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Abstract

An ansatz is presented for a possible non-associative deformation of the

standard Yang-Mills type gauge theories. An explicit algebraic structure for

the deformed gauge symmetry is put forward and the resulting gauge theory

developed. The non-associative deformation is constructed in such a way

that an apparently associative Lie algebraic structure is retained modulo a

closure problem for the generators. It is this failure to close which leads to

new physics in the model as manifest in the gauge field kinetic term in the

resulting Lagrangian. A possible connection between this model and quantum

group gauge theories is also investigated.
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I. INTRODUCTION

Recently there has been considerable interest in the construction of quantum group gauge

theories (QGGTs) [1–11], where a quantum group plays the role of the gauge group. One

source of motivation for this work has been the suggestion that relaxing the rigid structure of

the Lie group based gauge theories may lead to new explanations for fundamental theoretical

problems such as spontaneous symmetry breaking and quark confinement.

Lie group theory, as the predominant mathematical tool for the analysis of physical

symmetries, has been extraordinarily successful in providing a unified description of many

aspects of particle physics. In particular the currently accepted descriptions of the strong,

weak, and electromagnetic interactions, have the common theme of an underlying gauge

symmetry described by a Lie group. Despite this success there continue to be difficulties in

unifying the various forces, and indeed in explaining some of the features of the individual

forces such as those mentioned above. It would seem reasonable to consider the possibility

that a full unification of the fundamental forces may require a mathematical structure beyond

groups. In the first instance we might intuitively expect that such a structure would be

generalisation of the Lie group. The quantum group approach, regardless of how it was

originally conceived, is clearly a construction of this type wherein the Lie group gauge

symmetry is replaced by a more general quantum group symmetry which reduces to the

standard case in the limit of some parameter.

The transition from theories based on Lie group internal symmetry spaces to those where

the symmetry is that of a quantum group has, however, proved to be rather problematic.

The main efforts have focussed on keeping the classical form of the gauge transformations.

The gauge potential A transforms as follows,

A −→ A′ = UAU−1 −
i

g
(∂U)U−1, (1)

where U is chosen to be an element of a quantum group. The difficulty as described by

Aref’eva and Arutyunov [9] is to determine the relevant differential calculus and also the
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algebra from which the gauge potentials A should be drawn to ensure that A′ also belongs to

that algebra. Recently it has been claimed [9] that it is only possible to present an algebraic

group gauge potential based on Uq(N), and that groups such as SUq(N) are not allowed. It

has also been claimed [6] that if the gauge fields have values in Uq(g), the quantum universal

enveloping algebra of the Lie algebra g, then the resulting gauge theory will be isomorphic to

the non-deformed theory if the base space is classical spacetime. The implication being that

to obtain non-trivial results an underlying quantum space must be considered [7]. Although

the situation is far from clear at this stage it would appear that the most general QGGTs

require detailed analysis of both the differential calculus on quantum groups (see for example

Woronowicz [12,13]), and also the non-commutative geometric structure of quantum spaces.

With this complex situation in mind, we present in this letter an alternative approach to

the generalisation of the standard Yang-Mills type gauge theories. Our approach will be to

extend the standard (Lie) gauge group while retaining as much of the Lie algebraic structure

as possible. Consequently this will allow construction of the gauge theory to proceed in the

standard manner, with the resulting theory being a deformation of the standard one. Gauge

theories based on extensions of simple Lie groups such as non-semisimple Lie groups have

been considered recently [14]. In this letter we will take a larger step to a theory where

the underlying gauge “group” is non-associative. A non-associative algebra has no group

structure in the normal sense but by considering the algebra as a deformation of a Lie algebra

we can obtain the form of the resulting deformation of the gauge field. For this reason the

theory will apparently break the gauge symmetry, but only when this symmetry is assumed

to be of the Lie group form. It is in this sense that we can regard the resulting theory as

one involving a higher “non-associative gauge symmetry”.

Our justification for considering non-associativity as the mechanism for extending the Lie

group structure is twofold. Firstly, non-associative algebras have been linked with a number

of interesting gauge groups. The exceptional GUT groups, such as E6, and the internal

symmetry group of the anomaly free heterotic string E8 × E8 have in common the fact

that they are automorphism groups of the non-associative exceptional Jordan algebra M8
3
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of 3× 3 matrices over the octonions [15–17]. Günaydin & Gürsey [28,29] also used the fact

that SU(3) is a subgroup of the automorphism group of the octonions to obtain a theory of

quark confinement, which was subsequently extended by Dixon [30,31]. Although the gauge

groups in these cases are not strictly non-associative this common link is suggestive of a

deeper underlying non-associative “symmetry”.

