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Abstract

We study the dyon spectrum in N = 2 super Yang-Mills theory with gauge group
SU(2) coupled to Nf matter multiplets in the fundamental representation. For magnetic
charge one and two we determine the spectrum explicitly and show that it is in agreement
with the duality predictions of Seiberg and Witten. We briefly discuss the extension to
higher charge monopoles for the self-dual Nf = 4 case and argue that the conjectured
spectrum of dyons predicts the existence of certain harmonic spinors on the moduli space
of higher charge monopoles.
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1. Introduction

There has been impressive progress recently in understanding the dynamics of N = 2

supersymmetric gauge theories [1,2]. This progress has relied on the powerful constraints

which come from the holomorphic structure of supersymmetric gauge theories and on a

duality between electric and magnetic degrees of freedom [3]. This duality symmetry is

far from apparent in the current formulation of gauge theory and is still rather poorly

understood.

It has also become clear that there are theories which may possess an exact duality,

relating correlation functions in the dual theories at all scales, and other theories which

possess only effective dualities in the infrared limit. It may be that a full understanding of

theories which possess an exact duality will lead to a better understanding of theories with

effective duality. One class of theories that are thought to possess an exact duality are

the N = 4 supersymmetric Yang-Mills theories [4,5]. These theories have perturbatively

vanishing beta functions. In [2] it was conjectured that the simplest N = 2 gauge theory

with perturbatively vanishing beta function i.e. gauge group G = SU(2) and Nf =

4 hypermultiplets in the fundamental representation, may also have an exact SL(2, Z)

electric-magnetic S-duality 1. The arguments of [2] were based on an analysis of the

dynamics of the theory and its relation to the dynamics of theories with Nf < 4.

It was further noted in [2] that S-duality also makes predictions about the spectrum

of BPS dyon states in the Nf = 4 theory. These are states whose masses saturate a

Bogomol’nyi bound depending on their electric and magnetic charges. In this paper we

will analyze the spectrum of BPS dyons using semi-classical techniques and translate the

conjectured spectrum into predictions about the existence of certain harmonic forms on

the moduli space of BPS monopole solutions. We will verify these predictions in the one

and two-monopole sectors of the theory. The analysis is similar in spirit to that of Sen [5]

who made and verified the analogous prediction in the context of N = 4 super Yang-Mills

theory. Our analysis for Nf = 4 also verifies, en passant, a prediction made in [2] for the

Nf = 3 theory concerning the existence of a dyon state with magnetic charge two.

The outline of this paper is as follows. In section 2 we summarize the structure of

N = 2 super Yang-Mills theory and the results and predictions of [2] that are relevant to

the problem at hand. In section 3 we discuss monopole dynamics in N = 2 gauge theories

1 The precise duality group involves a semi-direct product of SL(2, Z) and Spin(8) which is

described in [2] and section 2 below.



emphasising the effects of the coupling to matter fermions. In particular we show that the

low-energy monopole dynamics is determined by a supersymmetric quantum mechanics on

the moduli space of BPS k-monopole configurations coupled to a natural O(k) connection

that is constructed from the matter fermion zero modes. Our main results are in section 4

which contains an analysis of the BPS dyon spectrum in the sectors with magnetic charge

one and two. The analysis in the charge two sector eventually reduces to a calculation of

the index of the Dirac operator on the Atiyah-Hitchin manifold coupled to the Levi-Civita

connection and an additional O(2) connection. We show that for magnetic charge one

and two the dyon spectrum is in agreement with the conjectures of [1]. We also discuss

the extension of these conjectures to higher monopole moduli spaces. The final section

contains brief conclusions.

2. N = 2 Super Yang-Mills and the Seiberg-Witten Conjecture

2.1. N = 2 Without Matter

Pure N = 2 super Yang-Mills theory with gauge group SU(2) involves a single vector

supermultiplet consisting of a gauge field Aµ, Weyl fermions λ, ψ, and a complex scalar

φ, all in the adjoint representation. The fields Aµ, λ comprise an N = 1 vector multiplet

Wα while ψ, φ are the components of a N = 1 chiral superfield Φ. In component form the

bosonic part of the Lagrangian is

S =
1

16π
Im

∫
τTr(F ∧ F + i ∗ F ∧ F ) +

1

g2

∫
d4x

(
(Dmφ)†(Dmφ) − [φ, φ†]2

)
, (2.1)

where τ = θ/2π + i4π/g2.

2.2. Classical Theory

Classically the theory defined by (2.1) has a vacuum state for every gauge inequivalent

minimum of the potential

V (φ) =
1

g2
Tr[φ, φ†]2. (2.2)

If we choose a gauge in which φ = 1
2aσ

3, the classical moduli space of vacua is the complex

u plane with u = 1
2a

2 = Trφ2.

For each point with u 6= 0 the perturbative spectrum of the theory consists of the

massless photon and its superpartners and the massive W± states and their superpartners.

At the semi-classical level, the spectrum also includes monopole and dyon states with spin



0 and 1/2 with charges (nm, ne) = (1, ne), where the two integers nm and ne specify

the electric and magnetic charges of the state, respectively [4,6]. After incorporating the

corresponding antiparticles, these dyons fill out an N = 2 hypermultiplet of the N = 2

supersymmetry.

The masses of all states in this theory, including monopoles and dyons, satisfy a

Bogomol’nyi bound

M ≥
√

2|Z| =
√

2|a(ne + τnm)|. (2.3)

This bound is derived from the N = 2 supersymmetry algebra in which Z appears as a

central charge [7]. States that saturate the Bogomol’nyi bound are called BPS states and

form short representations of the N = 2 supersymmetry algebra.

The perturbative electrically charged states are all BPS states. For non-zero nm, the

Bogomol’nyi bound is saturated if and only if the classical monopole solutions obey the

first order Bogomol’nyi equations

Bi = ±Diφ. (2.4)

Here the upper sign corresponds to monopoles (nm > 0) and the lower sign to anti-

monopoles (nm < 0). The moduli space of solutions of these Bogomol’nyi equations is

the starting point for determining the semiclassical existence of BPS monopole and dyon

states, as we shall discuss later.

2.3. Quantum Theory

The quantum theory is much more complicated. We will not attempt to summarize

the analysis of [1] but will just note the following points.

1. The quantum moduli space M is also the u-plane but with singularities at u = ±1,∞.

Over the u-plane there is a flat SL(2, Z) bundle with specified monodromy.

2. The full SU(2) gauge symmetry is never restored on M. As a result the theory should

possess magnetic monopoles at all values of u.

3. Renormalization of the formula (2.3) and the monodromy are consistent with dyons

of charge (nm, ne) = (1, ne) becoming massless at the singularities at u = ±1.

4. Although there are jumping curves [1] across which BPS states can decay, it is possible

to move in from weak coupling (u = ∞) without crossing such a curve. As a result,

the states which become massless at the singularities u = ±1 must be visible as BPS

states at weak coupling.

As we mentioned, and will be reviewed briefly below, the states (1, ne) do exist as BPS

states at weak coupling.



2.4. N = 2 With Matter Fields

Theories with N = 2 supersymmetry can also contain hypermultiplets which consist of

two Weyl fermions in conjugate representations of the gauge group and two complex scalars,

also in conjugate representations. These fields are assembled into N = 1 chiral superfields

Q and Q̃ transforming in conjugate representations. Following [2] we will consider Nf

hypermultiplets in the fundamental representation of SU(2), QI , Q̃I , I = 1, 2, . . .Nf .

The terms in the Lagrangian involving the hypermultiplets consist of canonical ki-

netic energy terms as well as a coupling term given in N = 1 superfield language by the

superpotential

W =
√

2
∑

I

Q̃IΦQ
I . (2.5)

The analysis of [2] relied on the possibility of adding mass terms for the hypermultiplets

in (2.5). Here we will be content to analyze the theory in the limit of vanishing masses for

these fields.

