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Abstract

We derive a full Bern-Kosower-type rule for scalar QED starting from quantum field
theory: we derive a set of rules for calculating S-matrix elements for any processes at any
order of the coupling constant. Gauge-invariant set of diagrams in general is first written
in the worldline path-integral expression. Then we integrate over x(τ), and the resulting
expression is given in terms of correlation function on the worldline 〈x(τ)x(τ ′)〉. Simple
rules to decompose the correlation function into basic elements are obtained. Gauge
transformation known as integration by parts technique can be used to reduce the number
of independent terms before integration over proper-time variables. The surface terms
can be omitted provided the external scalars are on-shell. Also, we clarify correspondence
to the conventional Feynman rule, which enabled us to avoid any ambiguity coming from
the infinite dimensionality of the path-integral approach.
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1 Introduction

Recently, Bern and Kosower derived from superstring theory a powerful method for calculating one-

loop S-matirx elements for QCD processes.[1] Although the new rule had reduced the amount of

work required in the calculation greatly, it had little resemblance to the conventional Feynman rule,

and to date, the complete Bern-Kosower rule has not been derived from quantum field theory (QCD).

The equivalence of the Bern-Kosower rule and the conventional Feynman rule has been shown only

in some concrete examples.[2] Moreover, practical problems are that since the Bern-Kosower rule has

been derived from the string theory, it is difficult to include massive particles and also multi-loop

generalizations do not readily lead to simple calculational tools.[3]

As for the approach from the quantum field theory, there has been some progress. Bern-Kosower-

type rules for calculating one-loop effective actions for both abelian and non-abelian gauge theories

have been derived from quantum field theories and studied extensively by Strassler.[4, 5] Also, mul-

tiloop diagrams with one-fermion-loop and multiple propagator insertions has been cast into Bern-

Kosower-type rule by Schmidt and Schubert, and they applied the rule to the calculation of two-loop

QED β function.[6] On the other hand, a quite different approach was developed by Lam, where he

showed that expressions similar to Bern-Kosower rule can be obtained starting from the conventional

Feynman parameter formula in abelian gauge theories even beyond one-loop order.[7]

In this paper we refine the ideas in the above approaches from field theory, and derive a full Bern-

Kosower-type rule for scalar QED: we derive a set of rules for calculating S-matrix elements for any

processes at any order of the coupling constant. Also we clarify correspondence to the conventional

Feynman rule. (The method we show in this paper can straightforwardly be extended to the case of

spinor QED.)

The main idea is:

1. Express a set of diagrams connected by gauge transformation (see Fig.3 below) by a single

worldline path-integral.

2. Use gauge transformation (known as integration by parts technique[1, 5]) to simplify calcula-

tion.

For those unfamiliar with worldline path-integral formalism, relation to the conventional Feynman
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rule may be seen as follows. Let us express the Feynman propagator in coordinate space using

Feynman parameter∗:

i∆F (x− y) =
∫

dDp

(2π)D
i eip·(x−y)

p2 −m2 + iε
(1.1)

=
∫ ∞
0

dα
∫

dDp

(2π)D
eip·(x−y)+iα(p2−m2+iε) (1.2)

=
∫ ∞
0

dα i

(
1

4πiα

)D/2
exp

[
−

i

4α
(x− y)2 − iα(m2 − iε)

]
. (1.3)

Note that (part of) the integrand in eqs.(1.2) and (1.3) has a similar form to the propagator of a

non-relativistic free particle if α(> 0) is identified with the time interval of propagation:

K(x− y;α) ≡
∫

dDp

(2π)D
eip·(x−y)+iαp

2

(1.4)

= i
(

1

4πiα

)D/2
exp

[
−
i

4α
(x− y)2

]
. (1.5)

Namely, it satisfies (
i
∂

∂α
−

∂

∂xµ
∂

∂xµ

)
K(x− y;α) = 0, (1.6)

K(x− y; +0) = δ(x− y). (1.7)

Hence, the associativity relation

∫
dDz K(x− z;α1)K(z − y;α2) = K(x− y;α1 + α2) (1.8)

holds as an important property of K (see Fig.1), which can be shown easily from eq.(1.4). This

property allows one to insert arbitrary number of vertices along the propagator lines of a given

diagram, and if infinitely many are inserted, the integral expression reduces to the path-integral.

In section 2, we derive the path-integral expression for a general set of diagrams starting from

quantum field theory, and derive the general expression after integration over x(τ). Section 3 clarifies

correspondence of the proper time integral formula obtained in the previous section and the Feynman

parameter integral formula obtained from the conventional Feynman rule. This enables one to express

the two-point function (correlation function) 〈x(τ)x(τ ′)〉 on the general diagram in terms of basic

elements. Section 4 explains a general prescription for integration by parts and discuss relation to

∗Throughout the paper we work in D dimensional space-time with the metric tensor gµν = diag(+1,−1, . . . ,−1︸ ︷︷ ︸
D−1

).
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Figure 1: A diagrammatical representation of the associativity relation satisfied by K(x− y;α).

the gauge transformation on worldline. The gauge-fixing parameter dependence of a set of diagrams

is discussed in section 5. The Bern-Kosower-type rule for a general set of diagrams is summarized

in section 6. The rule for calculating a set of diagrams including other than gauge interactions is

demonstrated in section 7. Concluding remarks are given in section 8.

In Appendix A, details of calculation required in section 3 are shown. Some properties of (coun-

terpart of) the two-point function are listed in Appendix B with proofs. A sample calculation using

the Bern-Kosower-type rule is shown in Appendix C.

2 General Expression

We consider scalar QED theory, whose Lagrangian is given by

L(φ,Aµ) = (Dµφ)∗(Dµφ)−m2|φ|2 −
λ

4
|φ|4 −

1

4
FµνF

µν (2.1)

with

Dµ(A) = ∂µ − ieAµ(x). (2.2)

We set λ = 0 in most of the paper since the simplification of calculation occurs regarding the gauge

interactions. The method for including |φ|4 interaction will be demonstrated in section 7. As for the

gauge-fixing term, we take Feynman gauge

Lgf(Aµ) = −
1

2
(∂µAµ)

2 (2.3)

in the following, and discuss other gauge fixing conditions in section 5.
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We start by defining a generating functional of connected Green functions, which is amputated

with respect to external photons and unamputated with respect to external scalars:

eW (J,J∗,Aµ) ≡
∫
DφDQµ exp i

∫
dx [L(φ,Qµ) + Lgf(Qµ) + J∗φ+ Jφ∗ + jµQµ]

∣∣∣∣
jµ→−2Aµ

, (2.4)

where Qµ denotes quantum gauge field. Integrating out the scalar field, and then rewriting the

integral over Qµ by functional derivatives, we obtain

eW (J,J∗,Aµ) =
∫
DQµ e

i
∫
dx [ 1

2
(Aµ−Qµ)2(Aµ−Qµ)− 1

2
Aµ2Aµ]

× exp[−Tr Log(D(Q)2 +m2) + i
∫∫
dxdy J∗(x)

(
1

D(Q)2+m2

)
xy
J(y)] (2.5)

= e−
i
2

∫
dxAµ2Aµ exp[ i

2

∫∫
dxdy δ

δAµ(x)
(ut−1)xy

δ
δAµ(y)

]

× exp[−Tr Log(D(A)2 +m2) + i
∫∫
dxdy J∗(x)

(
1

D(A)2+m2

)
xy
J(y)], (2.6)

where we used functional analogue of an identity†∫ ∞
−∞

dη√
2πia

ei
(ξ−η)2

2a f(η) = e
1
2
ia d2

dξ2 f(ξ). (2.7)

Interaction terms in eq.(2.6), which functional derivatives operate, can be represented by path-

integrals of a particle interacting with the background gauge field Aµ, respectively, as

−Tr Log(D(A)2 +m2) =
∫ ∞
0

dT

T
e−im

2T
∫
x(0)=x(T )

Dx(τ) exp
[
−i
∫ T

0
dτ
(
ẋ2

4
− eA(x) · ẋ

)]
, (2.8)

−i
(

1
D(A)2+m2

)
wz

=
∫ ∞
0

dT e−im
2T
∫
x(0)=z

x(T )=w

Dx(τ) exp
[
−i
∫ T

0
dτ
(
ẋ2

4
− eA(x) · ẋ

)]
. (2.9)

Derivation of the first equation is given in Ref.[4], and the second expression can be shown similarly.

The above interaction terms, respectively, correspond to a closed scalar chain (making a loop) and

an open scalar chain (whose both ends are connected to external scalars) in the background gauge

field. Each term corresponds to the sum of Feynman diagrams with different location of photons

along the scalar chain, including arbitrary number of three-point vertices and seagull vertices; see

Fig.2. Eq.(2.6) has a simple form of connecting the two kinds of scalar chains by photon propagators

igµν(ut−1)xy, which serves for deriving path-integral expression for (a set of) diagrams.

