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Abstract

The hierarchy of Integrable Spin Chain Hamiltonians, which are trigonometric analogs of the Haldane
Shastry Model and the associated higher conserved charges, is derived by a reduction from the trigonometric
Dynamical Models of Bernard-Gaudin-Haldane-Pasquier. The Spin Chain Hamiltonians have the property
of U ′

q(ĝl2)-invariance. The spectrum of the Hamiltonians and the U ′
q(ĝl2)-representation content of their

eigenspaces are found by a descent from the Dynamical Models.

0 Introduction

The Haldane Shastry Model [H,S] has been a subject of much attention in the past years. This Model is
a version of the XXX Heisenberg Spin Chain where spins interact with a potential inversely proportional to
the squared distance between the spins. Like the XXX Chain with nearest-neighbour interaction, the Haldane
Shastry Model is Integrable in the sense that its Hamiltonian is a member of a family of mutually commuting,
independent Integrals of Motion. The Haldane Shastry Model, however, has been solved in much greater detail
than the nearest-neighbour XXX Model. The reason for this is a remarkably large algebra of symmetries found
in the former Model. For the Haldane Shastry Spin Chain with the spins taking values in the fundamental
representation of gln the symmetry algebra is the gln-Yangian. This infinite-dimensional algebra of symmetries
facilitated computation of explicit expressions for the energy levels and the eigenvectors! [HHTBP,BPS,H2].
Some of the corre

lation functions have been found as well [HZ].
An important reason for the attention attracted by the Haldane Shastry Model is the fractional statistics

exhibited by elementary excitations over the antiferromagnetic ground state present in this Model [H2]. In the
case of gl2-Haldane Shastry Chain these excitations are spin-1/2 particles that are “semions” – particles with
statistics exactly half-way between bosons and fermions in the sense of Haldane. Being exactly solvable the
Haldane Shastry Model provides a valuable laboratory for a study of physical implications of the fractional
statistics.

A remarkable connection exists between the Haldane Shastry Spin Chain in the limit of infinite number of
sites and WZNW Conformal Field Theory at level 1 [BPS2,BLS]. This connection has led to a novel description
of the space of states in WZNW level-1 CFT, where the states are organized into irreducible multiplets of
Yangian symmetry algebra inhereted from the Haldane Shastry Model. This, in turn, provided an explanation
for the Fermionic Virasoro character formulas for the level-1 integrable representations of ŝl2 that were earlier
derived by [DKKMM].

In the paper [BGHP] it was realized that the Haldane Shastry Spin Chain is related to a more general
class of Integrable Models – the so-called Dynamical Models that describe quantum particles with spin moving
along a circle. These Dynamical Models can be thought of as generalzations of the Calogero-Sutherland Model
with inverse squared sine potential. The precise way in which the Haldane Shastry Hamiltonian and associated
higher conserved charges are obtained from the hierarchy of Dynamical Models was recently explained by
Polychronakos in [P], and by Talstra and Haldane in [TH]. In the last paper the authors have shown how the
hierarchy of Integrable Spin Models including the Haldane Shastry Model appears in the static limit of the
Dynamical Models in which the coordinates of the particles are “frozen” along the circle in an equidistantly
spaced lattice.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25183692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In the present paper we define trigonometric counterparts of the spin-1/2 Haldane Shastry Hamiltonian
and the associated higher conserved charges. The hierarchy of Integrable Spin Chain Hamiltonians that we
obtain has an infinite-dimensional symmetry algebra U ′q(ĝl2) that takes over the role played by the Yangian
in the Haldane Shastry Model. We compute the eigenvalue spectrum of the hierarchy and find that it has an
additive, particle-like form. The space of states is decomposed into eigenspaces of the operators that form the
hierarchy. Each of the eigenspaces is a highest-weight irreducible representation of U ′q(ĝl2) parametrized by a
sequence of integers –“magnon quasimomenta” or a “motif” in terminology of [HHTBP,BPS]. The eigenvalue
that corresponds to such eigenspace is a q-deformation of the eigenvalue of the Haldane Shastry Hamiltonian
parametrized by the same magnon quasimomenta.

The procedure that is used to derive the trigonometric hierarchy has been inspired by the Talstra-Haldane
approach – we extract the Integrable Spin Models from a static limit of the trigonometric U ′q(ĝl2)-invariant
Dynamical Models that were defined in [BGHP]. The spectrum of the Spin Models is obtained by a descent
from the spectrum of these Dynamical Models.

0.1 A survey of the method and results

In this subsection we highlight the main steps of the procedure that is used to define the trigonometric hierarchy
of Integrable Spin Models and formulate the results of this article. The details and proofs of the statements are
contained in the main body of the paper starting with sec.1.

We derive the hierachy of trigonometric Spin Models by a two-step reduction from the trigonometric Dy-
namical Models that were introduced in [BGHP]. First of all we recall the definition of these trigonometric
Dynamical Models.

0.1.1 Trigonometric Dynamical Models of [BGHP]

The trigonometric Dynamical Models are defined starting with two representations of the finite-dimensional
Hecke Algebra HN (q) (Cf. 1.1). The first of these representations is defined in the ring of polynomials in
N variables C[z1, . . . , zN ]. The generators gi,i+1 (i = 1, . . . , N − 1) of HN (q) in this representation have the
following form

gi,i+1 :=
q−1zi − qzi+1

zi − zi+1
(Ki,i+1 − 1) + q (i = 1, . . . , N − 1). (0.0.1)

Where Ki,j is the exchange operator for variables zi, zj .
The second representation of HN (q) is defined in the N -fold tensor product of two-dimensional vector spaces
H := V ⊗N , V := C2 = C{v+, v−}. The Hecke generator ti,i+1 (i = 1, . . . , N − 1) is a matrix acting in H
according to the formula

ti,i+1 = I ⊗ · · · ⊗ I ⊗ t
i,i+1

⊗ I ⊗ · · · ⊗ I (i = 1, . . . , N − 1), (0.0.2)

where t is the matrix which acts in V ⊗ V :

tv+ ⊗ v− = (q − q−1)v+ ⊗ v− + v− ⊗ v+ (0.0.3)
tv− ⊗ v+ = v+ ⊗ v− (0.0.4)
tv± ⊗ v± = qv± ⊗ v±. (0.0.5)

The two of these representations naturally extend to C[z1, . . . , zN ]⊗H .
The Hecke representation generated by gi,i+1 (i = 1, . . . , N−1) is enlarged to a representation of the Affine

Hecke Algebra ĤN (q) by adjoining affine generators Yi (i = 1, . . . , N) :

Yi := g−1
i,i+1Ki,i+1 . . . g

−1
i,NKi,Np

DiK1,ig1,i . . .Ki−1,igi−1,i. (0.0.6)

Where p is a c-number , Di := zi
∂

∂zi
and

gi,j :=
q−1zi − qzj

zi − zj
(Ki,j − 1) + q (i, j = 1, . . . , N − 1). (0.0.7)
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After introducing the objects just described the authors of [BGHP] define the hierarchy of Dynamical
Models. The operators ∆(n) (n = 1, . . . , N) that constitute the hierarchy are coefficients of the polynomial
∆(u) =

∑N
n=0 u

n∆(n) which generates elementary symmetric functions of Y1, Y2, . . . , YN :

∆(u) :=
N∏

i=1

(1 + uYi). (0.0.8)

Due to the mutual commutativity of the operators Y1, Y2, . . . , YN the hierachy of Dynamical Models is integrable:

[∆(u),∆(v)] = 0. (0.0.9)

In the space C[z1, . . . , zN ] ⊗ H one defines a representation of the algebra U ′q(ĝl2) (Cf. 1.2). In this
representation the generators of U ′q(ĝl2) are obtained by expanding in the parameter u the monodromy matrix
Ta(u) which is defined in a standard way as a product of elementary L-operators [BGHP]:

Ta(u) := La1(uY1)La2(uY2) . . . LaN (uYN ). (0.0.10)

Where the elementary L-operator Lai(uYi) (i = 1, . . . , N) acts in the tensor product of an auxiliary copy of
the two-dimensional vector space denoted by Va and the space C[z1, . . . , zN ]⊗H :

Lai(uYi) :=
uYita,i − t−1

a,i

uYi − 1
Pa,i (i = 1, . . . , N). (0.0.11)

Here P is the permutation operator in V ⊗ V and ta,i , Pa,i are the usual extensions of t , P as operators in
Va ⊗H . The fact that Ta(u) defines a representation of U ′q(ĝl2) follows from the RTT = TTR relation which
involves the trigonometric R-matrix:

R̄ab(u/v)Ta(u)Tb(v) = Tb(v)Ta(u))R̄ab(u/v), (0.0.12)

R̄(z) :=
zt− t−1

qz − q−1
P. (0.0.13)

The hierarchy of Dynamical Models defined by ∆(u) is U ′q(ĝl2)-invariant, that is

[∆(u), Ta(v)] = 0. (0.0.14)

This again follows from the mutual commutativity of the operators Y1, Y2, . . . , YN .
Both ∆(u) and Ta(u) act in the “bosonic” subspace of C[z1, . . . , zN ] ⊗ H as explained in [BGHP]. This

subspace which we denote by B is defined by the requirement of the Hecke-invariance:

B := {b ∈ C[z1, . . . , zN ]⊗H |(gi,i+1 − ti,i+1)b = 0 (i = 1, . . . , N − 1)}. (0.0.15)

In any operator O acting in B one can eliminate the coordinate exchange operators Ki,j by carrying them
one-by-one to the right of any expression in O and replacing a Ki,j standing on the right of an expression in
accordance with the rule: gi,i+1 → ti,i+1 (i = 1, . . . , N−1). This leads to a uniquely defined operator Ô which
does not contain coordinate permutations, such that

OB = ÔB. (0.0.16)

Where the notation means that the equality holds for any vector in B.
With this definition the eq. (0.0.9,.12,.14) lead to

[∆̂(u), ∆̂(v)]B = 0, (0.0.17)

[∆̂(u), T̂a(v)]B = 0, (0.0.18)

(R̄ab(u/v)T̂a(u)T̂b(v)− T̂b(v)T̂a(u)R̄ab(u/v))B = 0. (0.0.19)

The set of relations (0.0.17-.19) constitutes the result of [BGHP] concerned witn the trigonometric Dynamical
Models.
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0.1.2 The hierarchy of trigonometric Dynamical Models at p = 1

The first step of reduction from the Dynamical to the Spin Models consists in taking the static limit p → 1
in the construction described in the previous subsection. Following the idea of [TH] we expand the generating
function for the commuting charges of the hierarchy around the point p = 1 up to the linear term in p− 1:

∆(u) = ∆0(u) + (p− 1)∆1(u) +O((p− 1)2). (0.0.20)

In the symmetry generator Ta(u) we retain the leading term only:

Ta(u) = T 0
a (u) +O(p − 1). (0.0.21)

The operators ∆0(u) and ∆1(u) turn out to have a very special form. First of all ∆0(u) is a constant :

∆0(u) =
N∏

i=1

(1 + uq2i−N−1). (0.0.22)

(Remark In the paper [TH] which deals with the rational case, the leading term of the generating function

∆rational(u) :=
N∏

i=1

(u− di),

(di := hDi +
∑
j>i

zi

zi − zj
Ki,j −

∑
j<i

zj

zj − zj
Ki,j (i = 1, . . . , N))

in the static limit h → 0 is not a constant but a function of z1, . . . , zN . This is due to a choice of the Dunkl
operators di (above) which do not act in the space of polynomials. The rational limit of the affine Hecke
generators Yi which we use gives the gauge transformed Dunkl operators acting in the space of polynomials (
Cf. [BGHP]).)

Since ∆0(u) is a constant, the first-order differential operator ∆1(u) takes over the role of the generating
function for Integrals of Motion:

[∆1(u),∆1(v)] = 0, (0.0.23)

[∆1(u), T 0
a (v)] = 0. (0.0.24)

Secondly, we find that ∆1(u) has the following structure:

∆1(u) =
N∑

i=1

θ(u; z)iDi + Ξ(u; z). (0.0.25)

Where Ξ(u; z) is a function of the operators z1, . . . , zN and Ki,j (i, j = 1, . . . , N) only. On the other hand
the coefficients θ(u; z)i do not depend on the operators of coordinate permutation and are functions of the
coordinates z1, . . . , zN (i = 1, . . . , N) only. This kind of separation of the differentials Di and the operators
of coordinate permutation was first observed by [TH] in the rational case.

For the differential part D(u) :=
∑N

i=1 θ(u; z)iDi of ∆1(u) we obtain an explicit expression in terms of the
generating function D(u; p, t) for the Macdonald operators [M],[JKKMP] (Cf. 2.1):

D(u) = D1(qN−1u; q−2). (0.0.26)

Where D1(u; t) is the linear term in the expansion of the generating function D(u; p, t) around the point p = 1 :

D(u; p, t) = ∆0(u; t) + (p− 1)D1(u; t) +O((p − 1)2). (0.0.27)

The zero-order part Ξ(u; z) of the differential operator ∆1(u) is the object which we use to define the
hierarchy of Integrable Spin Models.

First of all we observe that ∆1(u) lies in the centre of the Affine Hecke Algebra generated by gi,i+1 (i =
1, . . . , N − 1) and yi := Yi|p=1 (i = 1, . . . , N). Therefore ∆1(u) acts in the bosonic subspace B defined in the
previous subsection, and in this subspace we have analogs of the relations (0.0.17,-.19):

[∆̂1(u), ∆̂1(v)]B = 0, (0.0.28)

[∆̂1(u), T̂ 0
a (v)]B = 0, (0.0.29)

(R̄ab(u/v)T̂ 0
a (u)T̂ 0

b (v)− T̂ 0
b (v)T̂ 0

a (u)R̄ab(u/v))B = 0. (0.0.30)
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The operator ∆̂1(u) is a sum of two parts: the D(u) which is a first order differential operator and Ξ̂(u; z) which
is a matrix acting on H whose entries are rational functions of the coordinates z1, . . . , zN . At the second step of
the reduction from the Dynamical Models to the Spin Models we shall eliminate the differential part of ∆̂1(u)
by restricting the coordinates to special values in a way which leaves the Integrability and the U ′q(ĝl2)-invariance
intact.

0.1.3 Definition of the hierarchy of trigonometric Spin Models

The way to “freeze” the coordinates while keeping the spins as dynamical variables goes trough the use of the
evaluation map Ev(v) : C[z1, . . . , zN ] ⊗ H 7→ H . This map is parametrized by complex numbers v1, . . . , vN

and works by taking values of functions of z1, . . . , zN at the point z1 = v1, . . . , zN = vN . We use this map at
the special point z = ω : z1 = ω1, . . . , zN = ωN where ω = e2πi/N .

In order to explain the relevance of this point we first of all observe, that at this point the coefficients of the
differential operator D(u) are all equal one to another:

θ(u;ω)i = θ(u) (i = 1, . . . , N). (0.0.31)

Where the constant θ(u) is given by eq. (2.2.26) in the main text. Next, we observe, that in the expansion of

∆̂1(u) in u: ∆̂1(u) :=
∑N

n=1 u
n∆̂(n)

1 the term
ˆ

∆(N)
1 is the scale operator: ∆̂(N)

1 = D1 +D2 + · · ·+DN . We can
modify the generating function ∆̂1(u) by subtracting from it the product of the constant θ(u) and the operator
∆̂(N)

1 . The equations (0.0.28 -.30) clearly still hold for this modified generating function ∆̂1(u) − θ(u)∆̂(N)
1 .