The global flavor symmetry group of (2.5) will be important in the later analysis. For

general gauge group there is a SU(Nf )×U(1) flavor symmetry which acts on the fields QI ,

Q̃I which transform as a Nf , N̄f . However for SU(2) the fundamental representation is

pseudoreal rather than complex and as a result QI and Q̃I lie in equivalent representations.

This leads to a SO(2Nf ) flavor symmetry which can be made evident through a change

of basis: (QI , Q̃I) → Q
′i,i = 1, . . .2Nf . As we shall see, there exist monopoles and

dyons transforming as spinors of SO(2Nf ) and so more precisely the flavor symmetry is

Spin(2Nf ).

2.5. Classical Theory

The classical moduli space of vacua of (2.5) is complicated by the possibility of the

matter scalar fields acquiring vacuum expectation values. This leads to “Higgs branches”

of the classical moduli space along which the gauge symmetry is completely broken. Since

these branches do not have classical monopole solutions we will not consider them further.

There is in addition a “Coulomb branch” along which the gauge symmetry is broken to

U(1). This branch can again be parametrized by the gauge invariant quantity u = 〈Trφ2〉.
Just as in the pure N = 2 case, on the Coulomb branch the masses of all states in

the theory satisfy the Bogomol’nyi bound (2.3). The perturbative states saturate the

bound and hence are BPS states. We will investigate in detail the existence of additional

magnetically charged BPS states in later sections.



2.6. Quantum Theory

The structure of the quantum theory is now considerably more complicated but again

involves an analysis of the monodromy of families of elliptic curves. For our purposes the

main points are the following.

1. BPS states which become massless at the singularities in the u plane must again be

visible as BPS states at weak coupling.

2. The singularities for Nf = 1, 2 are consistent with dyons of charge (nm, ne) = (1, ne)

becoming massless.

3. The singularities for Nf = 3 require a state (2, 1) that transforms as an SO(6) singlet

to become massless. The existence of this BPS state at weak coupling is thus required

for consistency of the analysis in [2].

4. The Nf = 4 theory is a scale invariant theory with, for vanishing bare masses, no

renormalization of the BPS mass formula (2.3). The quantum moduli space for this

theory is thus the same as the classical moduli space. In particular the SU(2) sym-

metry is restored at the origin of the u plane. There is a conjectured exact S-duality

which predicts the presence of a SL(2, Z) invariant dyon spectrum as discussed in the

following subsection.

2.7. Predictions for the Dyon Spectrum

As mentioned above, analysis of the Nf = 3 theory predicts the existence of a BPS

state with (nm, ne) = (2, 1) at weak coupling. The Nf = 4 theory gives rise to a richer

set of predictions as a consequence of a conjectured exact S-duality of the spectrum. The

precise duality group is conjectured to be the semi-direct product Spin(8) × SL(2, Z) [2].

The mod 2 reduction of SL(2, Z) is homomorphic to S3, which is both the permutation

group of three objects and the group of outer automorphisms of Spin(8). Thus SL(2, Z)

acts on Spin(8) via this homomorphism.

The SL(2, Z) action can be made more explicit as follows. Label the states by

(nm, ne)r where nm, ne are the magnetic and electric charges, respectively and r denotes

its Spin(8) representation. The action of the SL(2, Z) matrix

M =

(
α β
γ δ

)
(2.6)



is then given by

τ → ατ + β

γτ + δ

a→ (γτ + δ)−1a

(nm, ne)r → [(nm, ne)M
−1]r′ .

(2.7)

The representation r
′

is determined by triality. The vector (v), spinor (s) and conju-

gate spinor (c) representations r are transformed via the SL(2, Z) → S3 homomorphism.

Explicitly, the mod 2 reduction of the SL(2, Z) matrix gives the following permutations:

(
0 1
1 0

)
→
{
v → s
s → v
c → c

(
1 0
1 1

)
→
{
v → c
s → s
c → v

etc.

(2.8)

Beginning with the hypermultiplet of states (0, 1) in the 8v representation, the ele-

mentary quark multiplet, the SL(2, Z) action generates the orbit of states (p, q) with p

and q relatively prime, with the Spin(8) representation determined by the mod 2 grading:

(0, 1) − 8v; (1, 0)− 8s; (1, 1)− 8c. (2.9)

Returning to the Bogomol’nyi bound (2.3) and using the triangle inequality we deduce that

these states have mass strictly less than that of any possible decay products and hence

must be stable. Thus, duality predicts that this orbit of states exist in these specific repre-

sentations, that they saturate the Bogomol’nyi bound and that they form hypermultiplets

of the underlying N = 2 supersymmetry.

Let us now consider the vector multiplet (0, 2) containing the W boson which trans-

forms as a singlet under Spin(8). From the Bogomol’nyi bound we first note that the W

boson is only neutrally stable to the decay into two quarks. Seiberg and Witten suggested

that it is possible that the W bosons are in fact distinct states somewhat analogous to

bound states at threshold in non-relativistic quantum mechanics. If this is the right in-

terpretation, and we will in fact provide evidence that it is, self-duality predicts another

orbit of states (2p, 2q) with p and q relatively prime, each at threshold. Like the W boson

multiplet, these states should all transform as singlets under Spin(8) and fill out a vector

multiplet.



Thus, starting with the known states, duality predicts an orbit of hypermultiplets

(p, q) transforming in eight-dimensional representations of Spin(8) and possibly an orbit

of vector multiplets (2p, 2q) transforming as singlets 2. Since the quantum moduli space

is the same as the classical moduli space, there are no jumping curves where BPS states

can decay. Consequently, the predicted orbits should exist for all points in the moduli

space and in particular for weak coupling where we can look for them using semi-classical

techniques.

For monopole number 1, duality requires a tower of hypermultiplets (1, 2q) transform-

ing as 8s and another (1, 2q + 1) transforming as 8c. For monopole number 2, a tower of

hypermultiplets (2, 2q+1) transforming as 8v is required. In addition, if the interpretation

of the W boson mentioned above is correct, a tower of vector multiplets (2, 2q) transform-

ing as Spin(8) singlets is needed. We will provide evidence for the existence of all of these

states in the ensuing sections.

3. Monopole Dynamics in the Moduli Space Approximation

At weak coupling, the dynamics of monopoles can be studied using semiclassical tech-

niques. In this section we show how the low-energy dynamics and in particular the spec-

trum can be determined by analyzing a particular supersymmetric quantum mechanics.

3.1. Monopole moduli space

Working in the A0 = 0 gauge, static monopole solutions to the classical equations of

motion are given by solutions to the Bogomol’nyi equations (2.4). The monopole moduli

space is defined as the set of gauge equivalence classes of solutions. For monopole charge

1 the moduli space is simply M1 = R3 × S1; the R3 corresponds to the location of the

monopole in space and the phase S1 corresponds to electric charge: it arises from “large”

gauge transformations on the monopole solution (this is the way dyons arise in the A0 = 0

gauge).

The general k-monopole moduli space, Mk, is a 4k-dimensional hyperKähler manifold.

It is possible to separate the center of mass motion and the total electric charge and

consequently there is an isometric decomposition

Mk = R3 × S1 × M̃0
k

Zk
, (3.1)

where M̃0
k is a (4k − 4)-dimensional, simply connected hyperKähler manifold.

2 Note that, as in the N = 4 case, the states (0, 0), the photon multiplet, lie in a single SL(2, Z)

orbit.



3.2. Fermion zero modes

Differentiating the most general BPS monopole solution with respect to the moduli

gives the bosonic zero modes in the small fluctuations about the solution. With fermions

present there are additional fermionic zero modes. Let us first consider the adjoint fermions.

The Callias index theorem [8] implies that for monopole number k the two Weyl fermions

in the adjoint will give rise to 2k complex zero modes. Since the BPS monopole solutions

saturate the Bogomol’nyi bound (2.3), the solutions break half of the supersymmetries.

