes Q2 by demanding that Mm

�Arm�
� and hence P�(arm)�

� de-

pend on rmn and rm� only in the combination rmT = (@T=@n)�rmn+(@T=@�)nrm�.
The unique Q2 which insures this is

Q2 =
1

nT

�
@p

@�

�
n

�
@T

@s

�
p

�
@p

@T

�
s

=
1

n2T 2

�
@p

@�

�
s

�
@�

@s

�
p

�
@p

@s

�
�

; (76)

where T and s are the temperature and entropy that satisfy the �rst law of thermody-
namics, eq. (18), and � = (�+ p)=nT � s. The second equality in eq. (76) shows that the
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condition Q2 > 0, needed to insure hyperbolicity of the equations, is equivalent to a well
known condition for thermodynamic stability (see Hiscock and Lindblom [13]). With this
choice of Q2 the quantity P�(arm)�

� reduces to

P�(arm)�
� = Q1

�+ p

T

�
@p

@�

�
s

h
u(arm)T � Tr(mua)

i
: (77)

The tensor @T ab=@'A(I�1)AB@T cd=@'B that appears in eq. (72) depends only on �� and
gab. The most general such tensor (having the appropriate symmetries, etc.) depending
only on �� and gab is given by

@T ab

@'A

�
I�1

�AB @T cd

@'B
=

1

Q1(� + p)

�
@�

@p

�
s

�
2�1

�
qa(cqd)b �

1

3
qabqcd

�

+ �2q
abqcd � 2�Tu(aqb)(cud)

�
:

(78)

The arbitrary functions �1, �2, and � (of n and �) that appear in eq. (78) must be positive
as a consequence of the positivity of IAB , from Condition ii), and the positivity of Q1

and (@p=@�)s, from the hyperbolicity and causality of the equations.6 Combining this
expression, eq. (78), with eq. (77) in eq. (72) results in the desired form, eq. (20). Thus,
the relaxed form of the stress energy tensor is indistinguishable in these general causal
theories from that of the relativistic Navier-Stokes theory.

xIV Concluding Remarks

The argument presented here demonstrates that a relaxation e�ect takes place in
virtually every causal theory of dissipative uids. In the relaxed uid states the stress
energy tensor and particle current are well described by expressions that depend only on a
subset of the uid �elds (referred to here as dynamical uid �elds) and their derivatives. For
those theories that represent simple dissipative uids, these expressions are identical to the
ones given by the relativistic Navier-Stokes theory. This implies that any measurement of
the stress-energy tensor or particle current in these theories (made on any time and length
scale that exceeds the microscopic particle interaction scales) will give results that are in
e�ect indistinguishable from those of the Navier-Stokes theory. Of course the Navier-Stokes
theory is not really a proper physical theory at all since it is non-causal, unstable, etc. It is
incapable of predicting the future evolution of initial uid states. The argument presented
here shows, nevertheless, that the evolution of any physical uid state according to any
causal theory results in stress-energy tensors and particle currents that are experimentally
indistinguishable from the Navier-Stokes expressions for these quantities. Further, this
argument shows that the independent dynamics associated with the dissipation �elds of
the uid (i.e., those additional uid �elds that are added to the theory to make it causal)

6 The only requirement on the dissipation �elds needed to obtain eq. (78) is that the space

of the 'A be large enough to insure that none of the coe�cients �1, �2, or � vanishes
identically. This requires in particular that this space be at least as large as the nine-
dimensional space of symmetric trace-free tensors. This is precisely the dimension that is

appropriate for a theory in which the particle current Na and stress energy tensor T ab are
the only independent observable �elds.
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is not directly observable in the physical uid states. On a time scale that is characteristic
of the inter-particle interaction times, these dissipation �elds evolve to a relaxed state in
which they are determined in e�ect by the dynamical �elds and their derivatives.

A number of technical improvements could be made to strengthen the arguments
presented here. The physical uid states for which this result applies are those whose
gradients are bounded locally to insure that they are not rapidly changing on microscopic
scales. These local constraints are much stronger than are actually needed to complete the
proof. All that is really needed are the L2 bounds on the uid �elds and their derivatives
implicit in eqs. (35), (46), and (47). These bounds could undoubtedly be derived using

far weaker L2 conditions on the uid �elds and their derivatives than the local conditions
used here. A more serious limitation of the present work is its failure to demonstrate
the existence of any solutions at all of the uid equations which satisfy these conditions.
The expectation is that essentially every `physically relevant' solution to the uid equations
does satisfy these conditions. In particular it is expected that `almost all' initial data which
are suitably slowly varying on the relevant microscopic length and time scales will evolve
in such a way that these conditions are preserved for some amount (large on microscopic
scales) of time. At present, however, theorems of this sort do not exist for these theories.

Shock waves are one class of physical phenomena that do violate the conditions
imposed on the uid states in this work. Signi�cant di�erences probably do exist in the
descriptions of this type of uid phenomenon among the various causal theories and the
non-causal Navier-Stokes equations. Can meaningful experimental di�erentiation among
the various theories be found by observing shock waves? Or, do the predictions of all
macroscopic uid theories become meaningless when applied to shocks, since these uid
states all contain rapid variations on microscopic particle interaction scales?
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