The non-associative octonions, the last in the sequence of four division algebras of the

Hurwitz theorem, have also been linked to spacetime symmetries in 10 dimensions. The

Lorentz “group” in this case is essentially SL(2) over the octonions [24,20]. Consequently

octonionic spinors [24,27,26,25] have also been linked to 10 dimensional spacetime and the

Green-Schwarz superstring finds a natural formulation in terms of the exceptional Jordan

algebra M8
3 [19–23]. These correlations, and the association of supersymmetry in ten di-

mensions with the octonions [24,32,25], suggests that a non-associative internal symmetry

may be particularly relevant for theories in ten spacetime dimensions. Finally, on a more

technical point, non-associative structures such as 3-cocycles have been linked with chiral

anomalies in field theories [34,33,35] and therefore removal of such problems may also require

a non-associative description.

Our second justification for considering a non-associative deformation, and as a moti-

vation behind the algebraic structure we shall choose, is that it provides a framework for

considering tensor product gauge groups, i.e. G = A ⊗ B ⊗ C ⊗ . . ., where there is some

coupling between the algebras of the different elements. The coupling then implies that the

gauge group is no longer a direct product and therefore a more complete unification of the

groups A,B,C, ... into the group G is achieved.

The major problem with considering a non-associative gauge theory is that a gauge

group in the normal sense does not exist, due to the non-associativity. Our technique for

dealing with this owes its inspiration partly to the gauge theories considered by Waldron &

Joshi [36], and Lassig & Joshi [37], where the gauge algebra was that of the octonions. The

octonions form a non-associative alternative algebra, and thus a generalisation of the Lie

group approach to gauging is required. Our approach will not specifically involve octonions
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but for clarity it is worth reviewing the form of the octonionic gauge theory making reference

to how it relates to the generalisation of gauge theories.

It is well known that the octonionic units can be represented in terms of (associative) left

and right matrices in the bimodular representation. The details of how this representation is

obtained have been considered previously (see [17,36,37]) and will not be reproduced here.

In this representation the non-associativity is manifest in the inability of either the left

matrix or right matrix algebra to close. When considered in isolation the left matrices can

be considered as generators of a Lie algebra where the extra generators required to close

the algebra are missing. In the octonion case these missing generators are replaced by a

coupling between the left and right matrices. i.e. the left matrix algebra is “closed” via a

coupling to the right matrices, and vice versa.

If we were to consider only the left matrices as a gauge algebra [36] then the “missing”

generators in the Lie algebra, and their construction via coupling to another algebra (the

right matrices), give the new physics which will become apparent in the resulting gauge

field Lagrangian. This can be made more explicit by noting that the left matrices in the

bimodular octonion representation are also generators of the SO(8) symmetry group. Thus

the octonionic symmetry can be visualised as some particular observable channels of the

SO(8) symmetry. Importantly calculations can still be made as though the full SO(8), i.e.

Lie group, symmetry were present. The restriction on the generators available will then lead

to the new physics in the system.

The octonionic case discussed qualitatively above was used to indicate how the method-

ology of using a non-associative generalisation of the Lie algebra structure allows the Lie

structure of the gauge group to be retained modulo the closure problem. The fact that the

standard Lie algebraic calculational techniques can still be used (cf. QGGTs) implies that

we can consider a standard Yang-Mills type theory. Having considered this possibility qual-

itatively we propose a possible algebraic structure for the gauge symmetry in Section 2, and

develop the corresponding gauge theory in Section 3. A possible correspondence between

this approach and QGGTs is also considered in this section.
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II. A PARAMETERISED NON-ASSOCIATIVE ALGEBRA

Standard Yang-Mills type gauge theories based on internal symmetries described by non-

Abelian Lie groups have been extraordinarily successful in particle physics with electroweak

theory and QCD being the most prominent examples. Some possible reasons for generalising

this structure were mentioned in Section 1, however it is clear that we would wish to retain

most of the nice features of these theories. Thus we would expect the generalised theory to

reduce to the standard theory in the limit of some parameter, as in QGGTs. We can achieve

this, and our previously mentioned aim to consider coupling in tensor product gauge groups,

in our non-associative formalism with the following algebraic structure of the gauge group.