†To derive the integral form (left-hand-side) from the differential form (right-hand-side), substitute

f(ξ) =

∫
dη δ(ξ − η)f(η) =

∫
dp dη

2π
eip(ξ−η)f(η)
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Figure 2: The path-integral representation of a scalar particle interacting with the background gauge
field a) where the scalar line is making a loop, corresponding to eq.(2.8), and b) where the scalar line
is connected to external lines,corresponding to eq.(2.9).

Consider first a specific example. We will find a convenient expression for the contribution of

the set of diagrams shown in Fig.3 (hereafter referred to as set I diagrams) to the momentum space

Green function defined by

G(k1, k4; k3, ε3, k6, ε6) ≡
∫
dxdx′dwdz ei(k1·z+k4·w+k3·x+k6·x′)

× δ
δJ(z)

δ
δJ∗(w)

ε3µ
δ

δAµ(x)
ε6ν

δ
δAν(x′)

W (J, J∗, A)
∣∣∣
J=J∗=A=0

. (2.10)

All external momenta are taken to be outgoing.

Let us choose the first diagram in the set I as the representative, and extract step by step the

relevant terms in eq.(2.10); following procedure is sufficient for including all contributions from the

set I diagrams. After substituting (2.8) and (2.9) into (2.6), we keep the term including one open

scalar chain, one closed scalar chain, and one internal photon propagator:

W ∼
i

2

∫ ∫
dxdy δ

δAµ(x)
(ut−1)xy

δ
δAµ(y)

×
∫
0

∞

dT e−im
2T
∫
dwdz J∗(w)J(z)

∫
z

w

Dx exp
[
−i

∫
0

T

dτ

(
1

4
ẋ2 − eA(x) · ẋ

) ]

×
∫
0

∞

dT ′

T ′
e−im

2T ′
∮
Dx′ exp

[
−i

∫
0

T ′

dτ ′
(

1

4
ẋ′2 − eA(x′) · ẋ′

)]
. (2.11)

and integrate over p after replacing d/dξ by ip.
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Figure 3: The set I diagrams, which includes diagrams interrelated to one another by the gauge
transformation of internal and external photons.

We expand the integrand in powers of the coupling e, and extract the term corresponding to two

photon insertions in each scalar chain:

(ie)2

2

∫
0

T

dt2A(x2) · ẋ2

∫
0

T

dt3A(x3) · ẋ3 ×
(ie)2

2

∫
0

T ′

dt5A(x′5) · ẋ
′
5

∫
0

T ′

dt2A(x′6) · ẋ
′
6, (2.12)

where xi ≡ x(ti) and x′j ≡ x′(tj). Then connect the internal photon propagator by taking derivative

as

δ

δAµ(x)

δ

δAµ(y)
[A(x2) · ẋ2] [A(x′5) · ẋ

′
5] = ẋ2 · ẋ

′
5 [δ(x2 − x)δ(x

′
5 − y) + (x↔ y)]. (2.13)

There are also terms in which A(x3) and A(x′6) are differentiated instead of A(x2) and A(x′5), re-

spectively, so the factor 1/4 in (2.12) gets cancelled. According to the definition (2.10), the Green

function is obtained by substituting‡

J∗(w) = eik4·w, J(z) = eik1·z, Aµ(x3) = εµ3e
ik3·x3, Aµ(x′6) = εµ6e

ik6·x′6 (2.14)

‡Note that in the case where n external photon vertices are on some chain, one should multiply by n! after
substituting Aµ(x(ti)) = εµi e

iki·x(ti).
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to eq.(2.11). Thus,

GI(k, ε) = ie4
∫
dxdy (ut−1)xy

∫
0

∞

dT e−im
2T
∫
0

∞

dT ′

T ′
e−im

2T ′
∫ T

0
dt2dt3

∫ T ′

0
dt5dt6

×
∫
dwdz

∫
z

w

Dx e−i
∫ T

0
dτ 1

4
ẋ2
∮
Dx′ e−i

∫ T ′
0
dτ ′ 1

4
ẋ′2δ(x2 − x)δ(x

′
5 − y)

× ei(k1·z+k4·w) (ẋ2 · ẋ
′
5)
(
ε3 · ẋ3e

ik3·x3

) (
ε6 · ẋ

′
6e
ik6·x′6

)
(2.15)

= e4
∫ ∞
0

dα
∫
0

∞

dT e−im
2T
∫
0

∞

dT ′

T ′
e−im

2T ′
∫ T

0
dt2dt3

∫ T ′

0
dt5dt6

×
∫
I
Dx(τ) e−i

∫
dτ 1

4
ẋ(τ)2 ei(k1·z+k4·w) (−ẋ2 · ẋ

′
5)
(
ε3 · ẋ3e

ik3·x3

) (
ε6 · ẋ

′
6e
ik6·x′6

)
, (2.16)

where we have expressed the photon propagator using Feynman parameter, and defined a “path-

integral over the set I diagrams”§ as∫
I
Dx(τ) e−i

∫
dτ 1

4
ẋ(τ)2 ≡

∫
dxdy i

(
1

4πiα

)D/2
e−

i
4α

(x−y)2

×
∫
dwdz

∫
z

w

Dx e−i
∫ T

0
dτ 1

4
ẋ2
∮
Dx′ e−i

∫ T ′
0
dτ ′ 1

4
ẋ′2

× δ(x2 − x)δ(x
′
5 − y). (2.17)

Since the path-integral over x(τ) is Gaussian, it is straightforward (at least formally) to perform

the integration. For convenience, we assign an outgoing momentum ki and a polarization vector εi

to every vertex (x1 ≡ z, x4 ≡ w), and replace the vertex factors by an exponential factor:

ei(k1·z+k4·w) (−ẋ2 · ẋ
′
5)
(
ε3 · ẋ3e

ik3·x3

) (
ε6 · ẋ

′
6e
ik6·x′6

)
−→ exp

[
6∑
i=1

(iki · xi + εi · ẋi)

]
. (2.18)

At the end of the calculation, to recover the correct result:

1) We set k2 = k5 = 0 and ε1 = ε4 = 0.

2) Only the terms in which each polarizatoin vector ε2, ε3, ε5, ε6 appears precisely once (multi-linear

in each polarization vector) are retained.

3) We replace the internal photon wave function as

εµ2ε
ν
5 → −g

µν . (2.19)

§To be precise, we have expressed scalar chains in path-integrals and photon propagators in Feynman parameter
integrals.
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The replacement (2.18) simplifies the integration over x(τ). Hence, we obtain

GI(k, ε) = e4
∫ ∞
0

dα
∫
0

∞

dT e−im
2T
∫
0

∞

dT ′

T ′
e−im

2T ′
∫ T

0
dt2dt3

∫ T ′

0
dt5dt6

×N exp
[

1

2

6∑
i,j=1

{
−iki · kjG

ij
B − 2ki · εj∂jG

ij
B + iεi · εj∂i∂jG

ij
B

}]
, (2.20)

where the normalization factor is defined by

N ≡
∫
I
Dx(τ) e−i

∫
dτ 1

4
ẋ(τ)2 , (2.21)

and the two-point functions are given by

gµν Gij
B = −i 〈xµ(ti)xν(tj)〉 ,

gµν ∂jG
ij
B = −i 〈xµ(ti)ẋν(tj)〉 ,

gµν ∂i∂jG
ij
B = −i 〈ẋµ(ti)ẋν(tj)〉 ,

(2.22)

with the expectation value taken with respect to the path-integral average over the set I diagrams:

〈O(x)〉 ≡ N−1
∫
I
Dx(τ)O(x) e−i

∫
dτ 1

4
ẋ(τ)2 . (2.23)

We remind the reader that ∂jG
ij
B differs from the differentiation of Gij

B with respect to tj . Precise

definition will be made clear in the next section.

So far we considered a specific example. The steps that led to eq.(2.20) can be generalized to an

arbitrary set of diagrams: A set of diagrams consists of those which can be transformed to one another

by sliding photon legs along the scalar chains, where any two three-point vertices on a same chain

may combine to become a seagull vertex. Any single set contains all diagrams that are interrelated

to one another by the gauge transformation of external and internal photons. In other words, each

set constitutes a gauge-invariant subamplitude if the external scalar propagators are amputated and

taken to be on-shell, k2
s → m2.¶ Thus, the Green function

G(k, ε) =
∫ ∏

i

dxi e
i
∑

ki·xi
[∏

δ
iδJ(wi)

∏
δ

iδJ∗(zi)

∏
εµi

δ
iδAµ(yi)

W (J, J∗, A)
]
J=J∗=A=0

(2.24)

at each order of the coupling e can be decomposed to the sub-Green functions corresponding to the

sets S of diagrams as

G(k, ε) =
∑
S

GS(k, ε), (2.25)

¶This is true only for the renormalized Green function.
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where the decomposition is accomplished naturally by expanding eq.(2.6) in powers of e, taking

functional derivatives, and then substituting the external wave functions; see eqs.(2.11)-(2.16).