Moreover due to (0.0.31) for any vector b ∈ B we have:

Ev(ω)(∆̂1(u)− θ(u)∆̂(N)
1 )b = Ev(ω)Ξ̂(u; z)b. (0.0.32)

The map Ev(ω) naturally pulls through the operators Ξ̂(u; z) and T̂ 0
a (u) since these operators are matrices

acting in H , and the entries of these matrices are rational functions of z ≡ (z1, . . . , zN) non-singular at the
point z = ω. By pulling Ev(ω) through Ξ̂(u; z) and T̂ 0

a (u) we define operators Ξ(u;ω) and T 0
a (u;ω) acting in

the image of Ev(ω) in H by :

Ev(ω)Ξ̂(u; z)B = Ξ(u;ω)Ev(ω)B, (0.0.33)

Ev(ω)T̂ 0
a (u)B = T 0

a (u;ω)Ev(ω)B. (0.0.34)

Taking (0.0.31) and (0.0.33,.34) into account we apply the evaluation map to the relations (0.0.28 - .30) and
get:

[Ξ(u;ω),Ξ(v;ω)]HB(ω) = 0, (0.0.35)

[Ξ(u;ω), T 0
a (v;ω)]HB(ω) = 0, (0.0.36)

(R̄ab(u/v)T 0
a (u;ω)T 0

b (v;ω)− T 0
b (v;ω)T 0

a (u;ω)R̄ab(u/v))HB(ω) = 0. (0.0.37)

Where HB(ω) := Ev(ω)B ⊂ H.

Next, we prove, that HB(ω) = H .Therefore the relations (0.0.35 -.37) express Integrability and U ′q(ĝl2)-
invariance of the hierarchy of Spin Chain Models. The Hamiltonians of these Models act in H and are obtained
by expanding the generating function Ξ(u;ω) in the parameter u:

Ξ(u;ω) =
N−1∑
n=1

unΞ(n)(ω). (0.0.38)

While the generating function Ξ(u;ω) is completely defined by the relation (0.0.25), the computation of an
explicit expression is still quite a difficult task. We have computed the explicit expression only for the first
member of the hierarchy – the operator Ξ(1)(ω). To give this expression we introduce several notations. For
i 6= j ∈ {1, . . . , N − 1} define the rational functions:

ai,j :=
q−1zi − qzj

zi − zj
, bi,j :=

(q − q−1)zi

zi − zj
. (0.0.39)
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Define also the matrices:

Yi,i+1(w) :=
wti,i+1 − t−1

i,i+1

qw − q−1
,

M (j,i)(x, y) := (Yi+1,i+2(y/zi+1) . . . Yj−1,j(y/zj−1))
−1
Yi,i+1(x/y)×

× (Yi+1,i+2(x/zi+1) . . . Yj−1,j(x/zj−1)) (j > i).

With these notations we have:

Ξ(1)(ω) =
N∑

M=2

(−1)M

(q − q−1)

∑
N≥iM >···>i1≥1

H(ω)iM ,iM−1,...,i1R(ω)i2,i1R(ω)i3,i2...R(ω)iM ,iM−1 + cI;

H(z)iM ,iM−1,...,i1 :=

 ∏
i1<f<i2

ai1,f

 ∏
i2<f<i3

ai2,f

 . . .

 ∏
iM <f<N+i1

aiM ,f( mod N)

×

× biM ,iM−1biM−1,iM−2 . . . bi2,i1bi1,iM ,

R(z)j,i := M (j,i)(ziM , zi) (N ≥ j > i ≥ 1). (0.0.40)

Where c is unimportant constant. In the limit q → 1 we recover the Haldane Shastry Hamiltonian:

lim
q→1

Ξ(1)(ω)
(q − q−1)

= HHS := −
∑

N≥j>i≥1

ωiωj

(ωi − ωj)2
(Pi,j − 1). (0.0.41)

While the Hamiltonian Ξ(1)(ω) looks rather intimidating, its spectrum, as well as the spectrum of the whole
hierarchy generated by Ξ(u;ω) has a remarkably simple additive form. We describe this spectrum in the next
subsection.

0.1.4 Eigenvalue spectrum of the hierarchy of Spin Hamiltonians

As in the case of the Haldane Shastry Model the common eigenspaces of the operators Ξ(n)(ω) (n = 1, . . . , N−
1) are in one-to-one correspondence with sl2 motifs (Cf. [HHTBP] or [BPS]). A sequence of integers (m1,m2, . . . ,mM )
is called an sl2 motif iff :

1 ≤ m1 < m2 < · · · < mM ≤ N − 1 ; (0.0.42a.)
mi+1 −mi ≥ 2 (i = 1, . . . ,M − 1). (0.0.42b.)

For a fixed N we denote the set of all sl2 motifs including the empty one by MN . For the eigenspace of Ξ(u;ω)
which correspons to a motif (m1,m2, . . . ,mM ) we use the notation H(m1,m2,...,mM )

B (ω). We have:

Ξ(u;ω)H(m1,m2,...,mM)
B (ω) =

(
M∑
i=1

ξ(mi)(u)

)
H

(m1,m2,...,mM)
B (ω). (0.0.42)

Where the sum is understood to be zero for M = 0.
The elementary eigenvalue ξ(m)(u) (m ∈ {1, . . . , N − 1}) is

ξ(m)(u) = u

N∏
k=1

(1 + uq2k−N−1)

{
m∑

i=1

q2i−N−1

1 + uq2i−N−1
− m

N

N∑
i=1

q2i−N−1

1 + uq2i−N−1

}
. (0.0.43)

In particular the elementary eigenvalue of the Hamiltonian Ξ(1)(ω) is given by

ξ(m),(1) =
q−N

N
(Nqm[m]q −mqN [N ]q). (0.0.44)

Where we used the usual notation [x]q ≡ qx−q−x

(q−q−1) . In the limit q → 1 we recover the elementary eigenvalue of
the Haldane Shastry Model [HHTBP,BPS]:

lim
q→1

ξ(m),(1)

(q − q−1)
= m(m−N). (0.0.45)
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The space of states of the Spin Models is represented as a direct sum of the eigenspaces H(m1,m2,...,mM )(ω):

H =
⊕

(m1,m2,...,mM )∈MN

H
(m1,m2,...,mM )
B (ω). (0.0.46)

0.1.5 Structure of the common eigenspaces of the hierarchy of Spin Hamiltonians.

Each of the eigenspaces H(m1,m2,...,mM)
B (ω) is an irreducible highest-weight representation of U ′q(ĝl2). The

Drinfeld polynomial [CP] Q(m1,m2,...,mM)(u) of H(m1,m2,...,mM)
B (ω) is

Q(m1,m2,...,mM )(u) =
∏

1≤k≤N
k 6∈{mi,mi+1}

(1 − q−2k+N+1u). (0.0.47)

(Cf. 1.2 for our conventions about Drinfeld polynomials ).
To describe an eigenspace H(m1,m2,...,mM)

B (ω) (m1,m2, . . . ,mM ) ∈ MN in a more explicit way we give some
facts (Cf. 4.1) about eigenvectors of the operator ∆1(u) which defines the hierarchy of Dynamical Models at
p = 1.

The linear space of polynomials C[z1, . . . , zN ] is represented as a direct sum of eigenspaces of the operator
∆1(u). There is a one-to-one correspondence between these eigenspaces and partitions with N parts. In an
eigenspace which corresponds to a partition λ := (λ1 ≥ λ2 ≥ . . . λN ≥ 0) there exists a basis {ϕλ

σ(z)}σ∈Sλ
N

.
The polynomials forming this basis are indexed by elements from symmetric group SN . There is a one-to-one
correspondence between the elements of the basis {ϕλ

σ(z)}σ∈Sλ
N

and elements of the set Sλ
N (Sλ

N ⊂ SN) defined
in 1.4. A polynomial ϕλ

σ(z) (σ ∈ Sλ
N ) is completely specified by the three conditions:

∆1(u)ϕλ
σ(z) =

(
N∏

k=1

(1 + uq2k−N−1)

{
N∑

i=1

uq2i−N−1

1 + uq2i−N−1
λi

})
ϕλ

σ(z), (0.0.48a.)

yiϕ
λ
σ(z) = q2σi−N−1ϕλ

σ(z) (i = 1, . . . , N), (0.0.48b.)

ϕλ
σ(z) = z

λσ1
1 z

λσ2
2 . . . z

λσN

N + smaller monomials. (0.0.48c.)

We remind, that yi := Yi|p=1 (i = 1, . . . , N).
The “smaller monomials “ means a linear combination of monomials that are smaller than the monomial
z

λσ1
1 z

λσ2
2 . . . z

λσN

N in the ordering described in 1.4(2) (Cf. [BGHP]).
With any motif (m1,m2, . . . ,mM ) ∈ MN associate the partition

(M
1
, . . . ,M

m1
,M − 1

m1+1
, . . . ,M − 1

m2

,M − 2
m2+1

, . . .

. . . , 1
mM

, 0
mM+1

, . . . , 0
N

) (0.0.48)

We use the same notation (m1,m2, . . . ,mM ) for a motif and the associated partition.
For an element σ of the symmetric group SN define

{σ1, σ2, . . . , σN} := σ.{1, 2, . . . , N} ; (0.0.49a.)
i := σpσ

i
(i = 1, . . . , N). (0.0.49b.)

For any (m1,m2, . . . ,mM ) ∈ MN define the subset S(m1,m2,...,mM)
N,(m1,m2,...,mM) of SN (Cf. 4.3(2)):

S
(m1,m2,...,mM )
N,(m1,m2,...,mM ) := {

σ ∈ SN
pσ

i < pσ
i+1 (mk < i < mk+1) for all k ∈ {0, 1, . . . ,M}

pσ
mk

> pσ
mk+1 for all k ∈ {1, . . . ,M − 1}

}
. (0.0.49)

Where we adopt the convention: m0 := 0 ,mM+1 := N + 1.
Next, for any motif (m1,m2, . . . ,mM ) ∈ MN we define the subspace W (m1,m2,...,mM) of the space of states

H (Cf. 6.1(2) ) as follows:

W (m1,m2,...,mM) :=
Sq(V

1
⊗ · · · ⊗ V

m1−1
)⊗Aq(V

m1
⊗ V

m1+1
)⊗ Sq( V

m1+2
⊗ · · · ⊗ V

m2−1
)⊗Aq(V

m2
⊗ V

m2+1
)⊗ . . .

. . .⊗ Sq( V
mM−1+2

⊗ · · · ⊗ V
mM−1

)⊗Aq( V
mM

⊗ V
mM+1

)⊗ Sq( V
mM+2

⊗ · · · ⊗ V
N

)

W (m1,m2,...,mM ) ⊂ H := V
1
⊗ V

2
⊗ . . . V

N
. (0.0.50)
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Where Sq and Aq mean q-symmetrization and q-antisymmetrization as defined in (1.1.14,.15,5.5.17). The
space W (m1,m2,...,mM ) (m1,m2, . . . ,mM ) ∈ MN is an irreducible highest weight U ′q(ĝl2)-module. The Drinfeld
polynomial of this module is given by (0.0.47). The U ′q(ĝl2)-action on W (m1,m2,...,mM ) is given by

L(u; {q2σ[0]i−N−1}) := La1(uq2σ[0]1−N−1)La2(uq2σ[0]2−N−1) . . . LaN(uq2σ[0]N−N−1).
(0.0.51)

Where for a fixed (m1,m2, . . . ,mM ) we have introduced the notation

σ[0] := (m1,m1 + 1)(m2,m2 + 1) . . . (mM ,mM + 1) ∈ S(m1,m2,...,mM )
N,(m1,m2,...,mM ) ⊂ SN . (0.0.52)

The eigenspace H(m1,m2,...,mM)
B (ω) ((m1,m2, . . . ,mM ) ∈ MN ) is isomorphic to W (m1,m2,...,mM ) as U ′q(ĝl2)-

module. This isomorphism is given by an invertible intertwiner Ǔ(m1,m2,...,mM )(ω)

H
(m1,m2,...,mM )
B (ω) = Ǔ(m1,m2,...,mM )(ω)W (m1,m2,...,mM ). (0.0.53)

The intertwiner Ǔ(m1,m2,...,mM )(ω) is defined by the expression

Ǔ(m1,m2,...,mM )(ω) := (−(q2 + 1))M
∑

σ∈S
(m1,m2,...,mM )
N,(m1,m2,...,mM )

ϕ(m1,m2,...,mM )
σ (ω)Y(σ). (0.0.54)

In this definition

ϕ(m1,m2,...,mM )
σ (ω) = ϕλ

σ(z)|z1=ω1,...,zN=ωN . (0.0.55)

Where the partition λ is the one specified by (m1,m2, . . . ,mM ) in accordance with (0.0.48). The matrix
Y(σ) (σ ∈ S(m1,m2,...,mM )

N,(m1,m2,...,mM)) is an intertwiner which is defined by the recursion relations (Cf. 5.2(4) ):

Y(σ[0]) := Id ,

Y((i, i+ 1)σ) :=

{
Y +

i,i+1(q
2σi−2σi+1)Y(σ) if σi − σi+1 ≥ 2,

Y −i,i+1(q
2σi−2σi+1)Y(σ) if σi − σi+1 ≤ −2 .

Where the matrices Y ±i,i+1(w) are

Y ±i,i+1(w) := %±(w)
wti,i+1 − t−1

i,i+1

q−1w − q
, (0.0.56)

%+(w) :=
w − 1
q2w − 1

, %−(w) :=
w − q2

w − 1
.

Notice that Y(σ) (σ ∈ S(m1,m2,...,mM )
N,(m1,m2,...,mM )) is an invertible intertwiner.

In general we cannot claim to know the explicit expression for the intertwiner Ǔ(m1,m2,...,mM )(ω) since we have
not found the eigenvectors ϕ(m1,m2,...,mM )

σ (z) explicitely. One exception is the case q = 0 when Ǔ(m1,m2,...,mM )(ω)
becomes very simple. In this case we have

Ǔ(m1,m2,...,mM ),q=0(ω)|W (m1 ,m2,...,mM ),q=0 = ω
1
2

∑M

i=1
mi(mi+1)Id. (0.0.57)

Therefore at q = 0 the eigenspace H(m1,m2,...,mM )
B (ω) is the linear span of the following vectors in H :∣∣∣∣∣∣∣∣∣∣∣∣



1
+ + + . . .

m1−1
+

− + + . . . +
− − + . . . +
...

...
...

...
− − − . . . −


m1
+

m1+1−



m1+2
+ + + . . .

m2−1
+

− + + . . . +
− − + . . . +
...

...
...

...
− − − . . . −


m2
+

m2+1− . . .

. . .
mM

+
mM+1−



mM+2
+ + + . . .

N
+

− + + . . . +
− − + . . . +
...

...
...