Consider M sets of N generators which we can represent in the following matrix.

(T )ji =



T1i

T2i

...

TMi


=



T11 · · · T1N

T21 T22

...
. . .

...

TM1 · · · TMN


. (2)

For generality we allow the possibility that the algebras are not all of equal dimension. Then

for a particular set of generators it may be that

T(p)(1) . . . T(p)(r) 6= 0 T(p)(r+1) . . . T(p)(N) = 0. (3)

We regard each set of generators Tpi, for fixed p ∈ 1..M , as the generators of a simple Lie

algebra which may or may not close. We represent this in the following way:

[T pi , T
p
j ] = fpijkT

p
k +

M∑
n=1

σpn[T nj , T
p
i ], (4)

where p ∈ 1..M and the σpn are constants. In this representation the parameters σpn, for

n ∈ 1..M , determine the closure of each set of generators Tpi. For a given p ∈ 1..M , if

σpn = 0 ∀n then the generators Tpi close and we have a normal associative Lie algebra. If,

however, there exist n ∈ 1..M, n 6= p such that σpn 6= 0 then the generators Tpi do not close

and this is manifest in some mixing between the sets of generators. This nonlinearity will

imply non-associativity for the algebra of the set Tpi.

6



This can be made explicit by considering the Jacobi function

J(a, b, c) = [a, [b, c]] + [b, [c, a]] + [c, [a, b]], (5)

where J(a, b, c) = 0 for a, b, c elements of an associative algebra. For the case at hand, for

fixed p,

J(T pi , T
p
j , T

p
k ) = σpn

(
[T pi , [T

n
k , T

p
j ]] + [T pj , [T

n
i , T

p
k ]] + [T pk , [T

n
j , T

p
i ]]
)
. (6)

Thus associativity is restored for σpn = 0 ∀n ∈ 1..M or alternatively if all the sets of

generators commute. We can write this explicitly in terms of the associator ,

(a, b, c) = (ab)c− a(bc), (7)

by noting

εijk(ai, aj, ak) = J(ai, aj, ak). (8)

Thus we have an algebraic structure where the non-associativity is manifest in the in-

ability of the set of Lie algebraic generators Tpi to close. This ensures that the generators

will still have a matrix representation, and we can retain the nice features of Lie algebras,

and to some extent its group structure. The non-associativity can be “turned on” by closing

the algebra via mixing with generators from other sets.

III. NON-ASSOCIATIVE GAUGING

We consider a Yang-Mills type theory where the gauge “group” has the algebraic struc-

ture A considered in the previous section:

[T pi , T
p
j ] = fpijkT

p
k + σpn[T nj , T

p
i ], (9)

where the σpn are constants, and the summation over n = 1..M is implicit. We assume

p ∈ [1..M ] and that the indices i, j, k ∈ [1..N ] label the elements of each particular set of

generators. The constants σpn parameterise the level of non-associativity.
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The Lie algebraic structure retained in this algebra allows the Yang-Mills gauge theory

to be developed in the standard way. We introduce the following matter fields:

ψ =



ψ1

ψ2

...

ψD


, (10)

where D is the dimension of the representation of A. Since the constituent generators of

A are equivalent to those of a Lie algebra we can consider exponentiating to produce a

structure which, in the limit σpn → 0 ∀n, will correspond to a Lie group. This allows

consideration of the following standard gauge transformation,

ψ(x) −→ ψ′(x) = e−iτ
p
i θ
i
p(x)ψ(x) = U(θp)ψ(x), (11)

where p ∈ 1..M is not summed. The particular representation of A, in this case given by

D ×D matrices τ pi , satisfies the algebra,

[τ pi , τ
p
j ] = fp

′

ijkτ
p
k + σp

′

n [τnj , τ
p
i ], (12)

and we impose

Tr(τ pi τ
p
j ) =

1

2
δij ∀p ∈ 1..M, (13)

on the adjoint representation via the relevant normalisation. Since we will henceforth work

only with this representation the primes in fp
′

ijk and σp
′

n will be suppressed.