Following similar steps as in the former example, it is easy to see that the sub-Green function for

a set S with 2ns external scalars at O(en) is given generally by

GS(k, ε) = (ie)n C
∫ ∞
0

∏
r

dαr
∏

chain l

∫ ∞
0

[dTl] e
−im2Tl

∫ Tl

0

∏
il

dtil


×N exp

[
1

2

n+2ns∑
i,j=1

{
−iki · kjG

ij
B − 2ki · εj∂jG

ij
B + iεi · εj∂i∂jG

ij
B

}]
, (2.26)

where C is the combinatorial factor‖, αr denotes the Feynman parameter of the r-th photon propa-

gator. The chain l represents open or closed scalar chain, and the integral measure for its length Tl

is

[dTl] =

{
dTl for l =open

dTl/Tl for l =closed
. (2.27)

il represents photon vertex on the chain l. For convenience, we assigned an outgoing external mo-

mentum ki and a polarization vector εi to every vertex i. Normalization factor N and two-point

functions Gij
B, ∂jG

ij
B, and ∂i∂jG

ij
B are defined similarly as eqs.(2.21)-(2.23), but for the path-integral

over the set S diagrams. The exponential factor is common to all S once the numbers of external

scalars and photons as well as the order of e are fixed. (Explicit forms of Gij
B’s depend on S, though.)

Furthermore, one should manipulate following processes (dependent on the set S) to the above

GS(k, ε):

1) If the vertex i is internal, we set corresponding ki = 0.

2) If the vertex i is an endpoint of an open scalar chain, we set corresponding εi = 0.

3) Only the terms multi-linear in each remaining polarization vector are kept.

4) We replace the polarization vectors at both ends (ir and jr) of every photon propagator r as

εµirε
ν
jr
→ −gµν . (2.28)

‖The combinatorial factor C in general differs from (symmetry factor) × (statistical factor) of the corresponding
Feynman diagrams, since certain diagrams do not distinguish the interchange of photon legs. e.g. C = 1/2 for the
scalar self-energy at one-loop.
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At this stage, one could directly evaluate the integrals in eq.(2.26) once the explicit forms of N

and Gij
B, ∂jG

ij
B, and ∂i∂jG

ij
B are known. It already has advantages that a set of diagrams is cast

into one single expression, and that the expressions for different sets of diagrams can be obtained

in similar simple manners. Also, the spinor helicity technique [8, 9] can be used, so the number of

independent dot products in the exponent can be reduced. Moreover, the Bern-Kosower-type rule

allows use of partial integration technique, which simplify the calculation further. After that, one

will integrate over αr, ti, and Tl.

In order to understand the remaining part of the rule, one needs a close study of the two-point

function

gµν GB(τ, τ ′) ≡ −i 〈xµ(τ)xν(τ ′)〉 . (2.29)

In principle, GB(τ, τ ′) is obtained by solving

∂2

∂τ2
GB(τ, τ ′) = 2 δ(τ − τ ′) (2.30)

after removing the zero mode, where appropriate boundary condition should be imposed at each

internal vertex of the diagram[6]. We take, however, an alternative approach. It is possible to find

simple rules to express GB(τ, τ ′) for a general diagram in terms of basic elements.

3 Relation to Feynman Parameter Formula and Decompo-

sition of GB

In this section, we derive the Feynman parameter formula for a scalar QED diagram (rather than

for a set of diagrams considered in the previous section). In this formula a matrix Zij appears,

which is identified to be the counterpart of Gij
B. Zij is defined through integral over finite number of

variables instead of the path-integral formulation, which enables us to investigate its properties in

an unambiguous way. We deal with a general φ3 diagram in subsection 3.a, followed by an extension

to scalar QED diagrams in subsection 3.b. Then subsection 3.c will clarify the relation between the

Feynman parameter integral formula and the general expression for GS(k, ε) obtained in the last

section. Finally, we show how to decompose N and Gij
B to simpler elements in subsection 3.d.
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3.a Scalar φ3 Diagram

For the calculation of a general φ3 diagram, it has long been known how to write down the Feynman

parameter formula[10]. We rederive the formula in a manner convenient for application to the case

of scalar QED diagram.

A general connected φ3 diagram with n vertices andN internal lines can be written using Feynman

rule in coordinate space as

iT = (ie)n
∫ n∏

i=1

dDxi e
i
∑

i
ki·xi

[
N∏
r=1

i∆F (xir − xjr)

]
, (3.1)

where e is the φ3 coupling constant. ir and jr represent the vertices at both ends of the r-th internal

line. For convenience an outgoing external momentum ki is assigned to every vertex. If the vertex is

internal, we set the corresponding ki = 0 at the end of the calculation. Combinatorial factor, if any,

is suppressed for simplicity.

Substituting the propagator given in eq.(1.3), we have

iT = (ie)n
∫ ∞
0

N∏
r=1

dαr e
−i(m2−iε)

∑
r
αr I(α), (3.2)

where

I(α) ≡
∫

[dxi] exp

− i
4

n∑
i,j=1

xi · xj Aij(α) + i
n∑
i=1

ki · xi

 , (3.3)

and

n∑
i,j=1

xi · xj Aij(α) ≡
N∑
r=1

(xir − xjr)
2

αr
. (3.4)

The matrix Aij(α) represents the topoplogy of the diagram (how the vertices are connected). We

have absorbed the factor before exponential in eq.(1.5) into the integral measure:

[dxi] ≡

[
N∏
r=1

i
(

1

4πiαr

)D/2]
·
n∏
i=1

dDxi. (3.5)

Note that it depends on Feynman parameters.

Then, after Gaussian integration over xi’s in I(α), we will be left with the desired Feynman

parameter integral formula. Reflecting the invariance of the quadratic form (3.4) under translation

xµi → xµi + cµ, (3.6)
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the matrix Aij(α) has a zero eigenvalue. Namely, I(α) will be proportional to the δ-function repre-

senting momentum conservation. Indeed, after integration over xi’s, we obtain

I(α) = (2π)Dδ

(
n∑
i=1

ki

)
· il
(

1

4πi

)Dl/2
∆(α)−D/2 exp

i n∑
i,j=1

ki · kjZij(α)

 (3.7)

with

∆(α) =
1

n

(
N∏
r=1

αr

)
det′A(α). (3.8)

Here, l = N−n+1 is the number of loop of the diagram. det′ denotes the product of eigenvalues but

zero. Zij(α) is the inverse of Aij(α) after the zero mode is removed, or, fixing the center of gravity

of vertices. Derivation of eqs.(3.7) and (3.8) is given in Appendix A.

In eq.(3.7), Zij(α) is not uniquely determined. This is because one can readily confirm the

invariance of I(α) under the transformation of Z,

Zij(α)→ Zij(α) + fi(α) + fj(α) for ∀fi(α), (3.9)

due to the momentum conservation. Among the class of Z(α)’s connected by the transformation,

there is a specific choice of Z(α) most convenient to the following argument. We choose

gµνZij(α) ≡ −
i

4
〈〈 (xi − xj)

µ(xi − xj)
ν 〉〉 (3.10)

with 〈〈. . .〉〉 defined by

〈〈O〉〉 ≡

∫
[dxi]O exp[− i

4

∑
xi · xjAij]∫

[dxi] exp[− i
4

∑
xi · xjAij ]

. (3.11)

The numerator and the denominator of eq.(3.11), respectively, are ill-defined due to the zero eigen-

value of A(α), so one has to first remove the zero mode in the integrals. Because xi− xj in eq.(3.10)

is invariant under the translation (3.6), Z(α) thus defined is independent of how one removes the

zero mode.∗∗ Lam has pointed out[7] that this choice of Z(α) is characterized by the condition

Zii(α) = 0 for 1 ≤ i ≤ n, (3.12)

and is called zero-diagonal level scheme.

We list some important properties of Zij together with their proofs in Appendix B.

∗∗Naively, Z(α) being the inverse of A(α), one may consider a natural definition would be gµνZ ′ij(α) ≡ i
2

〈〈
xµi x

ν
j

〉〉
.

Z ′ and Z given by eq.(3.10) are equivalent under the transformation (3.9) with fi = −Z ′ii/2. The disadvantage of Z ′ is
that it depends on how one removes the zero mode in calculating

〈〈
xµi x

ν
j

〉〉
since xµi x

ν
j is not translationally invariant.
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Figure 4: A scalar QED diagram including only three-point gauge vertices, which contributes to
the Green function amputated with respect to external photons and unamputated with respect to
external scalars.

3.b Scalar QED Diagram

Now we derive the Feynman parameter intergral formula for a scalar QED diagram. We consider

diagrams contributing to the Green function (2.24) which is amputated with respect to external

photons and unamputated with respect to external scalars.