...
− − − . . . −


〉
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Where we use the notation:

|ε1ε2 . . . εN〉 := vε1 ⊗ vε2 ⊗ · · · ⊗ vεN (εi = ±). (0.0.58)

For example when N is even, H(1,3,...,N−1)
B (ω) is one-dimensional and at q = 0 it is spanned by the vector

(antiferromagnetic ground state):

|+−+− · · ·+−〉

In the rest of the paper we give a detailed exposition of the matters which were briefly recounted in this
introduction. In the sec.1 we gather predominantly known facts about the trigonometric Dynamical Models
of [BGHP] and explain the conventions about the algebra U ′q(ĝl2) that we use. In the sec. 2 we discuss the
hierarchy of Dynamical Models in the static limit p = 1. In the sec. 3 we define the hierarchy of the Spin
Models. The sec. 4. is concerned with properties of the eigenvectors of the hierarchy of Dynamical Models in
the limit p = 1. In the sec. 5 we construct the Hecke-invariant “bosonic” eigenspaces for the Dynamical Models
with spin at p = 1. The eigenvalue spectrum of the Spin Models and the U ′q(ĝl2)-representation content of their
eigenspaces are derived in sec. 6.

Acknowledgments
I am most grateful to Drs. R. Kedem and R. Weston and to Professors M.Jimbo, M.Kashiwara and T.Miwa for
numerous discussions and support.

1 The U ′
q(ĝl2)-invariant Dynamical Models

In this section we summarize largely known facts about the trigonometric Dynamical Models defined by [BGHP].
We also recount several facts about the algebra U ′q(ĝl2) and explain our notations.

1.1 The representations of the Affine Hecke Algebra

1.1.1 The representation of ĤN (q) in the space of polynomials

Following [BGHP] define the operators gi,j ∈ End(C[z1, . . . , zN ]) (i, j = 1, . . . , N):

gi,j := ai,jKi,j + bi,j

where

ai,j =
q−1zi − qzj

zi − zj
, bi,j =

(q − q−1)zi

zi − zj
= q − ai,j .

Ki,j is the interchange operator for variables zi, zj.
For p ∈ C and Di := zi

∂
∂zi

define operators Yi ∈ End(C[z1, . . . , zN ])(i = 1, . . . , N):

Yi := g−1
i,i+1Ki,i+1 . . . g

−1
i,NKi,Np

DiK1,ig1,i . . .Ki−1,igi−1,i (1.1.1)

Taken together with gi,i+1 (i = 1, . . . , N − 1) these operators satisfy the relations of the Affine Hecke Algebra
ĤN (q) [BGHP] :

g2
i,i+1 = (q − q−1)gi,i+1 + 1 (1.1.2)

gi,i+1gk,k+1 = gk,k+1gi,i+1 , |i− k| ≥ 2 (1.1.3)
gi,i+1gi+1,i+2gi,i+1 = gi+1,i+2gi,i+1gi+1,i+2 (1.1.4)

Ykgi,i+1 = gi,i+1Yk , k 6= i, i+ 1 (1.1.5)
gi,i+1Yi = Yi+1g

−1
i,i+1 (1.1.6)

YiYj = YjYi . (1.1.7)

Any symmetric polynomial in Yi (i = 1, . . . , N) belongs to the center of ĤN (q). All symmetric polynomials
in Yi (i = 1, . . . , N) are generated by the elementary symmetric polynomials which are obtained by expanding
in the parameter u the generating function ∆(u) :

∆(u) =
∏

(i=1,...,N)

(1 + uYi) (1.1.8)
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1.1.2 The representation of the Hecke Algebra HN (q) in (C2)⊗N

Let V := C2 = span{v+, v−}. Define t ∈ End(V ⊗ V ) by

tv+ ⊗ v− = (q − q−1)v+ ⊗ v− + v− ⊗ v+ (1.1.9)
tv− ⊗ v+ = v+ ⊗ v− (1.1.10)
tv± ⊗ v± = qv± ⊗ v± (1.1.11)

The operators Π±(q):

Π+(q) :=
q−1 + t

q + q−1
(1.1.12)

Π−(q) :=
q − t

q + q−1
(1.1.13)

are orthogonal projectors on the subspaces:

Sq(V ⊗ V ) := C{v+ ⊗ v+, v− ⊗ v−, qv+ ⊗ v− + v− ⊗ v+} (1.1.14)
Aq(V ⊗ V ) := C{v+ ⊗ v− − qv− ⊗ v+} (1.1.15)

respectively.
Let H := V ⊗N . For an O ∈ End(V ⊗ V ) denote by Oi,j ∈ End(H) the standard injection End(V ⊗ V ) →

End(H) which acts trivially on all the factors except the i-th and j-th ones.
The matrices ti,i+1 (i = 1, . . . , N−1) satisfy the defining relations (1.1.2-.4) of the finite-dimensional Hecke

Algebra HN (q).

1.2 The Algebra U ′
q(ĝl2) at level 0 and some of its representations

In this subsection we summarize several facts about the algebra U ′q(ĝl2) and its representations. Our conventions
and notations mainly follow [JKKMP].

1.2.1 The Algebra U ′q(ĝl2)

In the L-operator formalism U ≡ U ′q(ĝl2) at zero level is defined to be the associative algebra with unit generated
by elements l±ij [±n] (i, j = 1, 2 ;n = 0, 1, . . . ).The L-operators L±(u) ∈ End(V ⊗U) are the generating series in
the spectral parameter u:

L±(u) :=
∑
±n≥0

un

(
l11[n] l12[n]
l21[n] l22[n]

)
(1.1.16)

The defining relations of U are written in the the form:

R̄ab(u/v)L±a (u)L±b (v) = L±b (v)L±a (u)R̄ab(u/v) (1.1.17)
R̄ab(u/v)L+

a (u)L−b (v) = L−b (v)L+
a (u)R̄ab(u/v) (1.1.18)

l+ii [0]l−ii [0] = 1 (i = 1, 2) , l+21[0] = l−12[0] = 0 (1.1.19)

where the R-matrix R̄ab(z) ∈ End(V ⊗ V := Va ⊗ Vb) is defined as follows:

R̄(z) =
zt− t−1

qz − q−1
P (1.1.20)

by P we denote the permutation operator in V ⊗ V .

1.2.2 Some representations of U

A finite-dimensional highest weight module W of U contains non-zero vector Ω which satisfies the condition:

L±(u)Ω =
(
A±(u) ∗

0 D±(u)

)
Ω (1.1.21)
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where A±(u) and D±(u) are C-valued series in u.
If W is irreducible, it is specified up to equivalence by its Drinfeld polynomial Q(u) whch is determined by

the conditions: Q(0) = 1 and

qdegQQ(q−2u)
Q(u)

=
A+(u−1)
D+(u−1)

(u→ 0) (1.1.22)

=
A−(u−1)
D−(u−1)

(u→∞) (1.1.23)

The example of such W is the 2-dimensional evaluation module W (a) where a ∈ C\{0} is the parameter.
As a vector space W (a) is isomorphic to V . The generators l±ij [±n] (i, j = 1, 2;n = 0, 1, . . . ) are defined by
expanding the L-operator:

L(ua) :=
uat− t−1

ua− 1
P ∈ End(Va ⊗ V ) (1.1.24)

into power series in u± around zero and infinity respectively.
The Drinfeld polynomial of W (a) is: Q(u; a) = 1− a−1u.
A pair of tensor products W (a)⊗W (b), W (b)⊗W (a) is intertwined by the matrix

Ȳ (z) = zt− t−1 (z ∈ C) ∈ End(V ⊗ V ) (1.1.25)

i.e.:

Ȳ12(a/b)La1(ua)La2(ub) = La1(ub)La2(ua)Ȳ12(a/b) (1.1.26)

this relation holds in the tensor product of an auxiliary copy of V indicated by the subscript a and V ⊗ V
indicated by subscripts 1 and 2.

The intertwiner Ȳ (a/b) is invertible unless either a = q2b, in which case

Ȳ (q2) = (q2 − 1)(q + q−1)Π+(q) (1.1.27)

or a = q−2b, in which case

Ȳ (q−2) = (1 − q−2)(q + q−1)Π−(q) (1.1.28)

Together with (26) this leads to the invariance relations:

La1(q2u)La2(u) : Aq(V ⊗ V ) ⊂ Aq(V ⊗ V ) (1.1.29)
La1(q2u)La2(u) : Sq(V ⊗ V ) ⊂ Aq(V ⊗ V )⊕ Sq(V ⊗ V ) (1.1.30)
La1(u)La2(q2u) : Sq(V ⊗ V ) ⊂ Sq(V ⊗ V ) (1.1.31)
La1(u)La2(q2u) : Aq(V ⊗ V ) ⊂ Aq(V ⊗ V )⊕ Sq(V ⊗ V ) (1.1.32)

1.3 The hierarchy of U-invariant Dynamical Models

The central elements of ĤN (q) generated by ∆(u) were proposed in [BGHP] to define the hierarchy of integrable
Dynamical Models which are trigonometric - that is U -invariant - generalizations of the Yangian-invariant
Dynamical Models found by the same authors.

Define Ta(u) ∈ End(C[z1, . . . , zN ]⊗H) by taking the tensor product of the L-operators (24):

Ta(u) = La1(uY1)La2(uY2) . . . LaN (uYN ) (1.1.33)

After expansion in u±, Ta(u) gives rise to a representation of U in P := C[z1, . . . , zN ]⊗H . The action of ∆(u)
naturally extends to P . Retain the same notation ∆(u) for this extension. The U -invariance and integrability
relations for ∆(u) are immediate:

[∆(u), Ta(v)] = 0 (1.1.34)
[∆(u),∆(v)] = 0 (1.1.35)

Both ∆(u) and Ta(v) act in the (“bosonic”) subspace B:

B := {b ∈ P|gi,i+1b = ti,i+1b (i = 1, . . . , N − 1)} (1.1.36)

This allows to restrict ∆(u) and Ta(v) on B where both of these operators can be rewritten in such a way that
they do not depend explicitely on the operators Ki,j .
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1.4 Eigenvalue spectrum of the operators Yi (i = 1, . . . , N)

1. We shall work in the monomial basis of C[z1, . . . , zN ].
Introduce a convenient parametrization of the elements of this basis. With a monomial zν := zν1

1 z
ν2
2 . . . zνN

N (νi ∈
Z+(i = 1, . . . , N)) associate a partition λ := (λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0) such that {ν1, ν2, . . . , νN} =
{λσ1 , λσ2 , . . . , λσN } := σ.{λ1, λ2, . . . , λN} for some σ ∈ SN = symmetric group with N − 1 generators. A
partition λ is uniquely specified by ν, while in general σ is not.

For σ ∈ SN : {σ1, σ2, . . . , σN} = σ.{1, 2, . . . , N} define pσ
i : i = σpσ

i
(i = 1, . . . , N). Let ΛN be the set of all

N-member partitions. For any λ ∈ ΛN write: λ = (λ1 = λ2 = · · · = λm1 > λm1+1 = λm1+2 = · · · = λm2 > . . .
. . . > λmM+1 = λmM +2 = · · · = λN ).

Definition 1 For any λ ∈ ΛN :

Sλ
N := {σ ∈ SN | pσ

1 < pσ
2 < . . . pσ

m1
, pσ

m1+1 < pσ
m1+2 < . . . pσ

m2
, . . .

. . . , pσ
mM+1 < pσ

mM+2 < . . . pσ
N}.

For a given λ the elements of the set Sλ
N are in one-to-one correspondence with distinct rearrangements of

the sequence {λ1, λ2, . . . , λN}. If σ ∈ Sλ
N then (i i+1)σ ∈ Sλ

N iff λσi 6= λσi+1 (i = 1, . . . , N−1). The particular
choice of Sλ

N as a subset of SN parametrizing distinct rearrangements of a partition will be explained by the
Proposition 1.

Denote zλσ := z
λσ1
1 z

λσ2
2 . . . z

λσN

N (λ ∈ ΛN , σ ∈ Sλ
N ). With this notation:

C[z1, . . . , zN ] =
⊕

λ∈ΛN

⊕σ∈Sλ
N

Czλσ . (1.1.37)

2. Introduce an ordering on the set of monomials {zλσ} (λ ∈ ΛN , σ ∈ Sλ
N ).

We say that λ > λ̃ (λ, λ̃ ∈ ΛN) iff the first ( counting from left ) non-vanishing element of the sequence
{λ1−λ̃1, λ2−λ̃2, . . . , λN−λ̃N} is positive. Fix λ ∈ ΛN .We say that σ > σ̃ (σ, σ̃ ∈ Sλ

N ) iff the last non-vanishing
element of the sequence {λσ1 − λσ̃1 , λσ2 − λσ̃2 , . . . λσN − λσ̃N } is negative.

For λ, λ̃ ∈ ΛN ; σ ∈ Sλ
N , σ̃ ∈ Sλ̃

N define λσ > λ̃σ̃ iff either λ > λ̃ , or λ = λ̃ , σ > σ̃. The ordering on
monomials zλσ is induced by the ordering on the exponents λσ (λ ∈ ΛN , σ ∈ Sλ

N ).

3. The action of HN (q) in the monomial basis is found by a straightforward computation to be as follows:

gi,jz
λσ = (i < j) =


(q − q−1)zλσ + qzλ(ij)σ + “s.p.” if λσi > λσj ,

qzλσ if λσi = λσj ,

q−1zλ(ij)σ + “s.p.” if λσi < λσj .

(1.1.38)

And

g−1
i,j z

λσ = (i < j) =


qzλ(ij)σ + “s.p.” if λσi > λσj ,

q−1zλσ if λσi = λσj ,

(q − q−1)zλσ + q−1zλ(ij)σ + “s.p.” if λσi < λσj .

(1.1.39)

Where “s.p.” means a linear combination of monomials with smaller partitions.
It follows that:

Ki,jgi,jz
λσ = (i < j) =

{
qzλσ + “s.m.” if λσi ≥ λσj ,

q−1zλσ + “s.m.” if λσi < λσj .
(1.1.40)

And

g−1
i,j Ki,jz

λσ = (i < j) =

{
q−1zλσ + “s.m.” if λσi ≥ λσj ,

qzλσ + “s.m.” if λσi < λσj .
(1.1.41)

Where “s.m.” signifies a linear combination of smaller monomials.

4. The formulas of the preceding paragraph lead to the following proposition:
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Proposition 1 The operators Yi (i = 1, . . . , N) are triangular in the monomial basis of C[z1, . . . , zN ]. The
action of these operators on monomials is given by:

Yiz
λσ = pλσi qlσi zλσ + “s.m.” (λ ∈ ΛN , σ ∈ Sλ

N , (i = 1, . . . , N))

where li := 2i−N − 1 (i = 1, . . . , N).

This proposition shows that ζλ
i (σ) := pλσi qlσi (λ ∈ ΛN , σ ∈ Sλ

N ) constitute a complete set of characteristic
numbers of the operator Yi (i ∈ {1, 2, . . . , N}). In order to prove that the operators Yi (i = 1, . . . , N) are
simultaneously diagonalizable and that {ζλ

i (σ)} (λ ∈ ΛN , σ ∈ Sλ
N ) form the complete set of eigenvalues of

Yi (i ∈ {1, 2, . . . , N}) we shall make use of Lemma 1 discussed in the next paragraph.