The broken supersymmetries acting on the bosonic solution lead to four fermion Goldstone

modes. For a single monopole these are the only zero modes that come from the adjoint

fermions. For higher monopole number, one can show that the bosonic and fermionic zero

modes are paired by the unbroken supersymmetries [6]. Since the bosonic zero modes are

simply tangent vectors of Mk, the set of adjoint fermionic zero modes naturally leads to

the tangent bundle. Using the language of [9] we can say that the index bundle of the

gauge equivalence classes of Dirac operators in the adjoint representation parametrized by

points on the moduli space is simply the tangent bundle.

Now let us consider the fermion zero modes arising from the matter fermions in the

fundamental representation. The Callias index theorem states that for monopole number

k there are k real zero modes for each fundamental Weyl fermion. These zero modes

are not related to any bosonic zero modes by supersymmetry. For a single Weyl fermion

Manton and Schroers discuss the index bundle of the Dirac operators in the fundamental

representation and show that it is an O(k) bundle over the moduli space Mk [9]. They

denote it Indk. This bundle has a natural connection given by

AABa (X) =

∫
d3xλA(x,X)†

∂

∂Xa
λB(x,X), (3.2)

where λA(x,Xa), A = 1, . . . , k are the zero modes around a monopole solution specified by

the coordinates Xa on Mk. The curvature of this connection is of type (1, 1) with respect

to each of the three complex structures on Mk and hence the curvature is anti-self-dual [10].

Note that the analogue of the connection (3.2) for the index bundle of the adjoint fermions

is the Levi-Civita connection on Mk. For the N = 2 models we are interested in, we have

Nf hypermultiplets and hence 2Nf Weyl fermions in the fundamental representation. This

gives rise to 2kNf fermion zero modes which leads to 2Nf copies of the O(k) bundle.



3.3. Collective coordinate expansion

Let us first briefly summarize how the collective coordinate expansion works for pure

N=2 QCD [6]. As usual, for each zero mode one introduces a collective coordinate. For

the bosonic zero modes these are just the coordinates on the moduli space, the moduli Xa

themselves. For the 2k complex fermionic zero modes arising from the adjoint fermions,

one must introduce 4k real Grassmann-odd collective coordinates ψa. We expect the low-

energy dynamics to be dominated by the dynamics of the zero modes. We can encapsulate

this in a low-energy ansatz for the fields by assuming that all time dependence is via the

collective coordinates. Heuristically, we have

Ai(x, t) = Ai(x,X
a(t)), Φ(x, t) = Φ(x,Xa(t)),

ψ(x, t) = F (δaAi, δaΦ, ψ
a(t)).

(3.3)

Here (δaAi, δaΦ), a = 1, . . . , 4k, are the bosonic zero modes and F is the functional deter-

mining the supersymmetric pairing between the bosonic and fermionic zero modes men-

tioned in the last subsection (the explicit form of (3.3) is given in [6]). Substituting this

ansatz into the pure N = 2 QCD Lagrangian and integrating over space then leads to an

N = 2 supersymmetric quantum mechanics on the moduli space of BPS monopoles:

S =
1

2

∫
dtGab(X)(ẊaẊb + iψaDtψ

b), (3.4)

where Gab is the metric on the moduli space which arises from the kinetic energy terms in

the field theory [11].

With the inclusion of hypermultiplets we must introduce more Grassmann-odd collec-

tive coordinates corresponding to the extra fermionic zero modes. The low energy ansatz

will include the terms

λi(x, t) =
1√
2

∑

A

ρiA(t)λA(x,Xa(t)), (3.5)

where λA(x,Xa), A = 1, . . . , k are the fermion zero modes introduced in (3.2) and ρiA(t),

i = 1, . . . , 2Nf are the real Grassmann-odd collective coordinates. Substituting into the

Lagrangian and integrating over space, yields for the kinetic term:
∫
d4xλ̄i /Dλi → 1

2

∫
d4x

[
ρiA(t)λA(x,X(t))†

]
∂t
[
ρiB(t)λB(x,X(t))

]

=
1

2

∫
dt(ρiAρ̇iA + ρiAAABa ẊaρiB)

≡ 1

2

∫
dtρiADtρiA,

(3.6)



where in the first line we used the fact that λA are zero modes and in the second we have

used (3.2) and have chosen a basis of zero modes satisfying

∫
d3xλA(x,X)†λB(x,X) = δAB. (3.7)

Thus by substituting the full low-energy ansatz (3.3) and (3.5) into the Lagrangian

we are led to consider the following supersymmetric quantum mechanics:

S =
1

2

∫
dt

(
Gab

[
ẊaẊb + iψaDtψ

b
]

+ iρiADtρiA +
1

2
FABab ψaψbρiAρiB

)
. (3.8)

While we have not provided a detailed derivation of (3.8), supersymmetry essentially

dictates this result given the presence of the O(k) connection (3.2) in the kinetic term for

the matter zero modes (3.6). Since the monopole solutions break half of the supersym-

metry, the low energy quantum mechanics must be invariant under the supersymmetries

arising from the unbroken supersymmetries of the field theory. Given that the number

of real components in the unbroken supersymmetries is 2 × 4, we expect to have a quan-

tum mechanics with four real parameters or N = 2 supersymmetry. The action (3.8)

automatically has N = 1/2 supersymmetry [12] (although there is a mismatch between

the number of bosons and fermions this action still admits supersymmetries that are non-

linearly realized). Additional supersymmetries restrict the target. In particular, for the

action to admit N = 2 supersymmetry the moduli space must be hyperKähler and the

field strength of the gauge connection must be (1, 1) with respect to each of the complex

structures. Happily, both statements are true.

3.4. Supersymmetric Quantum Mechanics

To discuss the low-energy dynamics of the monopoles and particularly the spectrum of

monopoles and dyons we need to quantize the action (3.8). The quantization of the action

without the matter fermions ρ and its connection to the spectrum of BPS monopoles in

the pure N = 2 theory was described in detail in [13,6]. The anti-commutation relations of

the ψa imply that the states are either holomorphic forms or spinors on the moduli space.

In fact on a hyperKähler manifold these two descriptions are equivalent. We will work

with spinors.

The new ingredient in (3.8) is the presence of the ρ fields. Setting h̄ = 1 their

commutation relations are given by

{ρiA, ρjB} = δijδAB . (3.9)



The monopole states must provide a representation of this Clifford algebra. These repre-

sentations can be decomposed under SO(2Nf )×O(k) as will be described in the following

section.

The four supersymmetry charges are given by

Q = ψaπa, Q(m) = ψaJ (m)b
a πb

πa = pa −
i

4
ωab̂ĉ[ψ

b̂, ψĉ] − iAABa ρiAρiB,
(3.10)

where J
(m)b
a are the three complex structures and the hatted indices are tangent space

indices. Substituting pa = −ih̄∂a and ψâ = (2)−1/2γâ we see that Q is just the Dirac

operator acting on spinors in some representation of O(k). The Hamiltonian is therefore

just the square of this Dirac operator plus |aτk|. The additional constant term simply

arises from a topological boundary contribution that exists in the field theory for solutions

of the Bogomol’nyi equations.

The predictions we are aiming to test involve the existence of states saturating the

Bogomol’nyi bound. Equivalently these are states that are annihilated by half of the

supersymmetry charges of the N = 2 field theory. In the moduli space approximation,

this means we should look for states that are annihilated by the supersymmetry charges

in (3.10). Moreover, they should have finite norm as is usual for bound states. Thus extra

magnetically charge BPS states in the spectrum are in correspondence with the L2 kernel

of the Dirac operator on Mk coupled to the O(k) connection on the index bundle.

4. Dyon Spectrum

4.1. Magnetic Charge 1

As noted, the moduli space for a single monopoles is R3 × S1. The supersymmetric

quantum mechanics has a free Hamiltonian. As for ordinary monopoles, quantization of

the bosonic coordinates on R3 × S1 leads to a spectrum of dyons (1, ne) with continuous

spacetime momentum, the quantized electric charge resulting from quantization of the S1

part of the moduli space. Quantization of the fermionic coordinates tangent to R3 × S1

was described in [4] and [6]. The states can be thought of as four-component spinors on

R3 × S1 and correspond to four different states in the field theory with spin 0 and 1/2.