First, let us consider a diagram without seagull vertex; see Fig.4:

GD(k, ε) = (ie)n
∫ ∏

i

dDxi e
i
∑

ki·xi

 ∏
chain l


nl∏
il=1

i∆F (xil+1 − xil)
↔
Vil




×
∏

photon r

i∆F (xir − xjr)

∣∣∣∣∣∣∣∣
εµirε

ν
jr
→ −gµν

,(3.13)

with the vertex operator

↔
Vj≡ εµj

i
→
∂

∂xµj
−i

←
∂

∂xµj

 . (3.14)

Here, il’s (1 ≤ il ≤ nl) denote vertices on the scalar propagator chain l, labelled in increasing order

along the charge flow on that chain. For an open chain we suppressed one additional scalar propagator

i∆F (x1 − x0) on the right of the vertex operator
↔
V1 in eq.(3.13). ir and jr represent the vertices at

both ends of the photon propagator r. Again, we assign an outgoing external momentum ki and

a polarization vector εi to every vertex i. At the end of the calculation, we set ki = 0 for internal

13



Figure 5: The Feynman gauge photon propagator is obtained by replacing internal photon polariza-
tion vectors at both ends of every photon propagator by −gµν .

vertices, εi = 0 at the endpoints of open scalar chains, and also replace the polarization vectors at

both ends of every internal photon line as εµirε
ν
jr → −g

µν (corresponding to taking Feynman gauge

for photon propagator); see Fig.5.

Introducing Feynman parameter for every propagator, we have

GD(k, ε) = (ie)n
∏
l

∫ ∞
0

∏
il

dαil

∫ ∞
0

∏
r

dαr e
−i
∑

l
Tl(m

2−iε)I(α), (3.15)

where

I(α) ≡
∫ ∏

i

dDxi e
i
∑

ki·xi

∏
l

∏
il

K(xil+1 − xil ;αil)
↔
Vil


 ∏

r

K(xir − xjr ;αr). (3.16)

K is the propagator defined in eq.(1.5); αil is the Feynman parameter between the vertices il and

il − 1, and Tl =
∑
il
αil.

Before integrating over xi’s in I(α), we would like to replace the vertex operator
↔
Vi by some

simple factor associated with the vertex i. To this end, we insert, on both sides of every vertex i,

dummy vertices i′ and i′′ on the scalar line in the order i′′ < i < i′ using the associativity relation

(1.8); see Fig.6. Then we can replace the vertex operators acting on scalar propagators as

↔
Vi −→

1

2
εi ·

(
x′i−xi
u′i

+
xi−x′′i
u′′i

)
. (3.17)

Hence, we have

I(α) =
∫

[dxa]
∏
i

1

2
εi ·

(
x′i−xi
u′i

+
xi−x′′i
u′′i

)
exp

[
−
i

4

∑
a,b

xa · xbAab(α, u
′, u′′) + i

∑
i

ki · xi

]
. (3.18)

14



Figure 6: The dummy vertices i′ and i′′ inserted on both sides of every vertex i in the order i′′ < i < i′

along the charge flow on the scalar line. The Feynman parameter between vertices i′ and i (i and
i′′) is denoted as u′i (u′′i ).

Here, a, b denote vertices including dummy vertices (i, i′, and i′′). The matrix Aab and the measure

[dxa], respectively, are defined similarly as in eqs.(3.4) and (3.5), but depend also on u′ and u′′. Note

that I(α) is independent of u′i and u′′i , since it is completely arbitrary where to insert dummy vertices

as long as the order i′′ < i < i′ is preserved.

To perform Gaussian integration over xa’s, we exponentiate the polarization vectors as in eq.(2.18).

Defining a source

Jµa =
∑
i

[
kµi δia −

i

2
εµi
(
δi′a−δia

u′i
+ δia−δi′′a

u′′i

)]
, (3.19)

we have

I(α) =
∫

[dxa] exp
[
−
i

4

∑
a,b

xa · xbAab(α, u
′, u′′) + i

∑
a

Ja · xa

]
linear in each ε

(3.20)

= (2π)Dδ

(
n∑
i=1

ki

)
· il
(

1

4πi

)Dl/2
∆(α)−D/2

× exp
[ n∑
i,j=1

{i ki · kjZij + 2ki · εj(4jZij)− iεi · εj(4i4jZij)}
]
linear in each ε

(3.21)

for an l-loop diagram with

4jZij =
Zij′−Zij

2u′j
+

Zij−Zij′′

2u′′j
, (3.22)

4i4jZij =
1

4

∑
a,b

(
δi′a−δia

u′i
+ δia−δi′′a

u′′i

)(
δj′b−δjb

u′j
+

δjb−δj′′b
u′′j

)
Zab (3.23)
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=
1

4u′iu
′
j

(Zi′j′ − Zij′ − Zi′j + Zij) + . . . . (3.24)

In the above expressions, ∆(α) and Zij are the same as those appeared in eq.(3.7) for the φ3 diagram

of the same topology, since we recover exactly eq.(3.3) if we set all εi = 0 and integrate out the

dummy vertices in eq.(3.20). Zij′, etc. are defined similarly as in (3.10):

gµνZab(α) ≡ −
i

4
〈〈 (xa − xb)

µ(xa − xb)
ν 〉〉 , (3.25)

but now 〈〈. . .〉〉 includes integral over dummy vertices.

Remembering that I(α) is independent of u′i and u′′i , we can take the limit u′i, u
′′
i → +0. Due to

the fact

lim
u′i→0

Zi′a = lim
u′′i→0

Zi′′a = Zia, (3.26)

we can replace 4jZij and 4i4jZij as

4jZij =
1

2
lim

u′j ,u
′′
j→0

(
∂
∂u′j
Zij′ −

∂
∂u′′j

Zij′′
)

(3.27)

4i4jZij =
1

4
lim

u′i,u
′′
i→0

u′j ,u
′′
j→0

(
∂
∂u′i

∂
∂u′j
Zi′j′ −

∂
∂u′i

∂
∂u′′j

Zi′j′′ −
∂
∂u′′i

∂
∂u′j
Zi′′j′ +

∂
∂u′′i

∂
∂u′′j

Zi′′j′′
)

(3.28)

At the same time, we can drop all diagonal terms (i = j) in (3.21) using

lim
u′i→+0

∂

∂u′i
Zi′i = lim

u′′i→+0

∂

∂u′′i
Zi′′i = −

1

2
(3.29)

and noting that only the terms multi-linear in each εi should be kept. See Appendix B for proofs of

eqs.(3.26)-(3.29).

So far we considered a diagram without seagull vertex. The contribution of a seagull vertex can

be incorporated through the process known as “pinching” from the corresponding diagram without

seagull vertex. Any diagram containing a seagull vertex has the following factor (see Fig.7):

GD(k, ε) ∝ i∆F (y − x) εµeik·x ε′µe
ik′·x i∆F (x− z) (3.30)

=
∫
dx′ i∆F (y − x) εµeik·x δ(x− x′) ε′µe

ik′·x′ i∆F (x′ − z). (3.31)

The last line corresponds diagramatically to pinching the propagator between the two adjacent three-

point vertices x and x′; see Fig.7. Noting that δ(x − x′) is obtained by taking the α → +0 limit of
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Figure 7: The seagull vertex can be incorporated by pinching the propagator between two adjacent
three-point vertices with vertex factors εµeik·x and ε′µe

ik′·x.

the propagator in question (see eq.(1.7)), one can incorporate the contribution of a seagull vertex by

replacing

εi · εj4i4jZij → 2εi · εj δ(αij − 0) (3.32)

in eq.(3.21) of the diagram without seagull vertex, where αij is the Feynman parameter between the

two adjacent three-point vertices i and j. If there are two or more seagull vertices in a diagram, one

should pinch as many propagators of the corresponding diagram without seagull vertex.

3.c Relation between General Expression and Feynman Parameter For-
mula

Path-integral expression for GS(k, ε) such as eq.(2.16) can be obtained from the finite dimensional

integral (3.18) by inserting infinitely many dummy vertices along scalar chains using the associativity

relation (1.8). The advantage of the path-integral expression lies in that it combines in a single

expression sum of different diagrams that are related to one another by sliding photon legs along the

scalar chains. Different orderings of photon legs correspond to different orderings of the proper time

ti’s of the vertices.

Once the ordering of til’s is fixed along the scalar chain l, relations between til ’s and Feynman

parameters αil are given by:

• For l =open, and 0 < t1 < t2 < . . . < tnl < Tl,

t1 = α1

t2 − t1 = α2
...

tnl − tnl−1 = αnl
Tl − tnl = αnl+1

(3.33)
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• For l =closed, and 0 < t1 < t2 < . . . < tnl < Tl,

t1 − tnl + Tl = α1

t2 − t1 = α2
...

tnl − tnl−1 = αnl

(3.34)

With these relations, constituents of the general expression (2.26) and of the Feynman parameter

formula (3.21) are identified as follows:

N = (2π)Dδ

(
n∑
i=1

ki

)
· il
(

1

4πi

)Dl/2
∆−D/2 (3.35)

and

Gij
B = −2Zij,

∂jG
ij
B = −24jZij ,

∂i∂jG
ij
B = −24i4jZij .