We can now proceed in the standard way by defining the covariant derivative as

Dpµ = ∂µ + igAp
µ(x), (14)

where

Ap
µ(x) = iAp

µ(x)τ pi , (15)
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and summation over i = 1..N , but not p ∈ 1..M , is implicit. This explicitly introduces the

vector gauge fields iAp
µ(x) which, in the standard case, would ensure that the Lagrangian

density L is invariant under local gauge transformations. The Ap
µ(x) transform as

Ap
µ −→ Ap′

µ = UAp
µU
−1 −

i

g
U∂µU

−1. (16)

On evaluation for infinitesimal transformations,

Ap′

µ =
(
iAp′

µ

)
τ pi + iσpnθ

i
p(x) jAp

µ[τnj , τ
p
i ], (17)

where

iAp′

µ = iAp
µ + fp

′

ijkθ
i
p
kAp

µ +
1

g
∂µθ

i
p(x), (18)

is the algebraically closed part in the usual form. Thus the non-associativity is manifest in

the inability of the transformation to close. We note that for σpn = 0 ∀n the transformation

does close as required.

The antisymmetric curvature tensor can be defined in the normal way:

F p
µν = −

i

g
[Dpµ,D

p
ν ]

= ∂[µA
p
ν] + ig[Ap

µ, A
p
ν]

= iF p
µντ

p
i + iσpng

jAp
µ
kAp

ν [τ
n
k , τ

p
j ], (19)

where again,

iF p
µν = ∂i[µA

p
ν] − gf

p
ijk

jAp
µ
kAp

ν, (20)

is the algebraically closed part.

We can now evaluate the gauge field kinetic term in the Lagrangian density. We obtain:

Lpgauge = −
1

2
Tr(F p

µνF
pµν)

= −
1

2
iF p
µν

iF pµν −
1

2
iσpng

jAp
µ
kAp

ν
tF p

µν(Tr([τnk , τ
p
j ]τ pt ))

−
1

2
iσpng

uAp
µ
vAp

ν
iF p
µν(Tr(τ pi [τnv , τ

p
u ]))

+
1

2
(σpn)2g2 jAp

µ
kAp

ν
uAp

µ
vAp

ν(Tr([τnk , τ
p
j ][τnv , τ

p
u ])). (21)
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This Lagrangian represents the kinetic term for a gauge field where the algebra of the

primary generators (the p’th set) is altered by mixing with external generators. We note

that the terms corresponding to this mixing are suppressed by factors of σpn, and thus by

setting these coupling constants to zero the non-associativity is turned off and a standard

Yang-Mills gauge kinetic term results.

We note that this Lagrangian is however biased in favour of the p’th set of generators,

with the other sets entering via the nonlinear algebraic relations. This is the relevant sit-

uation if we are considering a small coupling between a primary algebra and a secondary

algebra, however the implicit bias towards the pth set used so far may be artificial in oth-

ers. We can obtain a symmetric Lagrangian density for the gauge field by summing the

contributions ∀p ∈ 1..M . This implies the gauge transformation is now

ψ(x)→ ψ′(x) = e−iτ
p
i θ
i
p(x)ψ(x) (22)

where now both i and p are summed. The relations for the covariant derivative, Eq. 14,

and the gauge fields, Eq. 15, can now be reinterpreted with p summed over 1..M . The

covariant derivative now takes on a form similar in appearance to that encountered with

tensor product gauge groups. The difference being in that here there exists the possibility

for coupling between the components. The curvature tensor in symmetrised form is then,

Fµν = ∂µA
p
ν − ∂νA

p
µ + ig[Ap

µ, A
p
ν] + ig[Ar

µ, A
s
ν], (23)

where p, r, s = 1..M, r 6= s. Thus we have

Fµν = iF p
µντ

p
i + igσpn

jAp
µ
kAp

ν[τ
n
k , τ

p
j ] + ig tAr

µ
uAs

ν[τ
r
t , τ

s
u], (24)

where iF p
µν is given by Eq. 20, i, j, k, t, u are summed over 1..N , and p is now summed over

1..M . This symmetric formulation fundamentally alters the covariant derivative and thus

the limit σpn → 0 alone no longer reduces the theory to one with no coupling. If, however,

all the generators in different sets commute then the Lagrangian for each set will decouple

and have the standard form.
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This will obviously lead to a more complicated gauge kinetic term for the symmetrised

Lagrangian which we include for completeness,

Lgauge = −
1

2
Tr(FµνF

µν)

= −
1

2
aF p

µν
fF q

µνTr[τ paτ
q
f ]−

1

2
iσqmg

gAq
µ
hAq

ν
aF p

µνTr[τ pa [τmh , τ
q
g ]]