These four states make up a short BPS multiplet (an irreducible multiplet of the N = 2

supersymmetry algebra that saturates the Bogomol’nyi bound has four states [7]). If we



combine these states with similar states that come from quantizing the anti-monopoles we

obtain a complete hypermultiplet of N = 2 supersymmetry.

Let us now analyze the effect of the ρ zero modes. For k = 1 we have the anti-

commutation relations

{ρi, ρj} = δij . (4.1)

As is well known, the representation of this Clifford algebra consists of the 2Nf dimensional

spinor representation of SO(2Nf ). This representation is reducible and splits into two

irreducible representations, both of dimension 22Nf−1, under projection by the chirality

operator in SO(2Nf ) which following [2] we denote by (−1)H .

However this is not quite the end of the story. Even for k = 1 there is still a non-

trivial bundle structure. The O(1) connection on the index bundle is non-trivial over the

S1 factor and leads to

Ind1 = R3 × Möb, (4.2)

where Möb is the Möbius bundle over S1. Physically this arises because the gauge trans-

formation which generates a 2π rotation about the S1 factor acts as the non-trivial element

of the center of SU(2) [14,2]. Since the Nf matter fermions transform in the fundamental

representation of SU(2), there must be a correlation between the U(1) charge (as mea-

sured by rotation about the S1 factor) and the SO(2Nf ) chirality (as measured by (−1)H).

Specifically, it is expressed by the constraint

eiπQ = (−1)H , (4.3)

where Q is the charge operator. Thus we see that states with (−1)H = 1 have even electric

charge while states with (−1)H = −1 carry odd electric charge.

Putting this together eg for the Nf = 4 case, yields a tower of hypermultiplets (1, 2ne)

in the 8s representation and another tower (1, 2ne+1) in the 8c representation in agreement

with Spin(8) × SL(2, Z) duality [2].

4.2. Magnetic Charge 2

By factoring out the center of mass motion, the full two monopole moduli space M2

can be expressed as

M2 = R3 ×
(
S1 × M̃0

2

Z2

)
(4.4)



where M̃0
2 is the four-dimensional Atiyah-Hitchin manifold. It has a two-fold cover denoted

M̃2 which can be written as an isometric product

M̃2
∼= R3 × S1 × M̃0

2 (4.5)

where M̃0
2 is the two-fold cover of the reduced two monopole moduli space M0

2 . SO(3)

acts on M0
2 and has orbits which are either a RP2 (at the bolt) or SO(3)/D away from

the bolt with D ∼= Z2 × Z2 the subgroup of diagonal matrices in SO(3). We denote the

generator of the explicit Z2 that appears in (4.4) by I3 (see [15] for more details).

Let us first briefly recall the quantization of the supersymmetric quantum mechanics

that arises when there are no N = 2 matter multiplets i.e. (3.8) with no ρ [6]. As noted,

the quantization of the ψa implies that the states are spinors on M2. The structure of

(4.4) implies that these spinors are tensor products of spinors on R3 × S1 with spinors on

M̃0
2 . The discussion of the spinors on R3×S1 is essentially as for the single monopole case:

the dyon states (2, ne) are in a short BPS multiplet with spin 0 and 1/2. Combining them

with the anti-monopole states then fills out the spin content of a hypermultiplet. In the

normalisations we are using, for the pure N = 2 case the electric charge is always even.

The effect of the Z2 that appears in (4.4) is that dyon states whose electric charge is (is

not) a multiple of four are associated with spinors on M̃0
2 that are even (odd) under the

action of the I3.

The supersymmetry charge Q acts as the Dirac operator on the spinors. Consequently,

the Hamiltonian is the sum of the free Hamiltonian on R3×S1 and the square of the Dirac

operator on M̃0
2 and the constant topological term. Thus, to find new BPS states in the

spectrum we must look for zero energy states on M̃0
2 or equivalently zero modes of the

Dirac operator. We will in fact see that there are no zero modes of the Dirac operator and

consequently no extra BPS states for the pure N = 2 case.

Now we consider the matter fermions. The index bundle Ind2 is a real two-dimensional

vector bundle over M2 with structure group O(2) which is described in detail in [9]. There

is an obstruction to obtaining an orientable bundle on the non-simply connected manifold

(S1×M̃0
2 )/Z2. One obtains an orientable bundle Ĩnd2 by pulling Ind2 back to S1×M̃0

2 . For

now we work with the U(1) bundle Ĩnd2. Replacing the real Grassmann parameters ρiA

with complex parameters ρi, the anticommutation relations become those of annihilation

and creation operators:

{ρi, ρj∗} = δij . (4.6)



The states of the supersymmetric quantum mechanics are now spinors on M2, |Ψ〉,
on which the algebra (4.6) is realized. Starting with a state |Ψ〉 satisfying ρi|Ψ〉 = 0 we

can build up the ρ Fock space by acting with the ρi∗ in the usual manner. There is a

correlation between the number of ρi∗’s excited , Nρ, and the U(1) charge carried by the

corresponding spinor on M2. To see this note that the supersymmetry charge (3.10) acting

on these states takes the form

Q = /D − i(Nρ −N0)A, (4.7)

where A is the U(1) gauge connection and N0 is a normal ordering constant. This normal

ordering constant can be fixed by a discrete charge conjugation symmetry: for each state

with U(1) charge q there should be another state with U(1) charge −q [16]. More precisely,

there is a discrete symmetry which combines parity and a “magnetic charge conjugation ”

described in [9] which changes the sign of the U(1) charge and also the electric charge but

leaves the magnetic charge invariant. This fixes N0 to be N0 = −Nf .
Since the ρi carry the 2Nf representation of SO(2Nf ), there is also a correlation

between the SO(2Nf) representation carried by the state and Nρ and consequently the

U(1) charge q. For the cases of most interest, Nf = 4, 3, we display the explicit correlation

between q and the SO(8), SO(6) representations in the following table.

Table 1

q SO(8) rep SO(6) rep.

±0 35 + 35 10 + 10

±1 56 15

±2 28 6

±3 8v 1

±4 1

As in the pure N = 2 case the spinors are tensor products of spinors on R3 × S1 and

spinors on M̃0
2 . The states on R3 ×S1 lead to spin 0 and spin 1/2. Extra BPS states arise

from states that are annihilated by the Hamiltonian and consequently the supersymmetry

charge. Thus we need to look for zero modes of the Dirac operator on M̃0
2 coupled to the

U(1) connection which have finite L2 norm.



We begin by discussing some vanishing theorems. The square of the Dirac operator

acting on a charge q field can be expressed as

/D /Dψ = D2ψ +
1

8
Rabcdγ

abγcdψ +
q2

2
Fabγ

ab. (4.8)

For the case of interest, the manifold is four-dimensional and both curvatures are anti-self-

dual. Using this we have

/D /Dψ = D2ψ +
q2

2
Fabγ

ab (1 + γ5)

2
ψ, (4.9)

where γ5 = γ1̂γ2̂γ3̂γ4̂.

First consider q = 0. Multiplying (4.9) by ψ† and integrating by parts we deduce

that || /Dψ||2 = ||Daψ||2. Since the only covariantly constant spinor with finite L2 norm is

zero, we deduce that there are no nontrivial zero modes of the Dirac operator with finite

norm. This means that there are no extra BPS states in the spectrum of the N = 2

theory without matter. In fact this is also a necessary requirement for the N = 4 theory

to be self-dual. The reason is that a harmonic spinor on M̃0
2 is equivalent to a harmonic

holomorphic differential form on M̃0
2 and consequently a BPS state in the N = 4 theory.

However, Sen showed that S-duality predicts that only a single anti-self-dual harmonic

form (which cannot be holomorphic) should exist on M̃0
2 .