5. The aim of this paragraph is to recall the following ( presumably well-known ) result:

Lemma 1 Let V = C{fa}a=1,2,...,d=dimV be a finite-dimensional vector space. Let Zi ∈ End(V) (i = 1, 2, . . . ,N )
and :

[Zi,Zj ] = 0 (i, j = 1, 2, . . . ,N ), (a)
Zi (i = 1, 2, . . . ,N ) are simultaneously triangular in the basis {fa}a=1,2,...,d :

Zifa = ξa
i fa +

∑
b<a

mb a
i fb (i = 1, 2, . . . ,N ), (b)

where mb a
i are coefficients.

(c) The joint set of characteristic numbers {ξa
i } (i = 1, 2, . . . ,N ; a = 1, 2, . . . , d) is multiplicity-free:

∀ a 6= b (a, b = 1, 2, . . . , d) ∃ I(a, b) ⊂ {1, 2, . . . ,N} :

∀ i ∈ I(a, b) ξa
i − ξb

i 6= 0.

Then ∃ a basis {φa}a=1,2,...,d :

Ziφa = ξa
i φa (a = 1, 2, . . . , d; i = 1, 2, . . . ,N )

φa = fa +
∑
b<a

φb afb (a = 1, 2, . . . , d)

Where the coefficients φb a are recursively defined as follows:

φb a =
1

ξa(w) − ξb(w)
(mb a(w) +

∑
b<c<a

mb c(w)φc a),

here ξa(w) :=
N∑

i=1

wi−1ξa
i , ma b(w) :=

N∑
i=1

wi−1ma b
i .

w ∈ C and φb a does not depend on w.

6. The joint characteristic number spectrum {ζλ
i (σ) = pλσi qlσi} ((i = 1, . . . , N); λ ∈ ΛN ; σ ∈ Sλ

N )
of the operators Yi (i = 1, . . . , N) is explicitely multiplicity-free.The operators gi,j (i, j = 1, 2, . . . , N − 1)
preserve the finite-dimensional subspaces of C[z1, . . . , zN ] formed by homogeneous polynomials of any total
degree. Therefore gi,j (i, j = 1, 2, . . . , N − 1) and consequently Yi (i = 1, . . . , N) are direct sums of finite
dimensional operators. So we can apply the result of Lemma 1 and arrive at the following proposition:

Proposition 2 There exist polynomials Φλ
σ (λ ∈ ΛN ; σ ∈ Sλ

N ) s.t.:

C[z1, . . . , zN ] =
⊕

λ∈ΛN

Eλ , Eλ := ⊕σ∈Sλ
N

CΦλ
σ , (i)

YiΦλ
σ = ζλ

i (σ)Φλ
σ (i = 1, . . . , N), (ii)

∆(u)Φλ
σ =

N∏
i=1

(1 + upλiqli)Φλ
σ , (ii’)

Φλ
σ = zλσ + “s.m.”. (iii)
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1.5 Action of the Hecke Algebra in the eigenspaces Eλ (λ ∈ ΛN) of the operator
∆(u).

1. Fix any λ ∈ ΛN . Since [ĤN (q) , ∆(u)] = 0 with the action of ĤN (q) defined in 1.1.1, we have:

ĤN (q) : Eλ → Eλ

The affine generators of ĤN (q) act in Eλ as given by (ii) in Proposition 2. In this section we find the action of
the finite-dimensional Hecke Algebra generated by gi,i+1 (i = 1, ..., N − 1) on the polynomials Φλ

σ (σ ∈ Sλ
N )

forming a basis in Eλ (λ ∈ ΛN ).
2. Introduce operators Ti,i+1 ∈ ĤN (q) (i = 1, . . . , N − 1) :

Ti,i+1 := gi,i+1(Yi+1 − Yi)− (q − q−1)Yi+1 (i = 1, . . . , N − 1). (1.1.42)

These operators satisfy the following relations:

Ti,i+1Yi = Yi+1Ti,i+1 , Ti,i+1Yi+1 = YiTi,i+1 (i = 1, . . . , N − 1) (1.1.43)
[Ti,i+1, Yj ] = 0 (j 6= i, i+ 1) (1.1.44)

Since Ti,i+1 ∈ ĤN (q), we have: Ti,i+1 : Eλ → Eλ (i = 1, . . . , N − 1).

3. Consider the vector Ti,i+1Φλ
σ ∈ Eλ (σ ∈ Sλ

N , i ∈ 1, 2, . . . , N − 1). Due to (1.1.43,44):

YkTi,i+1Φλ
σ = ξλ

k ((i, i+ 1)σ)Ti,i+1Φλ
σ (k = 1, . . . , N).

Since the spectrum of Yk (k = 1, . . . , N) on Eλ does not contain ξλ
k (σ) s.t. σ 6∈ Sλ

N , we have:

Ti,i+1Φλ
σ = 0 when σ ∈ Sλ

N , (i, i+ 1)σ 6∈ Sλ
N (i = 1, . . . , N − 1). (1.1.45)

Since the joint spectrum of Yi (i = 1, . . . , N) on Eλ is multiplicity-free, we have:

Ti,i+1Φλ
σ = τλ

i,i+1(σ)Φλ
(i,i+1)σ when σ, (i, i+ 1)σ ∈ Sλ

N (i = 1, . . . , N − 1). (1.1.46)

Where τλ
i,i+1(σ) is a coefficient.

Let σ ∈ Sλ
N and i be s.t. (i, i+ 1)σ 6∈ Sλ

N . Then λσi = λσi+1 , σi+1 = σi + 1, and (1.1.45) gives:

(gi,i+1 − q)Φλ
σ = 0. (1.1.47)

Let σ ∈ Sλ
N and i be s.t. (i, i+ 1)σ ∈ Sλ

N . Then we can recast (1.1.46) as follows:

gi,i+1Φλ
σ =

(q − q−1)ζλ
i+1(σ)

ζλ
i+1(σ)− ζλ

i (σ)
Φλ

σ +
τλ
i,i+1(σ)

ζλ
i+1(σ)− ζλ

i (σ)
Φλ

(i,i+1)σ . (1.1.48)

In order to find τλ
i,i+1(σ) we shall equate coefficients standing in front of monomials zλσ , zλ(i i+1)σ in the both

sides of eq. (1.1.48). Recall that σ, (i, i+ 1)σ ∈ Sλ
N entails in particular λσi 6= λσi+1 .

Let λσi > λσi+1 ⇒ zλσ > zλ(i i+1)σ .
According to (1.1.38) the monomial zλσ which is the maximal monomial in Φλ

σ appears in gi,i+1Φλ
σ from two

sources: from gi,i+1z
λσ and from gi,i+1z

λ(i i+1)σ . Denote by x the coefficient at the monomial zλ(i i+1)σ in Φλ
σ.

In the RHS of (1.1.48) zλσ appears as the maximal monomial in Φλ
σ and does not appear in Φλ

(i,i+1)σ .
Using (1.1.38) to compute the contributions from gi,i+1Φ we equate the coefficients in front of zλσ in the

both sides of (1.1.48):

(q − q−1) + q−1x =
(q − q−1)ζλ

i+1(σ)
ζλ
i+1(σ) − ζλ

i (σ)
. (1.1.49)

Computing the contribution from zλ(i i+1)σ we find that in the LHS of (1.1.48) this monomial appears only
in gi,i+1z

λσ , while in the RHS it appears with coefficient x in Φλ
σ and as the maximal monomial in Φλ

(i,i+1)σ.
Equating the coefficients we get:

q =
(q − q−1)ζλ

i+1(σ)
ζλ
i+1(σ) − ζλ

i (σ)
x+

τλ
i,i+1(σ)

ζλ
i+1(σ) − ζλ

i (σ)
. (1.1.50)

14



Combining (1.1.49) and (1.1.50) we obtain:

τλ
i,i+1(σ) = q

(q−1ζλ
i+1(σ) − qζλ

i (σ))(qζλ
i+1(σ) − q−1ζλ

i (σ))
ζλ
i+1(σ) − ζλ

i (σ)
(λσi > λσi+1 ) (1.1.51)

Let λσi < λσi+1 ⇒ zλσ < zλ(i i+1)σ . Equate the coefficients in front of the monomial zλ(i i+1)σ in the both sides
of (1.1.48).
In the LHS the contribution comes only from gi,i+1z

λσ . In the RHS only Φλ
(i,i+1)σ contributes zλ(i i+1)σ as its

maximal monomial. Application of (1.1.38) leads to:

q−1 =
τλ
i,i+1(σ)

ζλ
i+1(σ)− ζλ

i (σ)
(λσi < λσi+1). (1.1.52)

4. To summarize, we have obtained the following proposition:

Proposition 3 Let σ ∈ Sλ
N (λ ∈ ΛN ), then HN (q) acts in Eλ = C{Φλ

σ}σ∈Sλ
N

as follows:

gi,i+1Φλ
σ =

(q − q−1)ζλ
i+1(σ)

ζλ
i+1(σ)− ζλ

i (σ)
Φλ

σ +



q
(q−1ζλ

i+1(σ)−qζλ
i (σ))(qζλ

i+1(σ)−q−1ζλ
i (σ))

(ζλ
i+1(σ)−ζλ

i
(σ))(ζλ

i+1(σ)−ζλ
i
(σ))

Φλ
(i,i+1)σ

when λσi > λσi+1 ⇒ (i, i+ 1)σ ∈ Sλ
N ,

0 when λσi = λσi+1 ⇔ (i, i+ 1)σ 6∈ Sλ
N ,

q−1Φλ
(i,i+1)σ

when λσi < λσi+1 ⇒ (i, i+ 1)σ ∈ Sλ
N .

(1.1.53)

2 The limit p → 1 of the hierarchy of Dynamical Models.

2.1 Few facts about Macdonald operators.

1.The Macdonald operators Dn
N (p, t) (n = 0, . . . , N) [M] act in the subspace of C[z1, . . . , zN ] formed by

symmetric polynomials. In notation of [JKKMP] these operators are defined as follows:

Dn
N (p, t) := tn(n−1)/2

∑
In

∏
i∈In
j 6∈In

tzi − zj

zi − zj

∏
k∈In

pDk (n = 0, . . . , N), (2.2.1)

where the summation is over all subsets In of {1, 2, . . . , N} which contain n elements. Using the formula:

det

∥∥∥∥ (t− 1)wi

twi − wj

∥∥∥∥
1≤i,j≤m

= tm(m−1)/2
∏

1≤i6=j≤m

wi − wj

twi − wj
,

where wi (i = 1, . . . ,m) are numbers; we can rewrite the definition of the operators Dn
N (p, t) (n = 0, . . . , N)

in another form:

Dn
N (p, t) =

∑
In

detAIn(t)
∏

k∈In

pDk (n = 0, . . . , N), (2.2.2)

where AIn(t) is a submatrix of the matrix:

A(t) = ‖Aij(t)‖1≤i,j≤N , Aij(t) :=
(t− 1)zi

tzi − zj

∏
1≤k≤N

k 6=i

tzi − zk

zi − zk
; (2.2.3)

which is defined as follows:AIn(t) := ‖Aij(t)‖i,j∈In .
The Macdonald polynomials Pλ(p, t) (λ ∈ ΛN) are eigenfunctions of the operatorsDn

N (p, t) (n = 0, . . . , N):

D(v; p, t)Pλ(p, t) =
N∏

i=1

(1 + tN−ipλiv)Pλ(p, t) (λ ∈ ΛN), (2.2.4)
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here D(v; p, t) is the generating function of Macdonald operators:

D(v; p, t) :=
N∑

n=0

vnDn
N(p, t) .

2. In the limit p→ 1 one finds [M]:

Pλ(p, t) = eλ′ +O(p− 1) (λ ∈ ΛN), (2.2.5)

where λ′ is the conjugate partition of λ and for a partition π : (π1 ≥ π2 ≥ . . . ) , (π1 ≤ N) eπ := eπ1eπ2 . . . ;
where er is the elementary symmetric polynomial:

er :=
∑

1≤i1≤···≤ir≤N

zi1zi2 . . . zir .

Consider the limit p→ 1 of the generating function D(v; p, t):

D(v; p, t)
p→1
= D0(v; t) + (p− 1)D1(v; t) +O((p − 1)2). (2.2.6)

From (2.2.1,.4,.5) it follows that D0(v; t) is a multiplication by a constant:

D0(v; t) =
N∏

i=1

(1 + tN−iv) . (2.2.7)

The first-order term D1(v; t) is a differential operator:

D1(v; t) =
N∑

i=1

(
N∑

n=1

vn
∑

In:i∈In

detAIn(t)

)
Di (2.2.8)

Expanding the eq. (2.2.4) up to the first order in p− 1 and using (2.2.5,.7 ) we get:

D1(v; t)eλ′ =

v N∑
j=1

∏
1≤k≤N

k 6=j

(1 + vtN−k)tN−jλj

 eλ′ (λ ∈ ΛN ). (2.2.9)

2.2 Taking the limit p → 1 in the hierarchy of Dynamical Models

1. The following fact was established in the paper [JKKMP]. Let S be any symmetric polynomial (S ∈
C[z1, . . . , zN ]). The action of the operator ∆(u) (cf. 1.1) on such S coincides with the action of the generating
function of Macdonald operators:

∆(u)S = D(qN−1u; p, q−2)S . (2.2.10)

There is another connection between ∆(u) and Macdonald operators. For an operator O which is a function
of operators Di, zi (i = 1, . . . , N),Ki,i+1 (i = 1, . . . , N−1) introduce a normal ordering : :. The normal ordering
is described as follows: in O bring all the operators Di to the right without taking commutators between Di

and zj, but taking into account the commutation relations between Di and Kj,j+1. For instance:

: pD1
q−1z1 − qz2
z1 − z2

(K12 − 1) : =
q−1z1 − qz2
z1 − z2

(K12 p
D2 − pD1).

We formulate the following Lemma:

Lemma 2

: ∆(u) : = D(qN−1u; p, q−2) . (2.2.11)
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Proof. To facilitate the proof we introduce an extension of the algebra generated by z1, z2, . . . , zN and
K1,2,K2,3, . . . ,KN−1,N by symbols ξ1, ξ2, . . . , ξN . These symbols are defined by the commutation relations

[ξi, ξj ] = 0 , [ξi, zj ] = 0 (i, j ∈ {1, 2, . . . , N}),
Ki,jξj = ξiKi,j , [Ki,j , ξk] = 0 (k 6= i, j) (i 6= j ∈ {1, 2, . . . , N}).

One can take ξi := f(zi), where f is any function of one variable, as a realization for ξi.
Together with gi,i+1 the operators

Yi(ξ) := g−1
i,i+1Ki,i+1 . . . g

−1
i,NKi,NξiK1,ig1,i . . .Ki−1,igi−1,i

still satisfy the defining relations of ĤN (q).
This implies in particular that for the operator

∆(u; ξ) :=
N∏

i=1

(1 + uYi(ξ))

we have

[∆(u; ξ), gi,i+1] = 0 (i = 1, . . . , N − 1). (i)

Using the commutation relations with z1, z2, . . . , zN and Ki,j we can bring the symbols ξi to the right of all
expressions in ∆(u; ξ). Denote ∆(u; ξ) with all ξi brought to the right by ∆(u; ξ)′.
We have

: ∆(u) := ∆(u; ξ)′|ξi→pDi .

Therefore in order to prove the statement of the lemma we compute the coefficients standing in front of mono-
mials ξi1ξi2 . . . ξin (1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ N) in the symmetric functions

∆(ξ)(n) :=
∑

N≥k1>k2>···>kn≥1

Yk1(ξ)Yk2 (ξ) . . . Ykn(ξ) (1 ≤ n ≤ N).