(3.36)

We take the convention Gii
B = 0 in accord with the zero-diagonal level scheme of Zab. As N and Gij

B’s

are defined for a set of diagrams, for a different ordering of til ’s, ∆ and Zij of a different diagram

should be taken on the right-hand-side.

It is more subtle how the contributions of seagull vertices are contained in the general expression

(2.26). They are contained in the ∂i∂jG
ij
B term when the two vertices ti and tj come to the same

point. To see this, we consider the two-point function GB(τ, τ ′) defined in eq.(2.29) when τ and τ ′

are arbitrary points along a same scalar chain. One may, if necessary, identify it with Zab, where xa

and xb are the dummy vertices inserted at the position of τ and τ ′, respectively. Due to eqs.(3.27),

(3.28) and (3.36), one may express Gij
B’s as

Gij
B = GB(ti, tj) (3.37)

∂jG
ij
B =

1

2

[
lim

τ ′→tj+0
+ lim

τ ′→tj−0

]
∂

∂τ ′
GB(ti, τ

′) (3.38)

∂i∂jG
ij
B =

1

4

[
lim

τ→ti+0
+ lim

τ→ti−0

][
lim

τ ′→tj+0
+ lim

τ ′→tj−0

]
∂

∂τ

∂

∂τ ′
GB(τ, τ ′) (3.39)

for i 6= j, and we may omit all terms where i = j; see discussion after eq.(3.28). Then using the

identity††

lim
τ→τ ′±0

∂

∂τ ′
GB(τ, τ ′) = ∓1 (3.40)

††The corresponding identity of Zab is shown in Appendix B, eq.(B.12).
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which holds for any diagram, it can be shown that

∫
tj−u′′

tj+u
′

dti ∂i∂jG
ij
B = −2 +

( ∫
tj+0

tj+u
′

dti +
∫
tj−u′′

tj−0

dti

)
∂i∂jG

ij
B (u′, u′′ > 0). (3.41)

Thus, we see δ-function contribution as

∂i∂jG
ij
B ∼ −2δ(ti − tj) for tj − 0 < ti < tj + 0, (3.42)

so that the contributions of seagull vertices are included as in eq.(3.32). (The factor 2 is accounted

for by the interchange of i and j.) It is interesting how gauge symmetry takes advantage of the

property of GB(τ, τ ′) which is an intrinsic quantity to any diagram.

Finally we comment on the integral variables of the two formulas (2.26) and (3.15). Note that

along a closed scalar chain we have one more time variables to integrate over (t1, . . . , tnl, Tl) than the

corresponding Feynman parameters. In fact, one proper time variable can be integrated trivially;

after the first nl−1 integrals over til’s, there remains no dependence on tnl
‡‡, so the last integral just

gives a factor of Tl, which compensates T−1
l in the integral measure (2.27).

3.d Decomposition of GB and N

Up to now we dealt with GB(τ, τ ′) andN for a general set of diagrams. We show that these quantities

can be decomposed and written in terms of those for the basic sets of diagrams, namely, GB(τ, τ ′)

and N for an open scalar chain and for a closed scalar chain; see Fig.8.

Let us first find the explicit forms of these basic GB(τ, τ ′) and N . They are obtained from Zij

and ∆(α) for the corresponding diagrams (Fig.9). According to the calculation method described in

Appendix B, one obtains for these diagrams

Z
(open)
12 = −

1

2
α2, ∆(open) = 1, (3.44)

Z
(closed)
12 = −

1

2

α1α2

α1 + α2

, ∆(closed) = α1 + α2. (3.45)

‡‡Any function of the form

f(tnl) =

∫ Tl

0

dtnl−1 · · ·

∫ Tl

0

dt1 F (GijB ,N ) (l : closed chain) (3.43)

is invariant under translation tnl → tnl + c since GijB and N are periodic functions of til ’s and depend only on til − tjl ;
see eqs.(3.35) and (3.36). This means f ′(t) = 0 so that f(t) is independent of t.
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Figure 8: The basic diagrams: a) an open scalar chain, and b) a closed scalar chain. Two-point

function for an arbitrary set of diagrams can be decomposed and written in terms of G
(open)
B and

G
(closed)
B .

Figure 9: The basic diagrams corresponding to Fig.8 but parametrized by Feynman parameters.
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It follows

G
(open)
B (τ, τ ′) = |τ − τ ′|, ∆(open) = 1, (3.46)

G
(closed)
B (τ, τ ′) = |τ − τ ′| −

(τ − τ ′)2

T
, ∆(closed) = T, (3.47)

where the normalization factor N is given by eq.(3.35).

We deal with finite dimensional integral, and start from the defining equation of Zab and ∆ for a

diagram D:

I =
∫

[dxa] exp
[
−
i

4

∑
a,b

xa · xbAab + i
∑
a

Ja · xa

]
(3.48)

= (2π)D δ
(∑

a

Ja

)
·il
(

1

4πi

)Dl/2
∆−D/2 exp

[
i
∑
a,b

Ja · JbZab

]
. (3.49)

We would like to know how the above expression changes when the vertices i and j in D are connected

by a propagator whose Feynman parameter is α. (The diagram thus obtained is denoted as D′.)

This is achieved if we multiply the integrand in (3.48) by

K(xi − xj ;α) = i
(

1

4πiα

)D/2
exp

[
−
i

4α
(xi − xj)

2
]

(3.50)

before integration over [dxa]. But it is an equivalent manipulation if we shift

Ja → Ja + p (δai − δaj), (3.51)

multiply by exp(iαp2), and then integrate over p; see eq.(1.4). Applying this manipulation to (3.49),

one obtains

I → I ′ = (2π)D δ
(∑

a

Ja

)
·il+1

(
1

4πi

)D(l+1)/2

[∆ · (α− 2Zij)]
−D/2 (3.52)

× exp
[
i
∑
a,b

Ja · Jb

{
Zab +

(Zia − Zja − Zib + Zjb)
2

2 (α− 2Zij)

}]
. (3.53)

This expression defines ∆ and Zab forD′, and correspondingly we find the following rule∗ for obtaining

N and GB for the diagram D′:

∆′ = ∆ · (α+ GB(ti, tj)) , (3.54)

G′B(τ, τ ′) = GB(τ, τ ′)−
(GB(τ, ti)−GB(τ, tj)−GB(τ ′, ti) +GB(τ ′, tj))

2

4 (α+ GB(ti, tj))
. (3.55)

∗Eq.(3.55) differs slightly from the expression obtained by Schmidt and Schubert[6] since they do not take the
zero-diagonal level scheme. The difference is accounted for by the transformation (3.9).

21



Next we consider the case where two diagrams D1(3 i) and D2(3 j) are sewn together by a

propagator (ij). In this case, we shift

J (1)
a → J (1)

a + p δia, J (2)
a → J (2)

a − p δja (3.56)

in I(1) and I(2), respectively, multiply by exp(iαp2), and then integrate over p. It is straightforward

to find the following rule:

∆′ = ∆(1) ·∆(2), (3.57)

G′B(τ, τ ′) =


α+G

(1)
B (τ, ti) +G

(2)
B (τ ′, tj) τ ∈ D1, τ

′ ∈ D2

G
(1)
B (τ, τ ′) τ, τ ′ ∈ D1

G
(2)
B (τ, τ ′) τ, τ ′ ∈ D2

. (3.58)

Any set S of diagrams can be constructed by connecting scalar chains with photon propagators.

Then one may express GB (N ) for S in terms of G
(open)
B (N (open)) and G

(closed)
B (N (closed)) either by

using the above rules recursively, or, by applying similar manipulation for multiple photon propagator

insertions at once.

Now we find an important property of two-point functions ∂jG
ij
B and ∂i∂jG

ij
B. Writing GB(τ, τ ′)

for an arbitrary set of diagrams in terms of the basic elements, we notice that ∂i (∂j) can be replaced

by ∂/∂ti (∂/∂tj) if the vertex i (j) is external[7] or if the diagram is one-particle-reducible with

respect to the photon propagator connected to the vertex i (j). (cf. eqs.(3.38) and (3.39).)

4 Integration By Parts

Now we are in place to explain the integration by parts technique, first introduced to field theoretical

calculation by Bern and Kosower, which enables non-trivial reshuffling of various terms in eq.(2.26)

before integrating over αr, til, and Tl. This technique reduces the number of independent terms, and

consequently reduces the labor in the evaluation of integrals.