For general q, by the same reasoning, (4.9) implies that the only non-trivial Dirac

zero modes with finite norm satisfy γ5ψ = ψ. To calculate the number of these we use

the Atiyah-Patodi-Singer index theorem. The index theorem for manifolds with boundary

reads in this case

Index( /D) =
1

192π2

∫

M

TrR ∧R − q2

8π2

∫

M

F ∧ F +

∫

∂M

Q+
1

2
[η(0) + hD], (4.10)

where q is the charge of the fermion under the U(1) ⊂ O(2) part of the connection. Here

Q involves Chern-Simons-like contributions as described e.g. in [17]. η(0) is the Dirac

η-invariant of Atiyah-Patodi-Singer and hD is the number of harmonic spinors on the

boundary. The index must be evaluated on a fixed finite boundary r0 and then one takes

the limit r0 → ∞. The index then counts the difference in the number of harmonic spinors

satisfying the Atiyah-Patodi-Singer boundary conditions (see for example [17]). As far as

we are aware there is no known proof that these correspond to L2 boundary conditions, but

in all cases that we know of, they appear to. In particular they do for Taub-NUT space and



since M̃0
2 asymptotically approaches Taub-NUT space exponentially in the radial distance

(see below) we assume that they do for the Atiyah-Hitchin manifold.

Before evaluating the various terms in (4.10) we first give some more details about

M̃0
2 . The explicit metric on M̃0

2 is known and is given by

ds2 = f(r)2dr2 + a(r)2(σR1 )2 + b(r)2(σR2 )2 + c(r)2(σR3 )2. (4.11)

Here the σRi are left-invariant one-forms on SO(3) = S3/Z2 and the explicit forms are

given, in the conventions of appendix A, by

σR1 = − sinψdθ + cosψ sin θdφ

σR2 = cosψdθ + sinψ sin θdφ

σR3 = dψ + cos θdφ

(4.12)

with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ < 2π. The angles are further restricted under the

identification of the discrete right isometry [15] (see appendix A)

(φ, θ, ψ)Ix = (π + φ, π − θ,−ψ). (4.13)

Note that we can equivalently let the range of ψ be 0 ≤ ψ < 4π and then divide out by Ix.

We will follow [15] in choosing f(r) = −b(r)/r. The radial functions a(r), b(r) and

c(r) are given explicitly in [18]. Here we only need the asymptotic forms. Near r = π they

take the form

a(r) = 2(r − π)

{
1 − 1

4π
(r − π)

}
+ . . .

b(r) = π

{
1 +

1

2π
(r − π)

}
+ . . .

c(r) = −π
{

1 − 1

2π
(r − π)

}
+ . . . .

(4.14)

Introducing appropriate Euler angles, it can be shown that after the identification by Ix

the metric is smooth near r = π and that r = π is an S2 or bolt [15]. Near infinity, r → ∞,

the functions take the form

a(r) = r

(
1 − 2

r

)1/2

+ . . .

b(r) = r

(
1 − 2

r

)1/2

+ . . .

c(r) = −2

(
1 − 2

r

)−1/2

+ . . . ,

(4.15)



where the neglected terms fall off exponentially with r. Thus the metric approaches Taub-

NUT space with negative mass parameter. Since a = b asymptotically, in addition to the

SO(3) isometries arising from the left action there is an extra U(1) isometry coming from

right actions. Physically, it corresponds to the fact that the relative electric charge of two

widely separated monopoles becomes a good quantum number. Due to the identifications

on the Euler angles arising from Ix, the topology of the boundary is S3/Z4.

The curvature two-form of the O(2) connection on Ĩnd2 is anti-self-dual and SO(3)

invariant and is given explicitly by [9]

F = α(r)

(
dσR1 − fa

bc
dr ∧ σR1

)
. (4.16)

where α(r) obeys the ordinary differential equation

dα

dr
= −fa

bc
α. (4.17)

From physical arguments it is known that the first Chern number of Ĩnd2 is ±1. Following

[9] we fix c1 = −1 for concreteness. This fixes the normalization of α(r) so that α(π) = 1/2.

As an aside, note that this harmonic anti-self-dual two form is in fact the same two-form

corresponding to a BPS bound state in the N = 4 theory found by Sen [5].

Let us now evaluate (4.10) for M̃0
2 . We first consider the Chern-Simons terms. It

has been explicitly shown that the Chern-Simons pieces vanish for Taub-NUT space [17].

Since the Atiyah-Hitchin metric asymptotically approaches Taub-NUT space and differs

only by terms exponentially small in r, we conclude that the Chern-Simons terms make no

contribution to the index. Next consider the volume terms. A straightforward calculation

which we present in appendix B gives

1

192π2

∫

M

TrR ∧R − q2

8π2

∫

M

F ∧ F =
1

6
− q2

8
. (4.18)

Proceeding to the boundary contributions in (4.10), we need to evaluate η(0) and hD

on the S3/Z4 boundary of M̃0
2 . Now the η invariant , η(0), is defined to be the analytic

continuation to s = 0 of

η(s) =
∑

λ6=0

λ−ssignλ, (4.19)

where the λ are the eigenvalues of the Dirac operator on the boundary coupled to the flat

O(2) connection on Ĩnd2. We present the details of the calculation in the appendix where



we also show that there are no harmonic spinors on the boundary and hence hD = 0. We

obtain

ηq(0) =
2

3
+

1

4
([q + 2]24 − 4[q + 2]4), (4.20)

where [q + 2]4 = (q + 2) mod 4. Combining this result with (4.18) we conclude that there

are no zero modes with charge q = 0,±1,±2, one zero mode for q = ±3 and two each for

q = ±4.

Let us now check how this fits in with the duality conjectures. For Nf = 4 we want

a tower of states (2, 2ne + 1) forming a hypermultiplet transforming as a 8v of SO(8).

In addition we need another tower of states (2, 2ne) transforming as SO(8) singlets and

filling out a vector multiplet. For Nf = 3 we want a single hypermultiplet of states (2, 1)

transforming as a singlet of SO(6).

First consider the hypermultiplets. Recall that the spin content of a hypermultiplet

is Sz = (0, 0, 0, 0,±1/2,±1/2) where Sz is the component of spin along the z axis. We

have noted that the spinor on R3 ×S1 corresponds to four states in a short BPS multiplet

with Sz = (0, 0,±1/2). If these spinors are combined with one zero mode of the Dirac

operator on M̃0
2 with zero angular momentum we will obtain a BPS hypermultiplet after

we also include the corresponding states that come from quantizing the zero modes around

the charge 2 anti-monopole3. If in addition the zero mode of the Dirac operator has U(1)

charge q = ±3 then according to table 1 the hypermultiplet will transform as an 8v for

the Nf = 4 case and as a singlet for the Nf = 3 case.

Now consider the vector multiplets. The spin content of the vector multiplet is Sz =

(0, 0,±1/2,±1/2,±1). To obtain this spin content we need to combine the spinor on

R3 × S1 which has spin Sz = (0, 0,±1/2) with two zero modes of the Dirac operator on

M̃0
2 , one with Sz = 1/2 the other with Sz = −1/2. To form a singlet representation of

SO(8) the spinors on M̃0
2 must be zero modes of the Dirac operator with charge q = ±4.

Our analysis in terms of the index of the Dirac operator allows us to count states

but for a detailed check of the duality predictions we also need to identify the angular

momentum and electric charges of these states. We have not done this; to do so would

require either a more sophisticated use of index theory (especially relating the indices on

the bundles Ind2 and Ĩnd2) or what would be more desirable, an explicit construction of

the zero modes of the Dirac operator. In spite of this it is possible on general grounds to

almost completely determine what the spectrum must be. Consider first the charge q = ±3

3 Note that the moduli space for the anti-monopole is the same as that of the monopole.



zero modes. The constraint (4.3) implies that these states must carry odd electric charge.

In addition, charge conjugation symmetry implies that they carry opposite electric charge.