With notation of 1.1.1 we have

ri,j := Ki,jgi,j = aj,i + bj,iKi,j,

r−1
i,j = ai,j − bj,iKi,j ,

Yi(ξ) = r−1
i,i+1 . . . r

−1
i,N ξir1,i . . . ri−1,i.

Let us compute the terms in ∆(ξ)(n)′ (1 ≤ n ≤ N) which contain symbols ξ1, ξ2, . . . , ξn only. By inspection
we find that such terms can appear only in Yn(ξ)Yn−1(ξ) . . . Y1(ξ). Furthermore the relevant contributions from
the individual factors in the last expression are

Y1(ξ) → r−1
1,2 . . . r

−1
1,na1,n+1 . . . a1,Nξ1,

Y2(ξ) → r−1
2,3 . . . r

−1
2,na2,n+1 . . . a2,Nξ2r1,2,

...

Yk(ξ) → r−1
k,k+1 . . . r

−1
k,nak,n+1 . . . ak,Nξkr1,k . . . rk−1,k,

...

Yn−1(ξ) → r−1
n−1,nan−1,n+1 . . . an−1,Nξn−1r1,n−1 . . . rn−2,n−1,

Yn(ξ) → an,n+1 . . . an,Nξnr1,n . . . rn−1,n.

Multiplying these contributions we find that there is only one term in ∆(ξ)(n)′ which contains ξ1, ξ2, . . . , ξn
only; and this term is

(a1,n+1 . . . a1,N )(a2,n+1 . . . a2,N ) . . . (an,n+1 . . . an,N )ξ1ξ2 . . . ξn.
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Next we use the Hecke-invariance relation (i) and find

∆(ξ)(n) =
∑
In

∏
i∈In
j 6∈In

ai,j

 ∏
i∈In

ξi.

Where the summation is over all n-element subsets of {1, 2, . . . , N}. Comparing this expression with (2.2.1) we
obtain the statement of the lemma.

2. Let us take the limit p → 1 in the operators ∆(u), Ta(u), Yi (i = 1, . . . , N). Expanding around p = 1 and
keeping the first two terms of the expansion we write:

Yi
p→1
= yi + (p− 1)xi +O((p− 1)2) ((i = 1, . . . , N)), (2.2.12)

∆(u)
p→1
= ∆0(u) + (p− 1)∆1(u) +O((p− 1)2) , (2.2.13)

Ta(u)
p→1
= T 0

a (u) + (p− 1)T 1
a (u) +O((p − 1)2) . (2.2.14)

Here we introduced the operators:

yi := g−1
i,i+1Ki,i+1 . . . g

−1
i,NKi,NK1,ig1,i . . .Ki−1,igi−1,i ((i = 1, . . . , N)), (2.2.15)

xi := g−1
i,i+1Ki,i+1 . . . g

−1
i,NKi,NDiK1,ig1,i . . .Ki−1,igi−1,i ((i = 1, . . . , N)), (2.2.16)

∆0(u) :=
N∏

i=1

(1 + uyi) , (2.2.17)

∆1(u) := u

N∑
j=1

∏
1≤i<j

(1 + uyi)xj

∏
j<k≤N

(1 + uyk) , (2.2.18)

T 0
a (u) := La1(uy1)La2(uy2) . . . LaN(uyN ) ∈ EndC[z1, . . . , zN ]⊗H . (2.2.19)

The operators yi, gi,i+1 satisfy the relations (cf. 1.1) of Affine Hecke Algebra and T 0
a (u) defines a representation

of U .
3. From Lemma 2 it follows that the operators ∆0(u) , ∆1(u) have a rather special form. We have the
proposition:

Proposition 4 The following statements hold:
Let D0(v; t) , D1(v; t) be those defined in (2.2.6,.8); then:

∆0(u) = D0(qN−1u; q−2) =
N∏

i=1

(1 + uq2i−N−1)I . (i)

I.e. ∆0(u) is a multiplication by a constant.

∆1(u) = D1(qN−1u; q−2) + Ξ(u) . (ii)

Where operator Ξ(u) is a function of operators zi , Ki,j (i, j = 1, . . . , N) only ( and not of Di).

Let ∆(u)1 :=
∑N

i=1 u
i∆(i)

1 and Ξ(u) :=
∑N

i=1 u
iΞ(i). We have computed explicit expressions for the operators

∆(N)
1 and ∆(1)

1 . In notation of section 1.1 one has:

∆(N)
1 = D1 +D2 + · · ·+DN , (2.2.20)

∆(1)
1 =

N∑
i=1

 ∏
1≤k≤N

k 6=i

ai,k

Di + Ξ(1) (2.2.21)
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where:

Ξ(1) =
N∑

M=2

(−1)M

(q − q−1)

∑
N≥iM >···>i1≥1

AiM ,iM−1,...,i1BiM ,iM−1,...,i1KiM ,iM−1 . . .Ki2,i1 + ϕ(1) ,

AiM ,iM−1,...,i1 =

 ∏
i1<f<i2

ai1,f

 ∏
i2<f<i3

ai2,f

 . . .

 ∏
iM <f<N+i1

aiM ,f (mod N)

 ,

BiM ,iM−1,...,i1 = biM ,iM−1biM−1,iM−2 . . . bi2,i1bi1,iM ,

ϕ(1) = −
∑

1≤k<i≤N

ai,i+1 . . . ai,Nai,1 . . . ai,k−1ai,k+1 . . . ai,i−1bk,ibi,k
(q − q−1)

.

4. Let us fix the notation:

D(u) := D1(qN−1u; q−2) =
N∑

i=1

θi(u)Di . (2.2.23)

Where according to (2.2.8) :

θi(u) :=
N∑

n=1

unqn(N−1)
∑

In:i∈In

detAIn(q−2) ((i = 1, . . . , N)). (2.2.24)

(Cf. sec. 2.1 for the definition of AIn(t)). The functions θi(u) ((i = 1, . . . , N)) can be written in the following
form:

θi(u) =
∂

∂γi
det(I + uΓqN−1A(q−2))|Γ=I , (2.2.25)

where we have introduced an auxiliary matrix: Γ := diag{γ1, . . . , γN}. Using this representation we compute
θi(u) ((i = 1, . . . , N)) at the point z1 = ω1, . . . , zN = ωN , where ω := exp(2πi/N). The computation yields:

θi(u)|z1=ω1,...,zN=ωN =
1
N

N∏
k=1

(1 + uqlk)
N∑

n=1

uqln

1 + uqln
≡ θ(u) (i = 1, . . . , N). (2.2.26)

li := 2i−N − 1

Thus the point z1 = ω1, . . . , zN = ωN (or any point obtained from it by a permutation of coordinates) is special
in that at this point all the {zi}-dependent coefficients θi(u) of the first-order differential operator D(u) become
equal one to another.

3 Definition of the Hierarchy of Integrable, U-invariant Spin Models

3.1 Preliminaries

1. Let us expand the relations (1.1.34,.35) around the point p = 1 using the definitions (2.2.12-.14) and the fact
that ∆0(u) is a constant. For ∆1(u), T 0

a (v) ∈ End(C[z1, . . . , zN ]⊗H) we obtain:

[∆(u)1, T 0
a (v)] = 0 , (3.3.1)

[∆1(u),∆1(v)] = 0. (3.3.2)

Expanding the relations:

[∆(u), Yi] = 0 (i = 1, . . . , N), [∆(u), gi,i+1] = 0 (i = 1, . . . , N − 1), (3.3.3)

we get:

[∆1(u), yi] = 0 (i = 1, . . . , N), [∆1(u), gi,i+1] = 0 (i = 1, . . . , N − 1). (3.3.4)
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Due to (3.3.4) and the fact that yi (i = 1, . . . , N), gi,i+1 (i = 1, . . . , N − 1) satisfy the Affine Hecke Algebra
relations, the operators ∆1(u), T 0

a (v) act in the “bosonic” subspace B (cf. 1.1.36 and 3.3.7).

2. Introduce several definitions. Let

R := C[{ 1
zi − zj

}1≤i6=j≤N , { 1
zi − q2zj

}1≤i6=j≤N , z1, . . . , zN ]⊗H. (3.3.5)

Let P and B be the subspaces of R:

P := C[z1, . . . , zN ]⊗H , (3.3.6)
B := {b ∈ P|(gi,i+1 − ti,i+1)b = 0 (i = 1, . . . , N − 1)}. (3.3.7)

For v1, . . . , vN ∈ C such that vi 6= vj , q
2vj (i 6= j ; i, j = 1, . . . , N) define the evaluation map: Ev(v) : R 7→ H

by taking values of rational functions at the point z1 = v1, . . . , zN = vN . (⇔ z = v).
For any O ∈ End(R) define an operator Ô ∈ End(R) by the rule [BGHP]:

Using the commutation relations bring all the permutation operatorsKi,j (i, j ∈ {1, 2, . . . , N}) to the right
of an expression in O; replace the rightmost of Ki,j using the substitution:

gi,i+1 → ti,i+1 ⇒ Ki,i+1 →
zit

−1
i,i+1 − zi+1ti,i+1

q−1zi − qzi+1
(i = 1, . . . , N − 1). (3.3.8)

Repeat the procedure until there are no operators Ki,j left. The result is Ô.
In what follows we adopt the following notational convention: if L is a linear space and A,B are linear

operators defined on L, we write:

AL = BL meaning Al = Bl ∀l ∈ L.

In particular for O, Ô ∈ End(R) defined above we have:

OB = ÔB. (3.3.9)

Let O,O′ ∈ End(P) be s.t.:

[O,O′]P = 0 and O,O′ : B 7→ B, (3.3.10)

then

[Ô, Ô′]B = 0. (3.3.11)

3.With notation of (2.2.20,.23,.26) let us consider the following differential operator D̃(u) ∈ End(R):

D̃(u) := D(u)− θ(u)∆(N)
1 . (3.3.12)

Let Ev(ω) be the evaluation map Ev(v) taken at the special point v1 = ω1, . . . , vN = ωN (⇔ v = ω). Then
in virtue of (2.2.26) we obtain the following property of D̃(u):

Ev(ω)D̃(u)R = 0. (3.3.13)

Let us introduce the modified generating function ∆̃1(u) by subtracting the product of the constant θ(u) and
the operator ∆(N)

1 :

∆̃1(u) := ∆1(u)− θ(u)∆(N)
1 = D̃(u) + Ξ(u). (3.3.14)

Since ∆(N)
1 is a member of the hierarchy of commuting operators defined by ∆1(u), the equations (3.3.1,.2),(3.3.4)

still hold if we replace in these equations ∆1(u) by ∆̃1(u):

[∆̃1(u), ∆̃1(v)]P = 0, (3.3.15)

[∆̃1(u), T 0
a (v)]P = 0, (3.3.16)

∆̃1(u) : B 7→ B. (3.3.17)
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3.2 Definition of the hierarchy of Spin Models

1. Let HB(ω) be the image of B under the action of the evaluation map Ev(ω):

Ev(ω)B = HB(ω) ⊂ H. (3.3.18)

Since T̂ 0
a (u) , Ξ̂(u) do not depend on the diffrential operators Di (i = 1, . . . , N) and the operators of coordinate

permutation, we can define the operators T 0
a (u;ω),Ξ(u;ω) as follows:

Ev(ω)T̂ 0
a (u) = T 0

a (u;ω)Ev(ω), Ev(ω)Ξ̂(u) = Ξ(u;ω)Ev(ω). (3.3.19)

Applying Ev(ω) to the relations :

T̂ 0
a (u) : B 7→ B, (3.3.20)

̂̃
∆1(u) : B 7→ B, (3.3.21)

and using (3.3.13) we get:

T 0
a (u;ω) : HB(ω) 7→ HB(ω), (3.3.22)
Ξ(u;ω) : HB(ω) 7→ HB(ω). (3.3.23)

2. Apply the evaluation map Ev(ω) to the relations (3.3.15,.16) taking (3.3.13) and (3.3.23) into account. As
the result we find that the operator Ξ(u;ω) is a generating function of the commuting, U -invariant integrals of
motion which are operators in HB(ω):

[Ξ(u;ω),Ξ(v;ω)]HB(ω) = 0 , (3.3.24)

[Ξ(u;ω), T 0
a (v;ω)]HB(ω) = 0, (3.3.25)(

R̄ab(u/v)T 0
a (u;ω)T 0

b (v;ω)− T 0
b (v;ω)T 0

a (u;ω)R̄ab(u/v)
)
HB(ω) = 0. (3.3.26)

In sec. 6 we shall show thatHB(ω) = H . This completes the definition of the hierarchy Ξ(ω)(1), . . . ,Ξ(ω)(N−1) (Ξ(u;ω) =∑N−1
n=1 u

nΞ(n)(ω)) of Spin Models.

4 Eigenvalue spectrum of the operators ∆1(u) ,

yi (i = 1, . . . , N)

4.1 Characteristic numbers and eigenvalues of ∆1(u) , yi

1. To find the action of the operators ∆1(u) , yi (i = 1, . . . , N) in the monomial basis of C[z1, . . . , zN ] we can
take the limit p→ 1 in the formulas of Proposition 1. This gives the following proposition:

Proposition 5 The operators ∆1(u) , yi (i = 1, . . . , N) are triangular in the monomial basis of C[z1, . . . , zN ].
The action of these operators on monomials is given by:

yiz
λσ = qlσi zλσ + “s.m” (λ ∈ Λn, σ ∈ Sλ

N , (i = 1, . . . , N)), (i)

∆1(u)zλσ = δλ(u)zλσ + “s.m” (λ ∈ ΛN , σ ∈ Sλ
N ). (ii)

where li := 2i−N − 1 (i = 1, . . . , N) and

δλ(u) := u

N∑
j=1

 ∏
1≤k≤N

k 6=j

(1 + uqlk)

 qljλj .

Since ∆1(u) and yi (i = 1, . . . , N) commute among themselves (cf. 3.3.4) and the joint spectrum of
characteristic numbers of ∆1(u) and yi (i = 1, . . . , N) given by Proposition 5 is explicitely multiplicity-free,
we apply Lemma 1 and claim that ∆1(u) , yi (i = 1, . . . , N) are simultaneously diagonalizable:
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Proposition 6 There exist polynomials ϕλ
σ (λ ∈ ΛN , σ ∈ Sλ

N ) s.t.:

C[z1, . . . , zN ] =
⊕

λ∈ΛN

Eλ , Eλ := ⊕σ∈Sλ
N

Cϕλ
σ , (i)

yiϕ
λ
σ = qlσiϕλ

σ (i = 1, . . . , N), (ii)

∆1(u)ϕλ
σ = δλ(u)ϕλ

σ , (ii’)

ϕλ
σ = zλσ + “s.m” . (4.4.1)

2. Let us show that ϕλ
σ = limp→1Φλ

σ (λ ∈ ΛN , σ ∈ Sλ
N ) where Φλ

σ (λ ∈ ΛN , σ ∈ Sλ
N ) are eigenfunctions of

the operators Yi (i = 1, . . . , N) (Cf. Proposition 2).
Expanding Φλ

σ (λ ∈ ΛN , σ ∈ Sλ
N ) around p = 1 let us write:

Φλ
σ

p→1
= (p− 1)sψλ

σ +O((p− 1)s+1), (4.4.2)

where ψλ
σ is a non-zero polynomial. Since Φλ

σ = zλσ + “ s.m.”, we have: s ≤ 0.
Let us show that s = 0. Suppose s < 0. The satement (c) of Lemma 1 when applied to the eigenvectors Φλ

σ

enables us to detect which coefficients in the decomposition of Φλ
σ into monomials are potentially singular in

the limit p→ 1. The singularities may arise because of the presence of denominators of the form

1
pλσi qlσi − pµσi qlσi

(4.4.3)

where µ is a partition smaller than λ and σ ∈ Sλ
N , S

µ
N .Therefore if s in (4.4.2) is negative, the maximal monomial

in ψλ
σ is smaller than any of the monomials zλσ (σ ∈ Sλ

N ).
Expanding the equations (ii),(ii’) of the Proposition 2 around the point p = 1 and taking into account that

∆0(u) = ∆(u)|p=1 is a constant, we arrive at the following equations:

∆1(u)ψλ
σ = δλ(u)ψλ

σ ,

yiψ
λ
σ = qlσiψλ

σ .