4.a Example

Consider a simplest example [4]. According to eq.(2.26) and the manipulation 1)-4), the photon

vacuum polarization at one-loop (Fig.10) is given by

GS = (2π)Dδ(k1 + k2) · (ie)
2 · i

(
1

4πi

)D/2 ∫ ∞
0

dT

T

∫ T

0
dt1 dt2

× T−D/2 e−ik1·k2G
12
B (k1 · ε2 k2 · ε1 ∂1G

12
B ∂2G

12
B + iε1 · ε2 ∂1∂2G

12
B ), (4.1)
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Figure 10: The one-loop diagrams contributing to the photon vacuum polarization.

where we used ∆ = T . Note that ∂1 (∂2) can be identified with ∂/∂t1 (∂/∂t2) since vertices 1 and

2 are external vertices. We integrate by parts the second term with respect to t1. The surface term

vanishes due to the periodicity of Gij
B. Thus,

GS = −(2π)Dδ(k1 + k2) · ie
2 ·
(

1

4πi

)D/2
(k1 · ε2 k2 · ε1 − ε1 · ε2 k1 · k2)

×
∫ ∞
0

dT T−1−D/2
∫ T

0
dt1 dt2 e

−ik1·k2G
12
B ∂1G

12
B ∂2G

12
B , (4.2)

and we find GS is gauge-invariant before integration over t1, t2 and T . Note that the number of

independent terms reduced from two to one.

To see the relation between gauge transformation and the integration by parts technique, we

remember

GS ∝

〈∫ T

0
dt1 ε1 · ẋ(t1) e

ik1·x(t1) ×
∫ T

0
dt2 ε2 · ẋ(t2) e

ik2·x(t2)

〉
, (4.3)

where 〈. . .〉 denotes the path-integral average. Gauge transformation of photon 1 is achieved by

replacing ε1 by k1. Then the vertex operator changes as

ε1 · ẋ(t1) e
ik1·x(t1) → k1 · ẋ(t1) e

ik1·x(t1) = −i
d

dt1
eik1·x(t1), (4.4)

and

δGS ∝

〈∫ T

0
dt1

d

dt1
eik1·x(t1) ×

∫ T

0
dt2 ε2 · ẋ(t2) e

ik2·x(t2)

〉

=
∫ T

0
dt1 dt2

∂

∂t1

〈
eik1·x(t1) ε2 · ẋ(t2) e

ik2·x(t2)
〉

=
∫ T

0
dt1 dt2

∂

∂t1

(
−k1 · ε2 ∂2G

12
B e
−ik1·k2G

12
B

)
. (4.5)

Gauge transform of the integrand is given by total derivative, so GS is obviously gauge-invariant

whereas the integrand itself is not. We may add, however, to the integrand of GS in eq.(4.3) a term
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which transforms equally but in opposite sign under the replacement ε1 → k1:

∂

∂t1

(
ε1 · ε2 ∂2G

12
B e
−ik1·k2G12

B

)
. (4.6)

Being total derivative, addition of this term does not alter GS. Now the integrand itself is gauge-

invariant, and the above term is exactly the surface term of the partial integration in eq.(4.2).

4.b External Photon

We now show a general prescription for integration by parts with respect to the external gauge

vertices.

First, if the external photons are on-shell and for a fixed helicity states, one can use spinor helicity

technique[8, 9] to reduce the number of dot products in the exponent of the general expression (2.26).

On the other hand, if the external photons are off-shell, one can replace each polarization vector as

εµi → ε′i
µ

= εµi −
εi · ka
ki · ka

kµi = (εµi k
ν
i − k

µ
i ε
ν
i ) kaν

1

ki · ka
. (4.7)

The amplitude is invariant under this replacement, and also the resulting expression is manifestly

gauge-invariant before integration over proper time variables. One may choose any ka for each

polarization vector εi. Since ka · ε′i = 0, appropriate choices of ka’s for all i’s will reduce the number

of terms in the exponent.

After reducing the terms in the exponent, and after manipulation 1)-4) above eq.(2.28), one

integrates by parts with respect to the proper time of external vertices to reduce the number of

independent terms in the integrand. In this procedure, one may omit surface terms for a closed

scalar chain since the surface terms cancel with each other due to the periodicity of GB. Also for

an open scalar chain, surface terms can be neglected if one is interested in the S-matrix element,

since each surface term cancel the propagator pole of the external scalars in the unamputated Green

function; see Fig.11.

4.c Internal Photon

One may also apply integration by parts technique to the internal gauge vertices.[6] Using the de-

composition rule derived in the previous section, one can write ∆, ∂jGB and ∂i∂jGB using G
(open)
B ,

G
(closed)
B , and their derivatives. One can always integrate by parts to eliminate all second derivatives.

This corresponds to simplifying the expression using gauge transformation of the internal vertices.
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Figure 11: The surface terms originating from the gauge transformation of an external photon along
an open chain. (Some of) The propagator poles of external scalars get cancelled, so these surface
terms do not contribute to the S-matrix element.

Figure 12: The surface terms originating from the gauge transformation of an internal photon whose
both ends are attached to a same open scalar chain. (Some of) The surface terms cannot be omitted
since they still contain the propagator poles of external scalars.

There is one exception for this procedure. The integration by parts with respect to any of the

internal vertices whose the other end of the photon propagator is on a same open scalar chain does

not lead to simplification. The surface terms of such partial integration still comprise the poles of

external scalars as seen in Fig.12. Thus, one cannot omit the surface terms in this case.

5 Covariant Gauge for Internal Photons

From a field theoretical point of view it is interesting to know how the general expression changes

if one used covariant gauge for internal photon propagators instead of Feynman gauge. Let i and j

be the vertices at the both ends of photon propagator whose Feynman parameter is α; see Fig.13.

In momentum space it can be written as

−i

p2 + iε

[
gµν − (1− ξ)

pµpν

p2

]
. (5.1)
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Figure 13: The covariant gauge photon propagator whose Feynman parameter is α.

The gµν part is the Feynman gauge propagator, and appears in the path-integral formalism as

ẋµi ẋ
ν
j gµν exp

[
−
i

4α
(xi − xj)

2
]

(5.2)

with xi ≡ x(ti) and xj ≡ x(tj). Meanwhile, pµpν part can be written as

ẋµi ẋ
ν
j iα

∂

∂xµi

∂

∂xνj
exp

[
−
i

4α
(xi − xj)

2
]
= iα

∂

∂ti

∂

∂tj
exp

[
−
i

4α
(xi − xj)

2
]
, (5.3)

where we used

i
∫ ∞
0

dαα
∫

dDp

(2π)D
∂

∂xµ
∂

∂yν
eip·(x−y)+iαp

2

= −i
∫

dDp

(2π)D
pµpν

p4
eip·(x−y), (5.4)

cf. eq.(1.2). Therefore, we obtain the pµpν part of photon (ij) by operating

(1− ξ) iα
∂

∂ti

∂

∂tj
(5.5)

to the integrand of eq.(2.26) after setting εi = εj = 0. Again this is given by total derivative, so

changing gauge parameter ξ can be regarded as a kind of gauge transformation.

From this we see that if one calculates a set of diagrams in different values of ξ, the difference

of results is proportional to the surface term on each scalar chain. In particular, a set of diagrams

without external scalars is independent of ξ (if expressed in terms of bare coupling and bare gauge

parameter) since GB(τ, τ ′) is periodic function on each closed scalar chain.
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6 Rule

Let us summarize the Bern-Kosower-type rule for calculating a set of diagrams in Scalar QED

(amputated with respected to external photons and unamputated with respect to external scalars).

The gauge-invariant sub-Green function for a set S with 2ns external scalars at O(en) and for l loop

is given by

GS(k, ε) = (2π)Dδ(
∑

ki) · i
l
(

1

4πi

)Dl/2
(ie)n C

×
∫ ∞
0

∏
r

dαr
∏

chain l

∫ ∞
0

[dTl] e
−i(m2−i0)Tl

∫ Tl

0

∏
il

dtil

 Kred, (6.1)

where C is the combinatorial factor, αr denotes the Feynman parameter of the r-th photon propa-

gator. The chain l represents open or closed scalar chain, and the integral measure for its length Tl

is

[dTl] =

{
dTl for l =open

dTl/Tl for l =closed
. (6.2)

il represents photon vertex on the chain l.

The so-called reduced generating kinematical factor Kred is obtained from the generating kine-

matical factor

K = ∆−D/2 · exp
[

1

2

n+2ns∑
i6=j

{
−iki · kjG

ij
B − 2ki · εj∂jG

ij
B + iεi · εj∂i∂jG

ij
B

}]
(6.3)

after the following manipulation.

1) If the vertex i is internal, we set corresponding ki = 0.

2) If the vertex i is an endpoint of an open scalar chain, we set corresponding εi = 0.

3) If the external photons are on-shell and for a fixed helicity states, use spinor helicity technique

to reduce the number of dot products in the exponent; if the external photons are off-shell use

replacement (4.7) to reduce the number of dot products (written in terms of ε′i’s).

4) Only the terms multi-linear in each remaining polarization vector are kept.

5) We replace the polarization vectors at both ends of every photon propagator r as

εµirε
ν
jr
→ −gµν . (6.4)

27



Figure 14: A set of one-loop diagrams containing a φ4-operator insertion.