If they both carried arbitrary odd electric charge then we would get twice as many states

as required by duality. However there is in fact a Z4 condition on the electric charges

which follows from the analysis of [9]. The Z2 symmetry I3 acting on M2 squares to give

a translation about the S1 factor. But since the holonomy about the S1 factor is −1 (for

odd U(1) charge ) there is in fact a mod 4 condition on the charges. If the state at U(1)

charge q = −3 has electric charge +1 (−1) mod 4 then the state at charge q = +3 must

have electric charge −1 (+1) mod 4 by charge conjugation. Given this electric charge

assignment and N = 2 supersymmetry the only consistent possibility is that this state has

angular momentum zero so that the total sets of states (after including the antiparticles)

transform as hypermultiplets of N = 2 supersymmetry. For Nf = 4, we see from table

1 that these states transform as 8v of SO(8) in complete agreement with the predictions

of [2]. For Nf = 3 the states transform as singlets of SO(6) in agreement with the (2, 1)

state predicted by [2].

Now consider the two states we found at q = ±4. By (4.3) these states must carry

even electric charge. An assignment of charges and spins consistent with duality and charge

conjugation symmetry (which, as mentioned in section 4.2, actually involves parity as well

) and the presence of a mod 4 condition on the electric charges is the following. Assign the

two q = 4 states Sz = 1/2, and for one state electric charge 0 mod 4 and the other charge

2 mod 4. For the two q = −4 states assign Sz = −1/2 and again electric charges 0 and 2

mod 4. This gives a spectrum of charged vector multiplets with a multiplicity consistent

with duality. However, as far as we can see this assignment is not completely forced

by consistency conditions and thus in principle a more refined test of duality would be

provided by an explicit construction of the zero modes which would allow an unambiguous

determination of these quantum numbers.

5. Magnetic Charge k > 2

In order to fully establish the SL(2, Z) duality of the spectrum of BPS states in the

N = 2, Nf = 4 theory it is necessary to generalize the arguments in the previous section

to higher magnetic charge. At present this seems difficult without a fuller understanding

of the k monopole moduli space and particularly its asymptotic structure. There has been

some recent progress in determining this structure for well-separated k-monopoles [19] .



In the hope that this may eventually be better understood we will be content here to state

the content of the duality conjecture for k > 2.

For magnetic charge k and Nf flavors the matter fermions have 2kNf zero modes in

the monopole background and the low-energy effective action involves the coupling of the

fermion zero modes ρiA, A = 1, 2, . . . k, i = 1, 2, . . .2Nf to an O(k) connection on the k

monopole moduli space Mk. The anti-commutation relations of the ρiA give rise to a rep-

resentation of the Clifford algebra associated to O(2kNf ) with the zero modes transforming

as the fundamental 2kNf -dimensional representation which decomposes under

O(2kNf ) → O(k) × SO(2Nf ) (5.1)

as 2kNf → (k, 2Nf ). The monopole ground state transforms as the 2kNf dimensional

spinor representation of O(2kNf ).

Under the decomposition (5.1) we will have

2kNf →
∑

i

(rik, r
i
2Nf

). (5.2)

The actual determination of the irreducible representations of O(k) that appear in (5.2) is

somewhat complicated to state in general. The important point is that (5.2) gives a pairing

between representations of O(k) and SO(2Nf ). Some general features of this pairing are

immediate and in agreement with the general requirements of duality. For even k we can

use the decomposition O(k) → SU(k/2) × U(1) to write the Clifford algebra in terms of

creation and annihilation operators which transform as the 2Nf of O(2Nf ). As a result

the ground state will transform as a sum of tensor representations of O(2Nf ) in agreement

with the requirements of duality for Nf = 4. For odd k, on the other hand, we can use

the decomposition SO(2Nf ) → SU(Nf ) × U(1) to write the fermion zero modes in terms

of creation and annihilation operators transforming as (Nf , k) + (N̄f , k) which leads to

ground states transforming as spinorial representations of O(2Nf ) [20].

For Nf = 4, S-duality requires an analysis of the index of the Dirac operator on

the monopole moduli space Mk coupled to the O(k) connection on the index bundle Ik

through the representation of O(k) determined by the pairing in (5.2). In particular, as

in the k = 2 case analyzed in the last section, the index for even k should be one in the

O(k) representation paired with the 8v representation of O(8) (representing the SL(2, Z)

duals of the quark hypermultiplets), should be two in the O(k) representation paired with

the identity representation of O(8) (representing the SL(2, Z) duals of the gauge boson



states) and should vanish for all other representations of O(8). For odd k, on the other

hand, duality predicts index one for the representation of O(k) paired with the 8s of O(8),

index one for the representation of O(k) paired with the 8c of O(8) (corresponding to the

SL(2, Z) duals of the hypermultiplets (1, 0) and (1, 1), respectively) and vanishing index

for all other representations. In addition the electric charge assignments and rotational

quantum numbers for these states must be consistent with duality.

6. Conclusions

We have verified the predictions of Seiberg and Witten for the spectrum of dyon bound

states in N = 2, SU(2) super Yang-Mills theory coupled to Nf matter multiplets in the

case of magnetic charge k = 2. The most dramatic result is the existence of a spectrum

compatible with SL(2, Z) duality for the Nf = 4 theory as predicted by Seiberg and

Witten. This includes the existence of the SL(2, Z) duals of the gauge bosons as “bound

states at threshold,” an interpretation suggested in [2] but not clearly required by duality.

It would be useful to extend the techniques used in this paper to further check the

duality conjecture by giving a more precise determination of the electric charges of the

dyon states and an explicit calculation of the angular momentum of the zero modes by

explicit construction of the zero modes of the Dirac operator for monopole charge 2. Of

most interest of course, would be to extend these results to higher magnetic charge by

explicitly verifying the predictions made in section 5.

More generally, it would be very interesting to extend the duality analysis of the

SU(2), Nf = 4 case to other gauge groups which have a field content leading to finite

N = 2 theories.

The analysis we have presented here also makes clear how little is understood about

duality. A prediction which is simple to state and follows naturally from an analysis of

the dynamics of N = 2 gauge theory can at present be verified only by detailed calcula-

tions involving intricate cancellations and then only for low values of the magnetic charge.

Hopefully a deeper understanding of duality will allow us to understand the spectrum of

dyon bound states without recourse to the sort of analysis presented here.
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Appendix A. Conventions

The conventions adopted here are essentially the same as in the [15] with some minor

changes4. We parametrize the three sphere with Euler angles. The general SU(2) rotation

matrix can be constructed as follows5

U(φ, θ, ψ) =Uz(φ)Uy(θ)Uz(ψ)

=

(
cos θ2e

i
(ψ+φ)

2 sin θ
2e

−i
(ψ−φ)

2

− sin θ
2e
i
(ψ−φ)

2 cos θ2e
−i

(ψ+φ)
2

)
. (A.1)

The ranges of the angles are 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ < 4π. The SO(3)

group manifold is obtained by restricting the range of ψ to be 0 ≤ ψ < 2π and identifying

ψ ∼ ψ + 2π.

By expanding U−1dU in the basis ( i
2
τ i) where (τ i) are the Pauli matrices, we can

construct the left invariant or “right” one forms σRi . Similarly, the right invariant or “left”

one forms σLi can be constructed from dUU−1. We get

σR1 = − sinψdθ + cosψ sin θdφ

σR2 = cosψdθ + sinψ sin θdφ

σR3 = dψ + cos θdφ

(A.2)

and
σL1 = sinφdθ − cosφ sin θdψ

σL2 = cosφdθ + sinφ sin θdψ

σL3 = dφ+ cos θdψ.