Since the joint spectrum of the operators ∆1(u) and yi (i = 1, . . . , N) is multiplicity-free, we must have:

ψλ
σ ∝ ϕλ

σ .

This contradicts the observation that the maximal monomial of ψλ
σ is smaller than any of the monomials

zλσ (σ ∈ Sλ
N ).

Thus s = 0 therefore ψλ
σ = ϕλ

σ and consequently ϕλ
σ = limp→1Φλ

σ (λ ∈ ΛN , σ ∈ Sλ
N ).

4.2 Action of the Hecke Algebra in the eigenspaces Eλ (λ ∈ ΛN) of the operator
∆1(u) .

1. According to (3.3.4) the Hecke Algebra HN (q) generated by gi,i+1 (i = 1, . . . , N − 1) acts in each eigenspace
Eλ (λ ∈ ΛN ) of the operator ∆1(u). To compute this action explicitely in the basis {ϕλ

σ}σ∈Sλ
N

we can either
repeat almost word-by-word the derivation described in 1.5 or take the limit p→ 1 in the result of Proposition
3. Either way we arrive at the following proposition:

Proposition 7 Let σ ∈ Sλ
N (λ ∈ ΛN), then HN (q) generated by gi,i+1 (i = 1, . . . , N − 1) acts in Eλ =

C{ϕλ
σ}σ∈Sλ

N
as follows:

gi,i+1ϕ
λ
σ =

(q − q−1)qlσi+1

qlσi+1 − qlσi

ϕλ
σ +



q (q−1q
lσi+1−qqlσi )(qq

lσi+1−q−1qlσi )

(q
lσi+1−qlσi )(q

lσi+1−qlσi )
ϕλ

(i,i+1)σ

when λσi > λσi+1 ⇒ (i, i+ 1)σ ∈ Sλ
N ,

0 when λσi = λσi+1 ⇔ (i, i+ 1)σ 6∈ Sλ
N ,

q−1ϕλ
(i,i+1)σ

when λσi < λσi+1 ⇒ (i, i+ 1)σ ∈ Sλ
N .

(4.4.4)
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4.3 “Motifs” and associated partitions

1. Following [HHTBP,BPS] introduce the definition:

Definition 2 Call a sequence of M integers (m1,m2, . . . ,mM ) a motif iff:

1 ≤ m1 < m2 < . . . < mM ≤ N − 1 , (i)
mi+1 ≥ mi + 2 (i = 1, . . . ,M − 1). (ii)

With any motif (m1,m2, . . . ,mM ) associate a partition µ:

µ = (M, . . . ,M
m1
,M − 1, . . . ,M − 1

m2

, . . . , 1
mM−1+1

, . . . , 1
mM

, 0, . . . , 0
N

).

The subscripts in the last equation indicate positions of numbers in the partition.
In what follows we shall identify motifs with the partitions they define. We shall indiscriminately use the

notation (m1,m2, . . . ,mM ) for both a motif and the corresponding partition. Let MN be the set of all motifs
for a fixed N . We use the same notation for the corresponding subset of all partitions.

2. Let (m1,m2, . . . ,mM ) be a partition from the set MN . We subdivide the set S(m1,m2,...,mM)
N (cf. 1.4 ) into

disjoint subsets:

Definition 3 For any subset {i1, i2, . . . , iL} ⊂ {1, 2, . . . ,M} (0 ≤ L ≤ M) define S
(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

) ⊂
S

(m1,m2,...,mM )
N ⊂ SN as follows:

S
(m1,m2,...,mM)
N,(∅) := {id},

for 1 ≤ L ≤M S
(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) :={
σ ∈ S(m1,m2,...,mM )

N

pσ
mik

> pσ
mik+1

∀ 1 ≤ k ≤ L

pσ
mj

< pσ
mj+1 ∀ j ∈ {1, 2, . . . ,M} \ {i1, i2, . . . , iL}

}
Recall (1.4) that for σ ∈ SN we define:

{σ1, . . . , σN} := σ.{1, 2, . . . , N} , i = σpσ
i

(i = 1, . . . , N).

Example Let N = 4 , M = 2 and the motif is: (m1,m2) = (1, 3). The corresponding partition is: (2, 1, 1, 0).
In this case the set S(m1,m2)

N = S
(1,3)
4 contains altogether twelve elements. This set is subdivided into four

subsets: S(1,3)
4,(∅) , S

(1,3)
4,(1) , S

(1,3)
4,(3) , S

(1,3)
4,(1,3) :

S
(1,3)
4,(∅) = {{1234}} ;

S
(1,3)
4,(1) = {{2134}, {2314}, {2341}} ;

S
(1,3)
4,(3) = {{1243}, {1423}, {4123}} ;

S
(1,3)
4,(1,3) = {{2143}, {2413}, {4213}, {2431}, {4231}}.

3. Let us describe several properties of the sets S(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

) ((m1,m2, . . . ,mM ) ∈ MN , {i1, i2, . . . , iL} ⊂
{1, 2, . . . ,M} (0 ≤ L ≤ M)). Throughout this paragraph we fix such a set S(m1,m2,...,mM)

N,(mi1 ,mi2 ,...,miL
). Let µ be the

partition that corresponds to (m1,m2, . . . ,mM ).

Lemma 3 Let σ ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

).
then either:

∃ i ∈ {1, 2, . . . , N − 1} , σ′ ∈ S(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

) s.t. (i)

σ = (i, i+ 1)σ′ , µσi < µσi+1 .

and therefore σ′ > σ (⇔ µσ′ > µσ);

or

σ = σ[0] := (mi1 ,mi1 + 1)(mi2 ,mi2 + 1) . . . (miL ,miL + 1). (ii)
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Proof.
Let σ = {σ1, σ2, . . . , σN}. Examine the pairs σi, σi+1 (i = 1, . . . , N − 1) step by step starting with i = 1 and
increasing i by 1 at every next step.
At each step i one has the two possibilities:

I. µσi ≥ µσi+1 II. µσi < µσi+1

If I., go to the next step. If at each step (i = 1, . . . , N − 1) holds I., then σ = id and therefore L = 0 , σ[0] = id.
The poof is finished.
If II., then one has the further two possibilities:

1. (i, i+ 1)σ 6∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) 2. (i, i+ 1)σ ∈ S(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

).

If 1. go to the next step. If for all cases where II. holds we have 1., then σ = σ[0]. The poof is finished.
If 2. denote σ′ := (i, i+ 1)σ. Since µσi < µσi+1 , we have µσ′ > µσ ⇔ σ′ > σ. The poof is finished.
The element σ[0] := (mi1 ,mi1 + 1)(mi2 ,mi2 + 1) . . . (miL ,miL + 1)
∈ S

(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) is the maximal element in the set S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) (Cf. 1.4.2 for the definition of the

ordering of elements of S(m1,m2,...,mM)
N ).

We summarize the properties of the subset S(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

) in the following proposition:

Proposition 8 Let {i1, i2, . . . , iL} ⊂ {1, 2, . . . ,M} , (0 ≤ L ≤M).
Then:

S
(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) = S
(mi1 ,...,miL

)

N,(mi1 ,...,miL
) , (i)

∀ σ ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) ∃ {j1, j2, . . . , jr} ⊂ {1, . . . , N − 1} (r ≥ 0) s.t. (ii)

the elements σ[r], σ[r − 1], . . . , σ[1] defined by

σ[0] := (mi1 ,mi1 + 1)(mi2 ,mi2 + 1) . . . (miL ,miL + 1),
σ[k] := (jk, jk + 1)σ[k − 1] (k = 1, 2, . . . , r)

belong to the set S(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

),
satisfy

σ[k] < σ[k − 1] (k = 1, 2, . . . , r),

and σ[r] = σ.

(iii)
If there exists i ∈ {1, 2, . . . , N} such that

σ , (i, i+ 1)σ ∈ S
(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

),

then |σi+1 − σi| ≥ 2.

If there exists i ∈ {1, 2, . . . , N} such that

σ ∈ S
(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

), (i, i+ 1)σ ∈ S
(m1,m2,...,mM )
N,(mi2 ,...,miL

) ,

then σiσi+1 + 1.

Proof.
(i) is a direct consequence of the Definitions 1 (1.4) and 3.
(ii) follows from Lemma 3 and the observation that σ[0] = (mi1 ,mi1 + 1)(mi2 ,mi2 + 1) . . . (miL ,miL + 1) is the
maximal element in S

(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

).
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(iii) For σ ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) assume that σi+1 = σi + 1. One has the two possibilities:

1. i = pσ
j , i+ 1 = pσ

j+1 where ms−1 + 1 ≤ j, j + 1 ≤ ms

for some s ∈ {1, 2, . . . ,M} (m0 := 0).
2. i = pσ

ms
, i+ 1 = pσ

ms+1

for some s ∈ {1, 2, . . . ,M}.

In the case 1. (i, i+ 1)σ 6∈ S(m1,m2,...,mM )
N .

In the case 2. (i, i+ 1)σ ∈ S(m1,m2,...,mM )
N,(ms,mi1 ,...,miL

).

Assume that σi = σi+1 + 1.
In this case ∃ s ∈ {i1, i2, . . . , iL} s.t.

σi = ms + 1 , σi+1 = ms ⇔ i = pσ
ms+1 , i+ 1 = pσ

ms
.

Since by definition of S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) :

i < pms+2 < . . . < pms+1 ,

pms−1 < . . . < pms−2 < pms−1 < i+ 1;

we have:

(i, i+ 1)σ ∈ S(m1,m2,...,mM )
N,(mi1 ,...,miL

)\ms
.

The first statement in (iii) is proven.
The second statement in (iii) is proven in a similar way.

4.4 A property of the eigenvectors ϕλ
σ for λ ∈ MN

1. In this section we shall derive a certain proprerty of the eigenspaces Eµ (µ ∈ MN ) of the operators
∆1(u), yi(i = 1, . . . , N). First of all, we notice that the eigenvalue δµ

1 (u) of ∆1(u) associated with Eµ can be
represented in the additive “particle” form:

δµ
1 (u) := δ

(m1,m2,...,mM)
1 (u) =

M∑
k=1

δ
(mk)
1 (u), (4.4.5)

where δ(m)
1 (u) m ∈ {1, . . . , N − 1} is the one-particle eigenvalue:

δ
(m)
1 (u) := u

m∑
i=1

∏
1≤j≤N

j 6=i

(1 + uqlj )qli . (4.4.6)

(Cf. 2.2.26 for the definition of li ).
2. Let µ = (m1,m2, . . . ,mM ) ∈ MN then the conjugate partition µ′ is: µ′ = (mM ,mM−1, . . . ,m1). Due to
(2.2.9,.10) we have:

∆1(u)em1em2 . . . emM =

(
M∑

k=1

δ
(mk)
1 (u)

)
em1em2 . . . emM . (4.4.7)

While for any symmetric polynomial S one has:

yiS = qliS (i = 1, . . . , N). (4.4.8)

Now we have the following proposition:
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Proposition 9 Let (m1,m2, . . . ,mM ) ∈ MN , {i1, i2, . . . , iL} ⊂ {1, 2, . . . ,M}
(0 ≤ L ≤M), and {j1, . . . , jM−L} = {1, 2, . . . ,M} \ {i1, i2, . . . , iL}.
Then:

ϕ(m1,m2,...,mM )
σ (σ ∈ S(m1,m2,...,mM)

N,(mi1 ,mi2 ,...,miL
)) = ϕ

(mi1 ,...,miL
)

σ emj1
emj2

. . . emjM−L
. (4.4.9)

Proof. Compute the action of the operators ∆1(u), yi (i = 1, . . . , N). on the polynomial ϕ
(mi1 ,...,miL

)
σ emj1

emj2
. . . emjM−L

.

yiϕ
(mi1 ,...,miL

)
σ S = qlσiϕ

(mi1 ,...,miL
)

σ S (i = 1, . . . , N). (a)

For any symmetric polynomial S.

∆1(u)ϕ
(mi1 ,...,miL

)
σ emj1

emj2
. . . emjM−L

=

= [∆1(u) , ϕ(mi1 ,...,miL
)]emj1

emj2
. . . emjM−L

+

+ ϕ(mi1 ,...,miL
)∆1(u)emj1

emj2
. . . emjM−L

. (b)

Due to the special form of ∆1(u) (Cf. Proposition 4) the commutator in the last formula is a zero-order
differential operator. Therefore if S is a symmetric polynomial we have:

[∆1(u) , ϕ(mi1 ,...,miL
)]S = f(u)S, (4.4.10)

where f(u) is a function of zi (i = 1, . . . , N) independent of S. Furthermore:

∆1(u)1 = 0,

and therefore:

[∆1(u) , ϕ(mi1 ,...,miL
)]1 = ∆1(u)ϕ(mi1 ,...,miL

) =

=
M∑

1≤k≤L

δ
(mik

)

1 (u)ϕ(mi1 ,...,miL
).

Taking (b),(4.4.7,.11) into account we get:

∆1(u)ϕ
(mi1 ,...,miL

)
σ emj1

emj2
. . . emjM−L

=

=

 ∑
1≤k≤L

δ(mik
) +

∑
1≤s≤M−L

δ(mjs )

ϕ
(mi1 ,...,miL

)
σ emj1

emj2
. . . emjM−L

=

=
∑

1≤i≤M

δ(mi)ϕ
(mi1 ,...,miL

)
σ emj1

emj2
. . . emjM−L

.

Since the joint spectrum of ∆1(u) , yi (i = 1, . . . , N) is multiplicity-free, we conclude from (a) and the last
equation that:

ϕ
(mi1 ,...,miL

)
σ emj1

emj2
. . . emjM−L

= constϕ(m1,m2,...,mM )
σ (σ ∈ S(m1,m2,...,mM )

N,(mi1 ,mi2 ,...,miL
)).

(4.4.11)

By comparison of the maximal monomials in the both sides of the equation const = 1.

Since er(z1 = ω1, . . . , zN = ωN ) = 0 (1 ≤ r ≤ N − 1) we have the following corollary to Proposition 9:

Corollary 1 Let (m1,m2, . . . ,mM ) ∈ MN , M > 0 , σ ∈ S(m1,m2,...,mM )
N .

