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selves. The traceless diagonal ETC generator commutes with TC and is normalized

as diag 1p
2N(N+1)

(1; � � � ; 1;�N). The e�ective ETC lagrangian can thus be written as

LETC = � 1p
2

NX
i=1

(X i;�
S JS;i;� +XS;i;�J

i;�
S )�XD;�J

�
D; (1)

where i is the technicolor index, andX i;�
S andXD;� stand for the sideways and diagonal

ETC bosons respectively. The sideways and diagonal ETC currents are given by

JS;i;� = gE;L �QiL
� L + gUE;R
�UiR
�tR + gDE;R

�DiR
�bR; (2)

J i;�S = (J�S;i)
y;

J�D =
1q

2N(N + 1)
gE;L( �QL


�QL �N � L

� L) (3)

+
1q

2N(N + 1)
gUE;R( �UR


�UR �N�tR

�tR)

+
1q

2N(N + 1)
gDE;R( �DR


�DR �N�bR
�bR);

where Q � (U;D) is the techniquark doublet,  � (t; b) is the quark doublet, and

summation over color (and technicolor) indices is implied.
To further simplify our analysis, we assume a technifermion mass spectrum11

where the weak scale is dominated by the nearly degenerate techniquarks, and where
the splitting between the lighter technileptons gives a negative contribution to the S

parameter. We therefore have v2 ' NCf
2
Q ' (250GeV)2, where NC = 3 is the number

of colors, and fQ is the Goldstone boson (GB) decay constant for the techniquark
sector. ETC corrections to the Zb�b vertex are similarly dominated by techniquarks.
For an estimate of the ETC correction to Rb, we only need to consider its contribution

to the left-handed Zbb coupling gbL.

2.1. Sideways ETC Exchange

The sideways ETC e�ects on Rb have been discussed previously4;5;6, and we brie
y

review the estimate for our one-family TC model. The relevant four-fermion operator
can be �rst Fierz-transformed into the product of a quark-current and a techniquark-
current,

LS4f = � g2E;L
2m2

XS

( �QL

� L)( � L
�QL)

�! � g2E;L
2m2

XS

1

2NC

3X
a=1

( � L
��a 
 13 L)( �QL

��a 
 13QL) + � � � ; (4)



where �a's are the Pauli matrices, 13 denotes the unit matrix in color space, and the

other pieces do not contribute to the Zb�b vertex.
The techniquark current can then be replaced by the corresponding sigma model

current12 below the TC chiral symmetry breaking scale,

�QL

��a 
 13QL ! i

f2Q
2
Tr(�y�a 
 13D

��)
�=1
= �g

c
Z�NCf

2
Q

Æ3a

2
+W�;� piece; (5)

where � is the 2NC by 2NC exponentiated Goldstone boson matrix transforming as
�! L�Ry under SU(2NC)L 
 SU(2NC )R, D�� is its electroweak covariant deriva-

tive, g is the SU(2)L gauge coupling, and c = cos �W (�W is the Weinberg angle). The
sideways ETC correction to gbL is obtained after substituting Eq. (5) into Eq. (4),

ÆgbL(sideways) =
g2E;Lf

2
Q

8m2
XS

: (6)

As this is opposite in sign to the standard model tree level value gbL = �1
2
+ 1

3
s2,

sideways ETC exchange decreases �b relative to the standard model prediction. Note
that Eq. (6) is directly related to the TC dynamics contributing to the weak scale,

and is not dependent on the low energy e�ective lagrangian approximation. The same
is true for Eq. (9).

2.2. Diagonal ETC Exchange

The diagonal ETC e�ect can be similarly analysed. We start with the dominant
four-fermion operator induced by 
avor-diagonal ETC boson exchange,

LD4f =
1

4m2
XD

1

N + 1
gE;L(g

U
E;R � gDE;R)( �QR�3


�QR)( � L
� L); (7)

where color and technicolor summation is implied. Below the TC chiral symmetry
breaking scale, the right-handed techniquark current is replaced by the corresponding
sigma model current

�QR�3 
 13

�QR ! i

f2Q
2
Tr(��3 
 13(D

��)y)
�=1
=

g

c
Z�

NCf
2
Q

2
: (8)

Substituting Eq. (8) into Eq. (7), we get the diagonal ETC correction to gbL,

ÆgbL(diagonal) ' � f2Q
8m2

XD

NC

N + 1
gE;L(g

U
E;R � gDE;R): (9)

In extended technicolor, masses of the t and b are given by mt � gE;Lg
U
E;R <

�UU > and mb � gE;Lg
D
E;R < �DD > respectively. We conclude from mt > mb that



gE;L(gUE;R � gDE;R) > 0. Contrary to a previous estimate7, diagonal ETC exchange

gives a negative correction to gbL and increases �b9.