−
1

2
ig iAt

µ
jAu

ν
aF p

µνTr[τ pa [τ ti , τ
u
j ]]− iσpng

bAp
µ
cAp

ν
fF q

µνTr[[τnc , τ
p
b ]τ qf ]

+
1

2
σpnσ

q
mg

2 bAp
µ
cAp

ν
gAq

µ
hAq

ν Tr[[τnc , τ
p
b ][τmh , τ

q
g ]]

+
1

2
σpng

2 bAp
µ
cAp

ν
iAt

µ
jAu

ν Tr[[τnc , τ
p
b ][τ ti , τ

u
j ]]

−
1

2
ig dAr

µ
eAs

ν
fF q

µν Tr[[τ rd , τ
s
e ]τ qf ]

+
1

2
σqmg

2 dAr
µ
eAs

ν
gAq

µ
hAq

ν Tr[[τ rd , τ
s
e ][τmh , τ

q
g ]]

+
1

2
g2 dAr

µ
eAs

ν
iAt

µ
jAu

ν Tr[[τ rd , τ
s
e ][τ ti , τ

u
j ]] (25)

where a, b, c, d, e, f, g, h, i, j = 1..N and p, q, r, s, t, u = 1..M , r 6= s, t 6= u. This gives us

the full gauge field kinetic term in the general case, which represents the result of the non-

associative deformation of the gauge group. With regard to renormalisation, superficially

this Lagrangian density has no terms of higher than quartic power in the gauge fields.

However a full consideration of renormalisability would require calculations to loop level

which have not been considered as this is very much a toy model at this stage.

The analysis has been of a general nature thus far. We will now indicate how the general

algebraic structure introduced in Section 2 includes various subalgebras which have been

previously been considered as possible gauge algebras.

A. Specific Cases

1. Associative Lie Algebras

The standard form gauge groups are realised trivially when

σpn = 0 ∀n ∈ 1..M. (26)
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The generator sets then decouple and there is no need for symmetrisation. The normal

Yang-Mills type Lagrangian density results. i.e.

Lgauge = −
1

4
F i
µνF

iµν. (27)

In practice since there are so many nice features of these theories, we might expect that the

situation of most interest in the low energy regime might be when the σpn are small, and thus

the theory approaches the Lie algebra case. The Lie algebra structure of the gauge group

would then only be slightly perturbed by the induced non-associativity.

2. Octonionic Algebras

Gauge theories based on an octonionic gauge algebra have been considered before [36,37]

and they represent the first non-trivial instance of the general algebraic structure considered.

This is observed by using the left/right matrix bi-representation for octonions. This implies

two sets of generators, the left and right matrices in this case. The gauge theories mentioned

above, in the notation of Lassig & Joshi [37], can be realised when

σpn =


2 for n, p = 1, 2; n 6= p

0 otherwise
, (28)

and

fpijk = (−1)p−1 i

2
εijk, (29)

where εijk is the anti-symmetric tensor for octonions where, using the standard multiplication

table, εijk = 1 for each cycle ijk = 123, 145, 176, 246, 257, 347, 365. Thus there are two

coupled sets of generators, which are the λi, ρi matrices of [36] and [37], representing the left

and right matrices of the bimodular representation.

3. Quantum Groups

As mentioned in the introduction quantum group gauge theories have been the subject

of considerable recent interest. In these theories the process of gauging was altered to
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generate a more general quantum group symmetry. In contrast, in this discussion we have

retained the standard Yang-Mills machinery allowing the standard symmetry to be broken

by the deformation. Despite this difference in approach we show in this section how the

general algebraic structure can be linked to the quantum universal enveloping algebra of a

Lie algebra.

For concreteness we consider the quantum universal enveloping algebra Uq(su(2)) in

the Drinfel’d-Jimbo basis (see for example [38,39]), whose generators satisfy the following

relations

[J±, J3] = ∓J± [J+, J−] = [2J3]q, (30)

where, in the notation of Macfarlane [39], the q-integers are given by

[x]q =
qx − q−x

q − q−1
. (31)

Writing J± = J1 ± iJ2 we have

[J1, J2] =
1

2
i[2J3]q

[J2, J3] =
1

2
i(2J1) (32)

[J3, J1] =
1

2
i(2J2).