Then:

ϕ(m1,m2,...,mM )
σ (z1 = ω1, . . . , zN = ωN ) = 0

unless σ ∈ S(m1,m2,...,mM )
N,(m1,m2,...,mM ).
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4.5 Limit q → 0 of the eigenfunctions of ∆1(u), yi (i = 1, . . . , N)

1. The aim of this subsection is to compute some of the eigenfunctions ϕλ
σ (λ ∈ MN , σ ∈ Sλ

N ) in the limit
q → 0 under assumption that this limit is well-defined. We do not have a proof of the last statement. In
particular examples where N is small this statement holds.

Introduce operators:

γi,j := qgi,j |q=0 =
zi

zi − zj
(Ki,j − 1) (i 6= j ∈ {1, . . . , N}). (4.4.12)

Lemma 4 Let (m1,m2, . . . ,mM ) ∈ MN , and ψ ∈ C[z1, . . . , zN ] satisfies the equations:

(γmi,mi+1 + 1)ψ = 0 (i = 1, . . . ,M), (4.4.13)
γn,n+1ψ = 0 (n ∈ {1, . . . , N − 1} \ {m1, . . . ,mM}). (4.4.14)

Then

ψ = (z1 . . . zm1)
M (zm1+1 . . . zm2)

M−1 . . . (zmM−1+1 . . . zmM )S(z1, . . . , zN ), (4.4.15)

where S is a symmetric polynomial.

Proof. Let N = 2 , ψ = ψ(z1, z2).
The equation (γ1,2 + 1)ψ = 0 implies that

z1ψ(z2, z1)− z2ψ(z1, z2)
z1 − z2

= 0. (4.4.16)

This leads to ψ(z1, z2) = z1S(z1, z2), where S is a symmetric polynomial.
The equation

γ1,2ψ =
z1(ψ(z2, z1)− ψ(z1, z2))

z1 − z2
= 0, (4.4.17)

yields ψ(z1, z2) = S(z1, z2) where S is a symmetric polynomial.
The case of arbitrary N reduces to the case N = 2 by consideration of consequtive pairs of coordinates.

2. We conjecture that the limit q → 0 of ϕλ
σ is well-defined:

ϕλ
σ|q=0 := ϕλ,0

σ = zλσ + “s.m.” (λ ∈ MN , σ ∈ Sλ
N ). (4.4.18)

In what follows we assume that the statement of the conjecture is valid.
Fix (m1,m2, . . . ,mM ) ∈ MN . Our purpose is to find ϕ(m1,m2,...,mM ),0

σ[0] for σ[0] := (m1,m1+1) . . . (mM ,mM +
1). Take the limit q → 0 in the eq. (4.4.4) of Proposition 9. This yields

(γmi,mi+1 + 1)ϕ(m1,m2,...,mM ),0
σ[0] = ϕ

(m1,m2,...,mM ),0
(mi,mi+1)σ[0] (i = 1, . . . ,M), (4.4.19)

γn,n+1ϕ
(m1,m2,...,mM ),0
σ[0] = 0 (n ∈ {1, . . . , N − 1} \ {m1, . . . ,mM}). (4.4.20)

According to Proposition 12, we have

ϕ
(m1,m2,...,mM ),0
(mi,mi+1)σ[0] = ϕ

(m1,m2,...,mM),0

(m1,m1+1)... ̂(mi,mi+1)...(mM ,mM+1)
=

ϕ
(m1,...,m̂i,...,mM ),0

(m1,m1+1)... ̂(mi,mi+1)...(mM ,mM+1)
emi (i = 1, . . . ,M). (4.4.21)

Where we put a hat over terms that are omitted.
The pair of equations (4.4.20,.21) provides a set of recurrent relations for the eigenfunctions ϕ(m1,m2,...,mM),0

σ[0] .

Notice that when M = 0 we have ϕ(∅),0
σ[0] = 1. Taking into account Lemma 4 we write the general solution of

these recurrent relations:

ϕ
(∅),0
σ[0] = 1, (4.4.22)

ϕ
(m1,m2,...,mM ),0
σ[0] = (em1 − z1 . . . zm1)(em2 − z1 . . . zm2) . . . (emM − z1 . . . zmM ) +

+ (z1 . . . zm1)
M (zm1+1 . . . zm2)

M−1 . . . (zmM−1+1 . . . zmM )×
× S(m1,m2,...,mM )(z1, . . . , zN) (M ≥ 1).
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Where S(m1,m2,...,mM)(z1, . . . , zN ) is an arbitrary symmetric polynomial.
Observe now that the total degree of the homogeneous polynomial ϕ(m1,m2,...,mM),0

σ[0] is equal to m1 + · · · +
mM ((m1,m2, . . . ,mM ) ∈ MN ). Therefore we must have S(m1,m2,...,mM )(z1, . . . , zN ) = const. Observe further
that

(z1 . . . zm1)
M (zm1+1 . . . zm2)

M−1 . . . (zmM−1+1 . . . zmM ) >

> max(ϕ(m1,m2,...,mM ),0
σ[0] ) (σ[0] := (m1,m1 + 1) . . . (mM ,mM + 1)). (4.4.23)

Where max(ϕ(m1,m2,...,mM ),0
σ[0] ) is the maximal monomial of ϕ(m1,m2,...,mM ),0

σ[0] .Therefore we must have: S(m1,m2,...,mM )(z1, . . . , zN ) =
0.

Thus for (m1,m2, . . . ,mM ) ∈ MN :

ϕ
(∅),0
σ[0] = 1,

ϕ
(m1,m2,...,mM ),0
σ[0] = (em1 − z1 . . . zm1)(em2 − z1 . . . zm2) . . . (emM − z1 . . . zmM )

(M ≥ 1)

Notice that

ϕ
(m1,m2,...,mM ),0
σ[0] (z1 = ω1, . . . , zN = ωN ) = (−1)Mω

1
2

∑M

i=1
mi(mi+1),

((m1,m2, . . . ,mM ) ∈ MN , σ[0] = (m1,m1 + 1) . . . (mM ,mM + 1)). (4.4.25)

5 Hecke-invariant (“bosonic”) subspaces of Eλ ⊗H for λ ∈ MN

5.1 Preliminaries

1. Let Eλ ⊂ C[z1, . . . , zN ] be the eigenspace of the operators ∆1(u) , yi (i = 1, . . . , N) parametrized by a
partition λ and H := (C2)⊗N . The bosonic subspace Bλ of Eλ ⊗H is defined as follows:

Bλ := {b ∈ Eλ ⊗H |(gi,i+1 − ti,i+1)b = 0 (i = 1, . . . , N − 1)}. (5.5.1)

Since P := C[z1, . . . , zN ] ⊗H = ⊕λ(Eλ ⊗H) and gi,i+1 : Eλ 7→ Eλ (i = 1, . . . , N − 1); we have: B = ⊕λBλ.
(Cf. (1.1.36), (3.3.7) for the definition of B).
2. Any vector ψ from Eλ ⊗H is represented as follows:

ψ =
∑

σ∈Sλ
N

ϕλ
σχσ, (5.5.2)

where χσ (σ ∈ Sλ
N ) ∈ H .

The condition (gi,i+1 − ti,i+1)ψ = 0 (i = 1, . . . , N − 1) gives a set of linear equations which must be satisfied
by the vectors χσ (σ ∈ Sλ

N ) ∈ H. In order to derive these equations we can apply the result of Proposition 9 to
find out the action of gi,i+1 (i = 1, . . . , N − 1) on ψ, and then use the linear-independence of the polynomials
ϕλ

σ (σ ∈ Sλ
N ). In this way we arrive at the following proposition:

Proposition 10 A vector ψ ∈ Eλ ⊗ H ; ψ =
∑

σ∈Sλ
N
ϕλ

σχσ belongs to Bλ iff χσ (σ ∈ Sλ
N ) ∈ H satisfy the

following set of equations (i = 1, . . . , N − 1):

q
(q−1qlσi+1 − qqlσi )(q−1qlσi − qqlσi+1 )

qlσi − qlσi+1
χ(i,i+1)σ = (a)

=
(
(qlσi+1 − qlσi )ti,i+1 − (q − q−1)qlσi+1

)
χσ

when λσi+1 > λσi ,

(ti,i+1 − q)χσ = 0 (b)

when λσi+1 = λσi ⇔ (i, i+ 1)σ 6∈ Sλ
N ⇒ σi+1 = σi + 1 ,

χ(i,i+1)σ =
(qlσi+1 − qlσi )ti,i+1 − (q − q−1)qlσi+1

q−1(qlσi+1 − qlσi )
χσ (c)

when λσi+1 < λσi .
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5.2 Spaces Bµ for µ ∈ MN

1. Let us fix a partition µ ∈ MN parametrized by a motif (m1,m2, . . . ,mM ). We use the same notation
(m1,m2, . . . ,mM ) for both the motf and the partition.
For µ ∈ MN let us further analyse the equations (a)-(c) obtained in the Proposition 10. In section 4.3 (Definition
3) we introduced the decomposition of the set S(m1,m2,...,mM )

N into disjoint subsets:

S
(m1,m2,...,mM )
N =

⊔
{i1,i2,...,iL}∈{1,2,...,M}

S
(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) (0 ≤ L ≤M) (5.5.3)

This decomposition is reflected in the equations (a)-(c) of the Proposition 10.
2. Let in these equations σ , i be such that σ , (i, i + 1)σ ∈ S

(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) for some {i1, i2, . . . , iL} ∈
{1, 2, . . . ,M}. According to Proposition 8,(iii) |σi − σi+1| ≥ 2.

Let σi − σi+1 ≥ 2 and consequently µσi < µσi+1 . Since σi − σi+1 ≥ 2 the coefficient in front of χ(i,i+1)σ in
Pr.10(a) is not equal to zero. Therefore we have:

χ(i,i+1)σ =
(qlσi − qlσi+1 )((qlσi+1 − qlσi )ti,i+1 − (q − q−1)qlσi+1 )

q(q−1qlσi+1 − qqlσi )(q−1qlσi − qqlσi+1 )
χσ

(σ, (i, i+ 1)σ ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) , σi − σi+1 ≥ 2). (5.5.4)

Let σi − σi+1 ≤ −2 and consequently µσi > µσi+1 . Pr.10(c) gives:

χ(i,i+1)σ =
((qlσi+1 − qlσi )ti,i+1 − (q − q−1)qlσi+1 )

q−1(qlσi+1 − qlσi )
χσ

(σ, (i, i+ 1)σ ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) , σi − σi+1 ≤ −2). (5.5.5)

Introduce a pair of U -intertwiners:

Y ±(z) := %±(z)
zt− t−1

q−1z − q
∈ End(V ⊗ V ), (5.5.6)

where

%+(z) :=
z − 1
q2z − 1

, %−(z) :=
z − q2

z − 1
. (5.5.7)

The eq. (5.5.4,.5) can be reformulated as follows: Let σ, (i, i+ 1)σ ∈ S(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

)

({i1, i2, . . . , iL} ∈ {1, 2, . . . ,M} (0 ≤ L ≤M)) then:

χ(i,i+1)σ =

{
Y +

i,i+1(q
lσi
−lσi+1 )χσ when σi − σi+1 ≥ 2 ⇒ µσi < µσi+1 ,

Y −i,i+1(q
lσi
−lσi+1 )χσ when σi − σi+1 ≤ −2 ⇒ µσi > µσi+1 .

(5.5.8)

Notice that when σ, (i, i+ 1)σ ∈ S(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

) the intertwiners Y ±i,i+1(q
lσi
−lσi+1 ) are invertible.

3. Now consider the situation when σ and (i, i+1)σ in Proposition 10 belong to different subsets S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

).
According to Proposition 8 this situation takes place when |σi − σi+1| = 1.
Let σi+1 = σi + 1 and consequently µσi > µσi+1 . In this case ∃ s ∈ {1, 2, . . . ,M} s.t. σi = ms , σi+1 = ms + 1
or , equivalently , i = pσ

ms
, i + 1 = pσ

ms+1; and if σ ∈ S
(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) then s 6∈ {i1, i2, . . . , iL}. Since

((i, i+ 1)σ)i = ms + 1 , ((i, i+ 1)σ)i+1 = ms; we have (i, i+ 1)σ ∈ S(m1,m2,...,mM )
N,(ms,mi1 ,...,miL

).
Substituting σi+1 = σi + 1 into Pr.10(c) we find:

χ(i,i+1)σ = q(ti,i+1 − q)χσ = −(q2 + 1)Π−
i,i+1(q)χσ

(σ ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) , (i, i+ 1)σ ∈ S(m1,m2,...,mM )
N,(ms,mi1 ,...,miL

) ,

σi = ms, σi+1 = ms + 1(s ∈ {1, 2, . . . ,M} \ {i1, i2, . . . , iL})). (5.5.9)
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(Cf. (1.1.12,.13) for the definition of projectors Π±
i,i+1(q)).

Let σi = σi+1 + 1 and consequently µσi < µσi+1 . In this case ∃ s ∈ {1, 2, . . . ,M} s.t. σi = ms + 1 , σi+1 = ms ;
and since σ ∈ S(m1,m2,...,mM )

N,(mi1 ,mi2 ,...,miL
) ; s ∈ {i1, i2, . . . , iL}. On the other hand (i, i+ 1)σ ∈ S(m1,m2,...,mM )

N,(mi1 ,...,miL
)\ms

.

Here (mi1 , . . . ,miL) \ms signifies the motif obtained from (mi1 , . . . ,miL) by removing ms.
Substituting σi = σi+1 + 1 into Pr.10(a) we find:

(ti,i+1 + q−1)χσ = 0 ⇒ Π+
i,i+1(q)χσ = 0

(σ ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) , (i, i+ 1)σ ∈ S(m1,m2,...,mM )
N,(mi1 ,...,miL

)\ms
,

σi = ms + 1, σi+1 = ms(s ∈ {i1, i2, . . . , iL} ⊂ {1, 2, . . . ,M})). (5.5.10)

4. Now we are in position to reformulate Propositon 10 in a more suitable form in the case when λ ≡ µ ≡
(m1,m2, . . . ,mM ) ∈ MN .

Proposition 11 Let ψ ∈ Eµ ⊗H, i.e.

ψ =
∑

σ∈S
(m1,m2,...,mM )
N

ϕ(m1,m2,...,mM)
σ χσ (χσ ∈ H). (5.5.11)

Then ψ ∈ B(m1,m2,...,mM) iff χσ (σ ∈ S(m1,m2,...,mM)
N ) satisfy the following linear relations:

∀ {i1, i2, . . . , iL} ⊂ {1, 2, . . . ,M} (0 ≤ L ≤M)
χ(mi1 ,mi1+1)...(miL

,miL
+1) =

= −(q2 + 1)Π−
mik

,mik
+1(q)χ(mi1 ,mi1+1)... ̂(mik

,mik
+1)...(miL

,miL
+1)

(k = 1, 2, . . . , L). (5.5.12)

Wherêmeans that the corresponding factor is omitted from the product.

∀ {i1, i2, . . . , iL} ⊂ {1, 2, . . . ,M} (0 ≤ L ≤M)
and j ∈ {1, . . . , N − 1} s.t.