(A.3)

The superscript R (L) refers to the fact that the left (right) invariant one forms are dual

to left (right) invariant vector fields ξRi (ξLi ) which generate right (left) group actions. We

will also refer to ξRi as a right vector field and to ξLi as a left vector field. The explicit

form of the dual vector fields satisfying 〈ξRi , σRj 〉 = δij and 〈ξLi , σLj 〉 = δij are given by

ξR1 = − cot θ cosψ∂ψ − sinψ∂θ +
cosψ

sin θ
∂φ

ξR2 = − cot θ sinψ∂ψ + cosψ∂θ +
sinψ

sin θ
∂φ

ξR3 = ∂ψ

(A.4)

4 They are the same as Fano and Racah [21] if we interchange φ and ψ and if we replace their

(m′,m) with (m, s). They are related to the conventions of Landau and Lifschitz [22] with the

replacements (α, β, γ) → (ψ, θ, φ) and (m′,m) → (m, s).
5 Note that this element of SU(2) is denoted U(ψ, θ, φ) in [22].



and

ξL1 = −cosφ

sin θ
∂ψ + sinφ∂θ + cot θ cosφ∂φ

ξL2 =
sinφ

sin θ
∂ψ + cosφ∂θ − cot θ sinφ∂φ

ξL3 = ∂φ.

(A.5)

The left and right invariant one forms satisfy the Maurer-Cartan equations

dσRi =
1

2
ǫijkσ

R
j ∧ σRk

dσLi = −1

2
ǫijkσ

L
j ∧ σLk .

(A.6)

The Lie brackets of the left and right vector fields are given by

[ξRi , ξ
R
j ] = −ǫijkξRk

[ξLi , ξ
L
j ] = ǫijkξ

L
k

[ξRi , ξ
L
j ] = 0.

(A.7)

The last equation expresses the fact that the right (left) vector fields are left (right) invari-

ant. Note that the right vector fields satisfy the same algebra as that of our Lie algebra

basis ( i2τ
i) whereas there is an extra minus sign in the algebra of the left vector fields. We

define angular momentum operators

LRi = −iξRi , LLi = iξLi (A.8)

satisfying

[Li, Lj] = iǫijkLk (A.9)

for either superscript. We also use the combinations L± = L1 ± iL2.

Following [21] and [22] we introduce the Wigner functions6

Dj
ms(φ, θ, ψ) = eimφdjms(θ)e

isψ (A.10)

satisfying

LR±D
j
ms = [j(j + 1) − s(s± 1)]

1/2
Dj
ms±1

LR3 D
j
ms = sDj

ms

(A.11)

6 This is denoted Dj
ms(ψ, θ, φ) in [22].



and
LL±D

j
ms = − [j(j + 1) −m(m∓ 1)]

1/2
Dj
m∓1s

LL3D
j
ms = −mDj

ms

(A.12)

Note that D
1/2
ms (φ, θ, ψ) = U(φ, θ, ψ).

Next we analyze the discrete symmetries that appear in the discussion of the two

monopole moduli space. The metric (4.11) is constructed from σR and hence is left invari-

ant; the left vectors ξLi are Killing vectors. By restricting the range of ψ to be 0 ≤ ψ < 2π

these generate the isometry group SO(3). Additional isometries come from right actions.

Following [15] we consider right actions corresponding to rotations of π about the x, y and

z axes. These SU(2) matrices, consistent with (A.1), are

Ux(π) =

(
0 i
i 0

)
, Uy(π) =

(
0 1
−1 0

)
, Uz(π) =

(
i 0
0 −i

)
(A.13)

Calculating U(φ, θ, ψ)Ux(π) = U(φ′, θ′, ψ′) etc. we are led to the following transformations

Ix etc. on the angles:
(φ, θ, ψ)Ix =(π + φ, π − θ,−ψ)

(φ, θ, ψ)Iy =(π + φ, π − θ, π − ψ)

(φ, θ, ψ)Iz =(φ, θ, π + ψ).

(A.14)

These transformations each change the sign of two of the left invariant one forms and hence

leave the metric invariant confirming that they are indeed discrete isometries of the left

invariant metric. We have chosen the notation in (A.14) to emphasize that these are right

actions. Using this notation we have [15]

IxIz = Iy. (A.15)

Note also that I2
x = I2

y = I2
z and is the antipodal map on S3. Thus, in the definition of

the Atiyah-Hitchin manifold one can begin with left invariant forms on the SO(3) group

manifold and then divide out by Ix or equivalently one can start with SU(2) and divide out

by Ix (which generates a Z4 in SU(2)). Note the transformation I3 (the Z2 that appears

in (4.4)) is simply Iz plus an additional action on the coordinate of the S1 (see [15]).

Using the formulae in appendix D of [21] or equivalently in section 58 of [22] we have

djms(π − θ) = (−1)j−mdjm−s(θ) and hence

Dj
ms(gIx) = (−1)jDj

m−s(g)

Dj
ms(gIy) = (−1)j+sDj

m−s(g)

Dj
ms(gIz) = (−1)sDj

ms(g),

(A.16)

where g = (φ, θ, ψ). Note that the first of these differs from [15].



Appendix B. Volume Contributions to Index Theorem

For the general metric (4.11) on the Atiyah-Hitchin manifold M̃0
2 we choose a vierbein

er = f(r)dr, e1 = a(r)σR1 , e2 = b(r)σR2 , e3 = c(r)σR3 . (B.1)

We will use µ = er ∧ e1 ∧ e2 ∧ e3 as defining a positive orientation. Note that

µ =fabc sin θdθ ∧ dφ ∧ dψ ∧ dr

=
√
gdθ ∧ dφ ∧ dψ ∧ dr.

(B.2)

since fabc > 0. The spin connection is given by

ω12 = (1 + c′/f)σR3 , ω31 = (1 + b′/f)σR2 , ω23 = (1 + a′/f)σR1 ,

ωr1 = −(a′/f)σR1 , ωr2 = −(b′/f)σR2 , ωr3 = −(c′/f)σR3 .
(B.3)

where we have used
a′

f
=

(b− c)2 − a2

2bc
and cyclic (B.4)

following from anti-self-duality and the fact that the SO(3) action rotates the complex

structures (see [18]).

The gravitational volume contribution to the index is

IRV =
1

192π2

∫

M̃0
2

TrR ∧R = − 1

48π2

∫

M̃0
2

(
Rr1 ∧Rr1 +Rr2 ∧Rr2 +Rr3 ∧Rr3

)
, (B.5)

where the anti-self-duality of the curvature (Rr1 = −R23 etc.) has been used. In terms of

â = a′/f , b̂ = b′/f , and ĉ = c′/f the curvature components are

Rr1 = −â′dr ∧ σR1 + [−â+ b̂+ ĉ+ 2b̂ĉ]σR2 ∧ σR3
Rr2 = −b̂′dr ∧ σR2 + [â− b̂+ ĉ+ 2âĉ]σR3 ∧ σR1
Rr3 = −ĉ′dr ∧ σR3 + [â+ b̂− ĉ+ 2âb̂]σR1 ∧ σR2

(B.6)

which gives

IRV = +
1

48π2

∫

M̃0
2

G(r)σR1 ∧ σR2 ∧ σR3 ∧ dr

= − 1

48π2

∫
sin θdθdφdψ

∫ ∞

π

Gdr

(B.7)

with

G(r) =
[
â2 + b̂2 + ĉ2 − 2âb̂− 2b̂ĉ− 2âĉ− 4âb̂ĉ

]′
. (B.8)



Using the asymptotic forms for â, b̂, and ĉ obtained form (4.14) and (4.15) we find

IRV =
1

24π2

1

2

∫ π

0

sin θdθ

∫ 2π

0

dφ

∫ 2π

0

dψ =
1

6
. (B.9)

The factor of 1/2 arises from the Ix identification. Thus the gravitational volume contri-

bution to the Dirac index is +1/6. As a check we can now calculate the Euler number:

χ = − 1

16π2

∫

M̃0
2

TrR ∧ ∗R = 2, (B.10)

where we have used the anti-self-duality condition. This is consistent with the fact that

M̃0
2 contracts onto a two sphere.