To make this tractable, we assume q = 1+δ, where |δ| � 1, but δ 6= 0. Then we can expand

the q-integers as a power series and we have

q2J3 − q−2J3 = (1 + δ)2J3 − (1 + δ)−2J3

≈
∞∑
n=1

CnJ
n
3 , (33)

where

Cn = Cn(δn, δn+1, δn+2, . . .) (34)

is a constant, which will be convergent for small δ. Note that in this case the above approx-

imation becomes exact. As an aside we also note that for Uq(su(2)) Cn is only non-zero for

odd n.
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In this case we can now rewrite Eq.s 32 as

[J1, J2] = i
(

C1

2(q−q−1)

)
J3 + i

2(q−q−1)

∑∞
n=2 CnJ

n
3

[J2, J3] = iJ1

[J3, J1] = iJ2.

(35)

Thus the algebra can be represented in the following form

[Ji, Jj] = fijkJk +Nijk, (36)

with the nonzero antisymmetric structure constants

fijk = iεijk + iεijkδk3

(
C1

2(q − q−1)
− 1

)
, (37)

where εijk is the Levi-Civita antisymmetric tensor, and the extra term Nijk, which represents

the inability of the algebra to close, is given by

Nijk = iεijkδk3
1

2(q − q−1)

∞∑
n=2

CnJ
n
3 . (38)

We now assume that there exist generators Kni, where n ∈ 2..∞ and i, j ∈ 1, 2, 3, such that

[Knj , Ji] = εijkδk3J
n
k . (39)

Thus we have

Nijk =
i

2(q − q−1)

∞∑
n=2

Cn[Knj, Ji]. (40)

Therefore we can finally represent the algebra as

[Ji, Jj] = fijkJk +
i

2(q − q−1)
Cn[Knj , Ji], (41)

where the summation over n = 2..∞ is implicit. This is exactly the form required for our

general procedure, and thus the q-algebra is realised in this form when we interpret

M =∞

σn =
i

2(q − q−1)
Cn. (42)
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It is therefore apparent that to fully represent the quantum group as a gauge group in this

manner requires mixing between an infinite number of generators! We should also note that

the algebra is not symmetric and the required gauge term in the Lagrangian would also be

unsymmetric with respect to all the generators. This is due to the bias towards the set {Ji}

as a result of our construction.

Clearly it would appear that this formalism is not particularly useful for considering

quantum gauge groups, however for practical calculational purposes we can note that if

q ∼ 1 then the terms in the infinite series for Cn would quickly tend to zero. Then a

truncation of the series would seem reasonable and the constants σn could be explicitly

evaluated giving, in effect, a perturbation to a given order in (1 − q). The perturbation

series would then interpolate to some extent between the Lie algebra and the full quantum

group, for the case when q ∼ 1.

IV. CONCLUDING REMARKS

In this letter we have considered a possible formalism for the analysis of a gauge theory

based on a “group” with a non-associative algebraic structure. The gauge algebra presented

was obtained initially as a generalisation of the standard Lie algebraic structure, where

coupling between different Lie algebras is allowed. This non-associative formalism is appar-

ently quite different from other Lie algebra generalisations such as the infinite dimensional

Kac-Moody algebras.

Gaining inspiration from the bimodular representation of octonions the non-associativity

inherent in the algebra, for ease of calculation, is implicit as a closure problem for the algebra

of the generators. The analysis of the resulting gauge theory has been somewhat cursory,

and in particular renormalisability for this toy model has not been considered.

Finally, we would like to point out that the viewpoint taken in this letter has resulted

in a theory where the gauge symmetry is broken via the non-associative coupling between

the sets of generators. This formalism was used to explicitly show the new physics obtained
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by deforming the symmetry, and this explicit gauge symmetry breaking is manifest when

the constants σpn become non-zero and the individual generator sets no longer close. An

alternative viewpoint is that although a Lie group symmetry has been broken a higher “non-

associative” symmetry is retained. This viewpoint requires a significant alteration to the

current understanding of what constitutes a gauge symmetry. If this seems to radical then

an alternative to our construction could be considered where a full (generalised) symmetry

is retained. This is the approach taken with QGGTs and would require deformation of the

standard gauge transformations, and most likely the form of the gauge field Lagrangian

density. The Lie group type symmetry is then deformed and reduces to the standard one in

the limit of some parameter. It is clear that obtaining such a theory where a full symmetry,

in something approaching the Lie group sense, is retained would be worthwhile, and this is

under investigation.
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