Again some of the Lorentz contractions vanish.

Then integrate by parts with respect to the proper-times of external vertices. Also, integrate by

parts with respect to the proper-times of internal vertices after writing ∆, ∂jGB and ∂i∂jGB in terms

of G
(open)
B , G

(closed)
B , and their derivatives. (Use decomposition rules (3.54), (3.55), (3.57) and (3.58),

and also eqs.(3.37)-(3.39) for this purpose.) Surface terms can be omitted except for the special case

described in subsection 4.c. The partial integrations generally reduce the number of independent

terms.

In order to integrate over αr, ti, and Tl, it is sometimes convenient to transform the variables to

the conventional Feynman parameter at this stage using relations (3.33) and (3.34).

7 Operator Insertion

So far we have considered sets of diagrams containing only gauge interactions. In practical calcu-

lations, however, one will need to calculate diagrams containing both gauge interactions and other

interactions, or more generally, operator insertions to the sets of diagrams considered above. We

show in two examples how to calculate such diagrams. The idea is to replace any operator O(φ) by

the functional derivatives δ/δJ(x) and δ/δJ∗(x).

Let us see how to calculate the set of diagrams in Fig.14 contributing to the Green function with

a |φ|4 operator insertion:∫
DφDQµ

∫
dz
iλ

4
|φ(z)|4 exp i

∫
dx [L+ Lgf + J∗φ+ Jφ∗ + jµQµ]

∣∣∣∣∣
jµ→−2Aµ

(7.1)

=
iλ

4

∫
dz

(
δ

δJ(z)

)2 (
δ

δJ∗(z)

)2

eW (J,J∗,Aµ). (7.2)
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Figure 15: Any set of diagrams with φ4-operator insertion can be obtained by pinching a dummy
photon propagator by setting the Feynman parameter α→ 0.

Following similar steps as in eqs.(2.10)-(2.20), we find

G(k, ε) = (2π)Dδ(
∑

ki) · i
(

1

4πi

)D/2
· (iλ)(ie)2

∫ ∞
0

dT e−im
2T
∫ T

0
dt1dt2

×∆ exp
[

1

2

∑
i6=j

{
−iki · kjG

ij
B − 2ki · εj∂jG

ij
B + iεi · εj∂i∂jG

ij
B

}]
, (7.3)

where k0 = p+ p′ and ε0 = 0. The two-point function GB(τ, τ ′) is obtained using the decomposition

rule described in subsection 3.d with a little modification. Namely, we can compute GB by connecting

both ends of an open scalar chain with a dummy photon propagator, and then pinching the photon

propagator by setting its Feynman parameter as α→ 0; see Fig.15 and eq.(1.7). Therefore, we find

using (3.55)

GB(τ, τ ′) = |τ − τ ′| −
[τ − (T − τ)− τ ′ + (T − τ ′)]2

4T

= |τ − τ ′| −
(τ − τ ′)2

T
(7.4)

and

∆ = T. (7.5)

The above two-point function coincides with G
(closed)
B , which is a reasonable result. Note, however,

that the integral measure dT differs from that of a closed scalar chain since the zeroth vertex is not

that of gauge interaction. Compare the discussion in the last paragraph in subsection 3.c.
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Figure 16: A set of two-loop diagrams with a φ4-operator insertion.

The second example is the set of diagrams in Fig.16. Also starting from eq.(7.2), we obtain

G(k, ε) = (2π)Dδ(
∑

ki) · i
2
(

1

4πi

)D
· (iλ)(ie)4

×
∫ ∞
0

dT1

∫ ∞
0

dT2 e
−im2(T1+T2)

∫ T1

0
dt1dt2

∫ T2

0
dt3dt4

×∆ exp
[

1

2

∑
i6=j

{
−iki · kjG

ij
B − 2ki · εj∂jG

ij
B + iεi · εj∂i∂jG

ij
B

}]
(7.6)

with k0 = p + p′ and ε0 = 0. This time the two-point function is obtained by sewing together two

scalar loops and pinching the photon propagator as in Fig.17. Thus,

GB(τ, τ ′) =


|τ − τ ′| − (τ−τ ′)2

T1
τ, τ ′ ∈ loop 1

τ − τ2

T1
+ τ ′ − τ ′2

T2
τ ∈ loop 1, τ ′ ∈ loop 2

|τ − τ ′| − (τ−τ ′)2

T2
τ, τ ′ ∈ loop 2

(7.7)

and

∆ = T1 T2. (7.8)

8 Conclusion

First of all, we conceive a set of diagrams connected by gauge transformation as an entity expressed

by a single path-integral. The point is to assign proper time to the set of diagrams along the

charge flow and also express each photon propagator by Feynman parameter integral in coordinate
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Figure 17: The two-point function GB(τ, τ ′) of the diagrams in Fig.16 can be obtained by sewing
together two one-loop diagrams by a dummy photon propagator and taking α→ 0.

space. This enables one to find a general path-integral expression for any set of diagrams starting

from the quantum field theory. At this stage, the resulting expression after integrating out x(τ) is

equivalent to the Feynman parameter integral formula. Simple rules for constructing the two-point

function (correlation function on the worldline) GB(τ, τ ′) ∼ 〈x(τ) x(τ ′)〉 for a general set of diagrams

is obtained.

Secondly, the path-integral expression allows us to use integration by parts technique both for ex-

ternal and internal gauge vertices. Manifestly gauge invariant form with respect to external photons

can be obtained before integrating over the proper time variables. Surface terms can be neglected

if the external scalars are on-shell. The integration by parts technique reduces the number of in-

dependent integrals, which can be interpreted as a non-trivial reshuffling of the original Feynman

diagrams.

We have extended former trials to derive Bern-Kosower-type rule from quantum field theory to

the general diagrams for scalar QED, in particular to the diagrams including external scalar particles.

We have shown clear correspondence to the conventional Feynman rule, which enabled us to avoid

any ambiguity coming from the infinite dimensionality of the path-integral approach.

The method for deriving the general path-integral expression in section 2 can be straightforwardly

extended to the case of spinor QED.
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Appendix A: Derivation of Eqs.(3.7) and (3.8)

We show how to integrate over xi’s in eq.(3.3):

I(α) ≡
∫

[dxi] exp

− i
4

n∑
i,j=1

xi · xj Aij(α) + i
n∑
i=1

ki · xi

 . (A.1)

First, insert the identity

1 =
∫
dDc δ

(
n∑
i=1

xi − c

)
, (A.2)

and shift all vertices as xµi → xµi + cµ/n. We have

I(α) =
∫

[dxi]
∫
dDc δ

(∑
xi
)

exp
[
−
i

4

∑
xi · xj Aij + i

∑
ki · xi +

i

n

∑
ki · c

]
(A.3)

= (2π)Dδ
(∑

ki
)
· nD

∫
[dxi] δ

(∑
xi
)

exp
[
−
i

4

∑
xi · xj Aij + i

∑
ki · xi

]
(A.4)

We may further shift xµi → xµi − y
µ/n:

I(α) = (2π)Dδ
(∑

ki
)
· nD

∫
[dxi] δ

(∑
xi − y

)
exp

[
−
i

4

∑
xi · xj Aij + i

∑
ki · xi

]
. (A.5)

It is independent of y. Again insert

1 = i

(
β

4πi

)D/2 ∫
dDy e−iβy

2/4, (A.6)

and integrate over y. Thus,

I(α) = (2π)Dδ
(∑

ki
)
· i

(
β

4πi

)D/2
nD

×
∫

[dxi] exp
[
−
i

4

∑
xi · xj A

′
ij + i

∑
ki · xi

]
, (A.7)

where A′ij = Aij + β. Now the zero-mode is removed. We may integrate over xi’s, and noting the

fact detA′ = nβ · det′A, we obtain eqs.(3.7) and (3.8) with Z = A′−1. (It is necessary to transform

Zij appropriately for obtaining Z in zero-diagonal level scheme; see Appendix B.)

Appendix B: Properties of Zab

Definition

32



For a given scalar QED diagram without seagull vertex, Zab is defined by

gµνZab ≡
(
−
i

4

)
∫

[dDxc] (xa − xb)
µ(xa − xb)

ν exp
[
−
i

4

∑
c,d

xc · xdAcd

]
∫

[dDxc] exp
[
−
i

4

∑
c,d

xc · xdAcd

] . (B.1)

On both sides of each vertex i dummy vertices i′ and i′′ are inserted as shown in Fig.6. Here, a, b, c, d

denote vertices including dummy vertices (i, i′, and i′′). The matrix A represents the topology of

the diagram, and is defined by

∑
c,d

xc · xdAcd ≡
∑
(cd)

(xc − xd)2

α(cd)

, (B.2)

where α(cd) denotes the Feynman parameter of the propagator connecting the vertices c and d.