2.3. Rb Constraint

The total ETC correction is obtained by combining Eqs. (6) and (9),

ÆgbL;ETC ' �f
2
Q

8
[
gE;L(gUE;R � gDE;R)

m2
XD

NC

N + 1
� g2E;L
m2
XS

] (10)

N=2' � v2

24m2
XS

[
m2
XS

m2
XD

gE;L(g
U
E;R � gDE;R)� g2E;L]:

The two contributions are seen to be comparable, and we have taken N = 2 above
as suggested by the experimental value of the S parameter. There are of course cor-
rections from pseudo-Goldstone-bosons (PGB's) that need to be taken into account.
These have been estimated for QCD-like TC8, and could be neglected in ETC models

with strong high momentum enhancement13.
A strong constraint can be obtained by simply requiring that the diagonal ETC

e�ect be as large as the e�ect seen at LEP. Denoting the generic ETC couplings by gE
and ETC boson masses by mETC, we have ÆgbL;ETC � �v2

24

g2
E

m2

ETC
from diagonal ETC.

This gives a positive correction to Rb,

ÆRb

Rb

' (1 �Rb)
2gbLÆg

b
L

gbL
2
+ gbR

2 � 0:9%� g2E
(mETC=TeV)2

; (11)

where the value s2 = 0:232 has been used. For this to agree with LEP measurement,
we need the ETC scale to be

g2E=m
2
ETC � (2 � 1)=TeV2: (12)

In strong ETC, this corresponds to mETC � 3 { 6 TeV assuming g2E=4�
2 ' 1, and

unlike QCD-like TC models4 there is no simple relation between Rb and mt
6.

3. The � Asymmetry

Due to the 1=(1 � 4s2) enhancement, A� is particularly sensitive to new physics.
For the assumed technifermion mass spectrum, the sideways ETC e�ect is negligible

compared to the diagonal ETC e�ect, and the ETC correction to the Z�� couplings
can be simply estimated,

Æg�L;ETC ' �f
2
Q

8

g�E;L(g
U
E;R � gDE;R)

m2
XD

NC

N + 1
(13)

Æg�R;ETC ' �f
2
Q

8

g�E;R(g
U
E;R � gDE;R)
m2
XD

NC

N + 1
(14)



where g�E;L and g�E;R are the ETC couplings for �L and �R respectively.

Assuming the ETC couplings are comparable (the fermion mass spectrum could
partly arise from the hierarchy in the technifermion condensates), and taking N = 2
and g2E=m

2
ETC � (2 � 1)=TeV2, we have Æg�L;ETC � Æg�R;ETC � �(5:0 � 2:5) � 10�3.

The ETC correction to A� is then

ÆA�=A� (ETC) � 0:28 � 0:14 (15)

Note that this could be signi�cantly reduced if � couples to the technifermion sector
at a higher ETC scale than the t quark. Assuming e, � universality, the experimental
value for ÆA�=A� can be extracted2 from lepton asymmetry measurements at LEP14,

ÆA�=A� (exp) = 0:14 � 0:10: (16)

It is seen that future lepton asymmetrymeasurements can have nontrivial implications
for the lepton sector in ETC.

4. The � Parameter

For the assumed technifermion mass spectrum in the one-family TC model, there
are contributions to the weak-interaction � parameter from the TC sector11, namely
from the technileptons and the PGBs. ETC interactions could also give a sizable

correction, and the most important ETC e�ect comes from the diagonal-ETC-induced
four-techniquark operator,

L��4f = � 1

16N(N + 1)

(gUE;R � gDE;R)
2

m2
XD

( �QR�3

�QR)( �QR�3
�QR); (17)

The leading contribution from this operator can be easily gotten by use of Eq. (8),

��ETC ' v2

8N(N + 1)

(gUE;R � gDE;R)
2

m2
XD

' 0:13%� (gUE;R � gDE;R)2
(mXD=TeV)

2
: (18)

And for (gUE;R � gDE;R)
2=m2

XD
� g2E=m

2
ETC � (2� 1)=TeV2, this gives a correction

��ETC � (0:26 � 0:13)% (19)

which is barely consistent with recent global �ts to data16. The ETC e�ect on the
S parameter is however, negligible compared to the TC contributions. We refer the
reader to ref. [3] for a more complete review on weak-isospin breaking in dynamical

electroweak symmetry breaking.

5. Conclusion

An ETC scale as low as g2E=m
2
ETC � (2 � 1)=TeV2 is required for diagonal ETC

to result in a correction to Rb as large as seen at LEP. This makes the diagonal ETC



contribution to the � parameter barely acceptable. Diagonal ETC could also give a

large and positive correction to A� if the � couples at the same low ETC scale as the
top quark.
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