For the volume gauge contribution, we have the field strength (4.16)

F = dα ∧ σR1 + ασR2 ∧ σR3 (B.11)

so that for a charge q field we have

IFv = − q2

8π2

∫

M̃0
2

F ∧ F = − q2

8π2

∫

M̃0
2

d(α2)σR1 ∧ σR2 ∧ σR3 = −q
2

8
, (B.12)

where we have used α(π) = 1/2 and that α falls off exponentially with r as can be deduced

from (4.17). Thus the sum of the volume terms for a charge q fermion is

IRV + IFV =
1

6
− q2

8
. (B.13)

Appendix C. η invariants

In this appendix we discuss the computation of the η invariant, η(0), for the boundary

of the O(2) bundle over the Atiyah-Hitchin manifold. η(0) is defined to be the analytic

continuation to s = 0 of

η(s) =
∑

λ6=0

λ−ssignλ. (C.1)

where the λ are the eigenvalues of the Dirac operator on the boundary of the manifold

coupled to the flat O(2) connection. At infinity we have a ≈ b ≈ r and c ≈ −2 and so the

boundary metric is

ds2 = r2((σR1 )2 + (σR2 )2) + 4(σR3 )2. (C.2)



For the moment we ignore the identification by Ix and let ψ run from 0 to 4π so that (C.2)

defines a left-invariant (but not round) metric on S3. Moreover, we also ignore the flat

O(2) connection for the moment.

η(0) is invariant under conformal rescalings of the metric so in order to compare with

[23] we will consider the metric

ds2 =
1

4
((σR1 )2 + (σR2 )2) +

µ2

4
(σR3 )2 (C.3)

in the limit µ→ 0. We then have the dreibein

e1 =
1

2
σR1 , e2 =

1

2
σR2 , e3 =

µ

2
σR3 (C.4)

and spin connections

ω12 = (1 − µ2/2)σR3 , ω31 = (µ/2)σR2 , ω23 = (µ/2)σR1 . (C.5)

The Dirac equation is

iγaEµa(∂µ +
1

4
ωµabγ

ab)ψ = λψ (C.6)

The Ea = Eµa∂µ are dual to the ea and using (C.4) we have E1 = 2ξR1 , E2 = 2ξR2 ,

E3 = 2ξR3 /µ where the ξRi were introduced in (A.4). Substituting (A.8), the Dirac equation

reads

−2

(
µ−1LR3 LR−
LR+ −µ−1LR3

)
ψ − 1

2µ
(µ2 + 2)ψ = λψ. (C.7)

The eigenfunction can now be constructed in terms of the Wigner function Dj
m,s(g) intro-

duced in (A.10). Using (A.11), the eigenfunctions of the Dirac operator are of two types.

The first type is of the form

ψ0j
m,s =

(
aDj

m,s

bDj
m,s+1

)
(C.8)

with s = −j, . . . , j − 1. In order to be an eigenfunction we must have

b

a
= −2s+ 1

2µX
± 1

2µX

√
(2s+ 1)2 + 4µ2X2 (C.9)

with X2 = j(j + 1) − s(s+ 1). Note that as a function of s at fixed j we have

b

a
(s) =

a

b
(−s− 1). (C.10)



The eigenvalues are

λ± = −µ
2
∓ 1

µ

√
(2s+ 1)2 + 4µ2X2. (C.11)

Since the η invariant is left unchanged by a rescaling of all of the eigenvalues, to evaluate

it in the limit µ → 0 we rescale by a factor of µ and then let µ → 0. In this limit we get

for the rescaled eigenvalues

λ± = ∓(2s+ 1). (C.12)

Since these are symmetric between positive and negative eigenvalues they do not contribute

to η(s) in the limit µ→ 0.

The second type of eigenfunctions have the form

ψ+j
m =

(
Dj
m,j

0

)
(C.13)

and

ψ−j
m =

(
0

Dj
m,−j

)
(C.14)

with eigenvalues

λ+ = λ− = −µ
2
− 1

µ
(2j + 1). (C.15)

After the rescaling by µ and taking the limit we get eigenvalues λ± = −(2j + 1). These

eigenvalues are all negative. So we get eigenvalues −(2j + 1) with degeneracy 2(2j + 1)

with the 2 from ψ± and the (2j + 1) from the possible m values. The η invariant is thus

η(s) = −
∑

j

2(2j + 1)(2j + 1)−s (C.16)

and since j takes on half-integer and integer values this is equal to

η(s) = −2
∞∑

p=1

p−s+1 ≡ −2ζ(s− 1) (C.17)

and η(0) = −2ζ(−1) = 1/6. Note that in the limit µ → 0 there are no harmonic spinors

and hence hD = 0.

So far we have just redone the standard computation of the η invariant on the squashed

S3 [24] in the limiting case µ→ 0. In extending this computation to the boundary of the

Atiyah-Hitchin manifold there are two complications which we must deal with. The first

is that the boundary is not S3 but rather SO(3)/Z2 ≡ S3/Z4 because of the identification

by Ix. As a result the boundary has different inequivalent spin structures. Since the



Atiyah-Hitchin manifold is simply connected and consequently has a unique spin structure

only one of these spin structures can extend in smoothly to the interior. Determining the

spin structure at the boundary appears to be somewhat subtle, luckily we will be able to

determine its effect by consistency requirements. The second complication arises from the

O(2) connection. The field strength of this connection falls off exponentially leaving a flat

O(2) connection at the boundary. The holonomy of this connection at the boundary has

been computed in [9] with the result that charge q fermions pick up a phase of e±iqπ/2.

Now let us first consider spinors with q = 0. Identifying under the action of Ix leads

to π1 of the boundary being Z4. The different spin structures on the boundary can be

specified by giving the phase picked up by the fermion after propagating between two

points related by Ix. Since Ix is a right action it commutes with the isometries SO(3)L

and consequently the phases picked up by the fermions fields cannot depend on m. As in

the previous calculation the eigenfunctions (C.8) have no spectral asymmetry in the limit

µ→ 0 and thus do not contribute to η(0). We now consider the eigenfunctions (C.13) and

(C.14). For a given j a single eigenfunction picking up a phase e
2πir
N (in our case N = 4

since π1 of the boundary is Z4 ) contributes a term −f(r,N,−1) to the η invariant where

we have introduced the function

f(r,N, s) =

∞∑

n=r mod N

n−s (C.18)

with r and N integers. We have

f(r,N, s) =

∞∑

n=0

(nN + r)−s = N−s
∞∑

n=0

(n+ r/N)−s = N−sζ(s, r/N) (C.19)

in terms of the generalized Riemann zeta function. The value we need may be evaluated

with the result [25]

f(r,N,−1) = Nζ(−1, r/N) = −NB′
3(r/N)

6

= −N
(

1

12
+

1

2
((r/N)2 − (r/N))

) (C.20)

(it is amusing to note that the same sum arises in the computation of the dimension of

twist fields for orbifold compactifications of string theory [26]). Assuming in general that

the two eigenfunctions (C.13) and (C.14) pick up phases r1 and r2 due to the spin structure

at infinity, they will give a contribution to the η invariant of −f(r1, 4,−1) − f(r2, 4,−1).



Noting the values f(0, 4,−1) = −1/3, f(1, 4,−1) = f(3, 4,−1) = 1/24 and f(3, 4,−1) =

1/6 we see that the only possibility which is consistent with an integer index and the

vanishing theorem for q = 0 mentioned in the text is r1 = r2 = 2.

Given this indirect evaluation of the effect of the spin structure for q = 0 it is straight-

forward to generalize the calculation to non-zero q. Using the fact that the holonomy is

e±πiq/2 there are two possibilities: either the two eigenfunctions pick up the same phase or

opposite phases. The first possibility leads to the η invariant: −2f([q + 2]4, 4,−1), where

[q + 2]4 is (q + 2) mod 4 (since the phase is πi(q + 2)/2). The second possibility leads to

the η invariant: −f(q+ 2, 4,−1)− f(2− q, 4,−1) but these two expressions are equal. We

thus conclude that the η invariant is given by

ηq(0) =
2

3
+

1

4
([q + 2]24 − 4[q + 2]4). (C.21)

Noting that hD still vanishes, this then leads to the results stated in the text.
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