Methods for Calculating Zab
†

In order to obtain Zab from the matrix A, first one may as well reduce the size of A by elimi-

nating all external vertices in the diagram (but a and/or b if it is external) using the associativity

property (1.8) of propagator K. Then, there are several ways to calculate Zab from the reduced A.

We exemplify two such methods here.

(Method 1) Let T be a matrix defined by

Tab = 1 for ∀a, b, (B.3)

and define Z ′ ≡ (A + βT )−1. Z ′ is well-defined as long as β 6= 0. Then Zab can be obtained using

(3.9) as

Zab = Z ′ab −
1

2
(Z ′aa + Z ′bb). (B.4)

Obviously the diagonal elements vanish. Z is independent of β so one may simplify calculation by

taking β →∞ after getting Z ′.

†Zab can also be computed using graph-theoretical formula[7].
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(Method 2) Let Ã be a submatrix of A obtained by deletion of the c-th row and c-th column.

One may choose any vertex c for this purpose. (This corresponds to fixing the coordinate of c to be

xc = 0 in eq.(B.1).) Ã can be inverted, so define

Z ′ab =


(Ã−1)ab for a, b 6= c

0 otherwise
. (B.5)

Then Zab can be obtained as

Zab = Z ′ab −
1

2
(Z ′aa + Z ′bb). (B.6)

Properties

Zab = Zba (B.7)

Zaa = 0 (B.8)

lim
u′i→+0

Zi′a = lim
u′′i→+0

Zi′′a = Zia (B.9)

lim
u′i→+0

Zi′a − Zia
u′i

= lim
u′i→+0

∂

∂u′i
Zi′a (B.10)

lim
u′′i→+0

Zia − Zi′′a
u′′i

= − lim
u′′i→+0

∂

∂u′′i
Zi′′a (B.11)

lim
u′i→+0

∂

∂u′i
Zi′i = lim

u′′i→+0

∂

∂u′′i
Zi′′i = −

1

2
(B.12)

lim
u′i→+0

u′j→+0

Zi′j′ − Zij′ − Zi′j + Zij

u′iu
′
j

=



lim
u′i→+0

u′j→+0

∂2

∂u′i∂u
′
j

Zi′j′ for i 6= j

∞ for i = j

(B.13)

(Proof)
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Eq.(B.9): Use eq.(1.7).

Eqs.(B.10) and (B.11): Use eq.(B.9).

Eq.(B.12):

lim
u′i→+0

∂

∂u′i
Zi′i = lim

u′i→+0

Zi′i − Zii
u′i

= lim
u′i→+0

Zi′i
u′i
. (B.14)

Then substituting the definition (B.1), the integrand will be

(x′i − xi)
µ(x′i − xi)

ν

u′i
exp

[
−
i

4

(x′i − xi)
2

u′i

]
= (x′i − xi)

µ 2i
∂

∂x′i ν
exp

[
−
i

4

(x′i − xi)
2

u′i

]

= −2i gµν exp
[
−
i

4

(x′i − xi)
2

u′i

]
, (B.15)

where in the last line we integrated by parts with respect to x′νi . Thus, the numerator will be

proportional to the donominator in (B.1).

Appendix C: Sample Calculation

In this appendix we apply the Bern-Kosower-type rule to calculation of the set of diagrams shown

in Fig.18. According to eq.(6.1), the Green function is given by

GS(k0, k2, k4, ε2) = (2π)Dδ
( 4∑
i=0

ki

)
·i
(

1

4πi

)D/2 1

2
(ie)3

×
∫ ∞
0

dα e−i(λ
2−i0)α

∫ ∞
0

dT e−i(m
2−i0)T

∫ T

0
dt1dt2dt3Kred, (C.1)

where λ is the photon mass. Kred is obtained from K in eq.(6.3) after the manipulation 1)-5):

Kred = ∆−D/2
[
−

4∑
i=0

kµi ∂1G
i1
B

4∑
j=0

kjµ∂3G
j3
B

4∑
l=0

ε′2 · kl∂2G
l2
B + i∂1∂2G

12
B

4∑
j=0

ε′2 · kj∂3G
j3
B

+i∂2∂3G
23
B

4∑
j=0

ε′2 · ki∂1G
i1
B + iD∂1∂3G

13
B

4∑
l=0

ε′2 · kl∂2G
l2
B

]
exp

[
−
i

2

∑
i6=j

ki · kjG
ij
B

]
. (C.2)

Here, we choose

ε′µ2 = εµ2 −
ε2 · k2

k2
2

kµ2 , (C.3)

so that ε′2 · k2 = 0.
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Figure 18: The set of diagrams calculated in Appendix C.

Now we integrate by parts with respect to t2:

Kred → ∆−D/2
[

(k0∂1G
01
B + k2∂1G

21
B + k4∂1G

41
B ) · (k0∂3G

03
B + k2∂3G

23
B + k4∂3G

43
B )

× ε′2 · (k0∂2G
02
B + k4∂2G

42
B )

−∂1G
12
B ε
′
2 · (k0∂3G

03
B + k4∂3G

43
B ) k2 · (k0∂2G

02
B + k4∂2G

42
B )

−∂3G
23
B ε
′
2 · (k0∂1G

01
B + k4∂1G

41
B ) k2 · (k0∂2G

02
B + k4∂2G

42
B )

+iD ∂1∂3G
13
B ε
′
2 · (k0∂2G

02
B + k4∂2G

42
B )
]

× exp[−i(k0 · k2G
02
B + k0 · k4G

04
B + k2 · k4G

24
B )] (C.4)

We do not integrate by parts with respect to t1 or t3; compare the discussion in subsection 4.c. The

delta function part in ∂1∂3GB corresponds to the tadpole diagrams (Fig.18(f)(g)).

Then we substitute the explicit forms of ∆, Gij
B, and their derivatives:

∆ = α+ |t3 − t1|, (C.5)

Gij
B = |ti − tj | −

[|ti − t1| − |ti − t3| − |tj − t1|+ |tj − t3|]2

4∆
, (C.6)
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∂jG
ij
B = −sign(ti − tj) +

1

2∆
[|ti − t1| − |ti − t3| − |tj − t1|+ |tj − t3|]

× [sign(tj − t1)− sign(tj − t3)], (C.7)

∂1∂3G
13
B = −2δ(t1 − t3) +

1

2∆
, (C.8)

where t0 = 0 and t4 = T . It is understood that sign(0) = 0 in eq.(C.7). Once the time ordering of t1,

t2, and t3 is fixed, we can transform the integral variables using eq.(3.33). The rest is same as the

usual Feynman parameter integral. We obtain, for example,

GS(t1 < t2 < t3) = (2π)Dδ(
∑

ki) · i
(

1

4πi

)D/2
(ie)3

[
i

k2
0 −m2

i

k2
4 −m2

]
×iε′2 · (k4 − k0)

[
(1− ω) I1 + ω I2 + (−i)−D/2 Γ(2− D

2
) I3

]
(C.9)

where ω = −k0 · k4/m
2 > 1, and

I1 =
∫ 1

0
dx
∫ 1−x

0
dy 2(1− 2x)(y2 − 2y)× [x2 + y2 + 2ωxy]−1

=
7

6

1

ω − 1
−

1
√
ω2 − 1

(
3

2
+

7

6

1

ω − 1

)
arccoshω (C.10)

I2 =
∫ 1

0
dx
∫ 1−x

0
dy (1− x− y)(x+ y − 2)2 ×

[
x2 + y2 + 2ωxy +

λ2

m2
(1− x− y)

]−1

= −
1

√
ω2 − 1

[
35

6
+ 2 log

λ2

m2

]
arccoshω +

8
√
ω2 − 1

∫ 1
2
arccoshω

0
dϕϕ tanhϕ (C.11)

I3 =
∫ 1

0
dx
∫ 1−x

0
dy

1

2
(1− x− y)× [m2(x2 + y2 + 2ωxy)]D/2−2

=
1

12
+
D − 4

4

(
−

11

18
+

1

6
log

m2

µ2
−

1

6

√
ω + 1

ω − 1
arccoshω

)
. (C.12)

We set the external scalars on-shell k2
0 = k2

4 = m2 except for the propagator factors in the above

expressions. GS for other time orderings can be calculated similarly. (See below.)

Finally, if we are interested in the vertex function, we should amputate the external scalars in the

above example. For this purpose, one should add the counter term for the wave function correction

first, which needs to be calculated separately. After adding the counter term and amputating the

external propagators, we find the vertex function at one-loop (for on-shell external scalars) to be

εµ2 Γ1-loop
µ (k0, k4) = −

e2

16π2
ε2 · (k4 − k0)

[
9

2(4−D)
−

9

4
(log

m2

4πµ2
+ γE) +

19

4

+
1

√
ω2 − 1

(
19

12
−

17

4
ω − 2ω log

λ2

m2

)
arccoshω

+
8ω

√
ω2 − 1

∫ 1
2
arccoshω

0
dϕϕ tanhϕ

]
. (C.13)
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