{j, j + 1} ∩ {m1,m1 + 1,m2,m2 + 1, . . . ,mM ,mM + 1} = ∅ ;

Π−
j,j+1(q)χ(mi1 ,mi1+1)...(miL

,miL
+1) = 0. (5.5.13)

∀ σ ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) ({i1, i2, . . . , iL} ⊂ {1, 2, . . . ,M} (0 ≤ L ≤M)) (5.5.14)

χσ = Y(σ)χ(mi1 ,mi1+1)...(miL
,miL

+1).

Where invertible Y(σ) ∈ End(H) is recursively defined as follows:

Y((mi1 ,mi1 + 1) . . . (miL ,miL + 1)) := Id ,

for (i, i+ 1)σ ∈ S
(m1,m2,...,mM)
N,(mi1 ,mi2 ,...,miL

)

Y((i, i+ 1)σ) =

{
Y +

i,i+1(q
lσi
−lσi+1 )Y(σ) if σi − σi+1 ≥ 2 ,

Y −i,i+1(q
lσi
−lσi+1 )Y(σ) if σi − σi+1 ≤ −2 .

It is possible to give more explicit expression for the matrix Y(σ) that appears in (5.5.14). In notation of
Proposition 8 (ii) we have:

For σ ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) ({i1, i2, . . . , iL} ⊂ {1, 2, . . . ,M} (0 ≤ L ≤M))

Y(σ) = Y −jr ,jr+1(q
lσ[r−1]jr

−lσ[r−1]jr+1 ) . . . Y −j1,j1+1(q
lσ[0]j1

−lσ[0]j1+1 ). (5.5.15)
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Where:

σ[k] := (jk, jk + 1) . . . (j1, j1 + 1)σ[0] ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

) (1 ≤ k ≤ r),

σ[0] := (mi1 ,mi1 + 1) . . . (miL ,miL + 1),
σ[r] = σ

σ[k − 1]jk
− σ[k − 1]jk+1 ≤ −2 (1 ≤ k ≤ r). (5.5.16)

5. Introduce two definitions.
For (m1,m2, . . . ,mM ) ∈ MN :

Z(m1,m2,...,mM) :=
{
v ∈ H Π−

j,j+1(q)v = 0 for all j ∈ {1, . . . , N − 1} s.t.
{j, j + 1} ∩ {m1,m1 + 1, . . . ,mM ,mM + 1} = ∅

}
(5.5.17)

More explicitely:

Z(m1,m2,...,mM ) = Sq(V
1
⊗ · · · ⊗ V

m1−1
)⊗ V

m1
⊗ V

m1+1
⊗ Sq( V

m1+2
⊗ · · · ⊗ V

m2−1
)⊗ V

m2
⊗ V

m2+1
⊗

. . .⊗ Sq( V
mM+2

⊗ · · · ⊗ V
N

) ⊂ H := V
1
⊗ V

2
⊗ . . .⊗ V

N
.

Where Sq means q-symmetrization and the subscripts indicate positions of the factors in the tensor product
V ⊗N .

For any {i1, i2, . . . , iL} ∈ {1, 2, . . . ,M} (0 ≤ L ≤M) define the following projector:

Π−,(m1,m2,...,mM )
(mi1 ,...,miL

) :=

{
Π−

mi1 ,mi1+1(q) . . .Π
−
miL

,miL
+1(q) (1 ≤ L ≤M),

I (L = 0).
(5.5.18)

6. Proposition 11 yields the following expression for Bµ ≡ B(m1,m2,...,mM):

B(m1,m2,...,mM) = U(m1,m2,...,mM )(z)Z(m1,m2,...,mM). (5.5.19)

Where

U(m1,m2,...,mM)(z) :=

∑
I⊂{1,2,...,M}

I:={i1,i2,...,iL}

(−(q2 + 1))L


∑

σ∈S
(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

)

ϕ(m1,m2,...,mM)
σ (z)Y(σ)

Π−,(m1,m2,...,mM )
(mi1 ,...,miL

) ,

U(m1,m2,...,mM )(z) : H 7→ C[z1, . . . , zN ]⊗H. (5.5.20)

In the last formula we explicitely indicated z-dependence of the polynomials ϕ(m1,m2,...,mM)
σ .

7. The space B(m1,m2,...,mM ) is a U -module where the action of U is given by (2.2.19):

T 0
a (u) = La(u; {yi}) := La1(uy1)La2(uy2) . . . LaN (uyN) ∈ End(C[z1, . . . , zN ]⊗H).

(5.5.21)

The space Z(m1,m2,...,mM) is a (reducible,indecomposable) U -module as well, with the U -action:

La(u; {qli}) := La1(uql1)La2(uql2) . . . LaN(uqlN ) ∈ End(H). (5.5.22)

The operator U(m1,m2,...,mM )(z) in (5.5.19,.20) is an U -intertwiner of these two modules. To see this let us
consider the product T 0

a (u)U(m1,m2,...,mM )(z).Since ϕ(m1,m2,...,mM )
σ (z) are eigenvectors of yi (i = 1, . . . , N) (Cf.
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Proposition 6) we get:

T 0
a (u)U(m1,m2,...,mM )(z) = ∑

I⊂{1,2,...,M}
I:={i1,i2,...,iL}

(−(q2 + 1))L ×

×


∑

σ∈S
(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

)

ϕ(m1,m2,...,mM )
σ (z)La(u; {qlσi})Y(σ)

Π−,(m1,m2,...,mM)
(mi1 ,...,miL

) . (5.5.23)

It follows from the recursive definition of Y(σ) (σ ∈ S(m1,m2,...,mM )
N,(mi1 ,mi2 ,...,miL

)) given in Proposition 11 that Y(σ) is
an U -intertwiner:

La(u; {qlσi})Y(σ) = Y(σ)La(u; {qlσ[0]i}). (5.5.24)

Where σ[0] = (mi1 ,mi1 + 1) . . . (miL ,miL + 1).
Furthermore the projector Π−,(m1,m2,...,mM )

(mi1 ,...,miL
) is an interwiner as well (Cf. 1.1.28):

La(u; {qlσ[0]i}Π−,(m1,m2,...,mM )
(mi1 ,...,miL

) = Π−,(m1,m2,...,mM)
(mi1 ,...,miL

) La(u; {qli}). (5.5.25)

Hence we obtain:

T 0
a (u)U(m1,m2,...,mM)(z) = U(m1,m2,...,mM)(z)La(u; {qli}). (5.5.26)

Thus the intertwinig property of U(m1,m2,...,mM)(z) is established.

6 Spectrum and eigenspaces of the operators Ξ(n)(ω) (n = 1, . . . , N−1)
forming the hierarchy of U-invariant Spin Models.

6.1 Eigenspaces Hµ
B(ω) of the generating function Ξ(u; ω)

1. Let µ ≡ (m1,m2, . . . ,mM ) ∈ MN . Define a subspace Hµ
B(ω) ⊂ HB(ω) ⊂ H by applying the evaluation map

Ev(ω) (Cf. 3.1) to the “bosonic” subspace B(m1,m2,...,mM) introduced in the previous section:

H
(m1,m2,...,mM)
B (ω) := Ev(ω)B(m1,m2,...,mM ) ((m1,m2, . . . ,mM ) ∈ MN ). (6.6.1)

From (3.3.13,.14,.19) we obtain

Ξ(u;ω)H(m1,m2,...,mM )
B (ω) =

(
M∑
i=1

(δ(mi)
1 (u)− θ(u)mi)

)
H

(m1,m2,...,mM )
B (ω)

((m1,m2, . . . ,mM ) ∈ MN ). (6.6.2)

Where δ(mi)
1 (u) was defined in (4.4.6) and θ(u) was defined in (2.2.6). The last equation says thatH(m1,m2,...,mM)

B (ω)
is an eigenspace of Ξ(u;ω) unless H(m1,m2,...,mM )

B (ω) ≡ 0.

2. Application of the evaluation map Ev(ω) to B(m1,m2,...,mM) (5.5.19) yields the explicit expression for the
space H(m1,m2,...,mM )

B (ω):

H
(m1,m2,...,mM )
B (ω) = U(m1,m2,...,mM)(ω)Z(m1,m2,...,mM) ((m1,m2, . . . ,mM ) ∈ MN ). (6.6.3)

Where

U(m1,m2,...,mM)(ω) := U(m1,m2,...,mM )(z1 = ω1, . . . , zN = ωN) =

= (−(q2 + 1))M
∑

σ∈S
(m1,m2,...,mM )
N,(m1,m2,...,mM )

ϕ(m1,m2,...,mM )
σ (ω)Y(σ)Π−,(m1,m2,...,mM )

{1,2,...,M} ,

U(m1,m2,...,mM)(ω) : H 7→ H. (6.6.4)
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To get the expression for U(m1,m2,...,mM )(ω) we used the Corollary 1 to Proposition 9.

Let us introduce the notation

W (m1,m2,...,mM ) := Π−,(m1,m2,...,mM )
{1,2,...,M} Z(m1,m2,...,mM ) ((m1,m2, . . . ,mM ) ∈ MN ). (6.6.5)

The definition of Z(m1,m2,...,mM) given in (5.5.17) leads to a more explicit form of W (m1,m2,...,mM ):

W (m1,m2,...,mM) =
Sq(V

1
⊗ · · · ⊗ V

m1−1
)⊗Aq(V

m1
⊗ V

m1+1
)⊗ Sq( V

m1+2
⊗ · · · ⊗ V

m2−1
)⊗Aq(V

m2
⊗ V

m2+1
)⊗

. . .⊗ Sq( V
mM +2

⊗ · · · ⊗ V
N

) ⊂ H := V
1
⊗ V

2
⊗ . . .⊗ V

N
. (6.6.6)

Where Aq signifies q-antisymmetrization (1.1.15).
Observe that W (m1,m2,...,mM) ((m1,m2, . . . ,mM ) ∈ MN ) is an irreducible highest-wight U -module with

the U -action is given by

La(u; {qlσ[0]i}) := La1(uqlσ[0]1 )La2(uqlσ[0]2 ) . . . LaN (uqlσ[0]N ) ∈ End(H). (6.6.7)

Where we used the notation

σ[0] := (m1,m1 + 1)(m2,m2 + 1) . . . (mM ,mM + 1) ((m1,m2, . . . ,mM ) ∈ MN ). (6.6.8)

The Drinfeld polynomial of this module is

Q(m1,m2,...,mM )(u) =
∏

1≤n≤N
n6=mi,mi+1

(1− q−lnu). (6.6.9)

According to (6.6.3) we have

H
(m1,m2,...,mM )
B (ω) = Ǔ(m1,m2,...,mM )(ω)W (m1,m2,...,mM ) ((m1,m2, . . . ,mM ) ∈ MN ),

Ǔ(m1,m2,...,mM)(ω) := (−(q2 + 1))M
∑

σ∈S
(m1,m2,...,mM )
N,(m1,m2,...,mM )

ϕ(m1,m2,...,mM )
σ (ω)Y(σ). (6.6.10)

3. The spaceH(m1,m2,...,mM )
B (ω) ((m1,m2, . . . ,mM ) ∈ MN ) is a U -module with the U -action given by T 0

a (u;ω)
defined in (3.3.19). Explicitely (Cf. 5.5.23):

T 0
a (u;ω)H(m1,m2,...,mM )

B (ω) = T 0
a (u;ω)Ǔ(m1,m2,...,mM )(ω)W (m1,m2,...,mM ) =

= (−(q2 + 1))M
∑

σ∈S
(m1,m2,...,mM )
N,(m1,m2,...,mM )

ϕ(m1,m2,...,mM )
σ (ω)La(u; {qlσi})Y(σ),

La(u; {qlσi}) := La1(uqlσ1 )La2(uqlσ2 ) . . . LaN (uqlσN ). (6.6.11)

Applying (5.5.24) we find that Ǔ(m1,m2,...,mM) is an intertwiner of the modulesH(m1,m2,...,mM )
B (ω) andW (m1,m2,...,mM ):

T 0
a (u;ω)H(m1,m2,...,mM )

B (ω) = T 0
a (u;ω)Ǔ(m1,m2,...,mM )(ω)W (m1,m2,...,mM ) =

Ǔ(m1,m2,...,mM )(ω)La(u; {qlσ[0]i})W (m1,m2,...,mM) ((m1,m2, . . . ,mM ) ∈ MN ). (6.6.12)

Since W (m1,m2,...,mM) is irreducible so is H(m1,m2,...,mM )
B (ω). The highest-weight vector of W (m1,m2,...,mM )

is (Cf. 6.6.6)

Ω̃(m1,m2,...,mM) :=

v+ ⊗ · · · ⊗ v+ ⊗ (v+

m1
⊗ v−

m1+1
− qv− ⊗ v+)⊗ . . . ⊗ v+ ⊗ · · · ⊗ v+. (6.6.13)

If the vector Ω(m1,m2,...,mM ) := Ǔ(m1,m2,...,mM )Ω̃(m1,m2,...,mM) ∈ H(m1,m2,...,mM)
B (ω) is not zero, it is the highest-

weight vector, and the modules H(m1,m2,...,mM )
B (ω) and W (m1,m2,...,mM ) are isomorphic , with Ǔ(m1,m2,...,mM )

defining the isomorphism explicitely.
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4. In order to show that Ω(m1,m2,...,mM ) ((m1,m2, . . . ,mM ) ∈ MN ) is not zero we compute this vector at
q = 0.
Consider the matrix Y(σ) (σ ∈ S

(m1,m2,...,mM )
N,(m1,m2,...,mM)) that enters the definition of Ǔ(m1,m2,...,mM). According to

(5.5.15,.16):

Y(σ) = Id (σ = σ[0] := (m1,m1 + 1) . . . (mM ,mM + 1)), (6.6.14)

Y(σ) = Y(σ)′Y −i,i+1(q
lσ[0]i−lσ[0]i+1 ) (σ 6= σ[0]). (6.6.15)

Where depending on σ , i takes one of the values in the set {mk − 1,mk + 1}k∈{1,2,...,M}. For any such i we
have σ[0]i − σ[0]i+1 = −2. Y(σ)′ is either identity or a product of intertwiners of the form Y −j,j+1(q

−2r) j ∈
({1, . . . , N − 1}) where r ≥ 2.
For r ≥ 2 we find

Y −j,j+1(q
−2r)|q=0 = −Π−

j,j+1(0) = −(|+− >< +− |)j,j+1 (j = 1, . . . , N − 1). (6.6.16)

Thus

lim
q→0

Y(σ) = −Y(σ)′|q=0Π−
i,i+1(0) (i ∈ {mk − 1,mk + 1}k∈{1,2,...,M}),

(σ ∈ S(m1,m2,...,mM )
N,(m1,m2,...,mM ), σ 6= σ[0]). (6.6.17)

The highest-weight vector Ω̃(m1,m2,...,mM ) in the limit q → 0 is

Ω̃(m1,m2,...,mM),q=0 :=

v+ ⊗ · · · ⊗ v+

m1
⊗ v−

m1+1
⊗ v+ · · · ⊗ v+

m2
⊗ v−

m2+1
⊗ . . . ⊗ v+ ⊗ · · · ⊗ v+. (6.6.18)

Therefore taking into account (6.6.17) and (4.4.26) we arrive at the following expression for Ω(m1,m2,...,mM) ∈
H

(m1,m2,...,mM )
B (ω) at q = 0:

Ω(m1,m2,...,mM),q=0 = (−1)Mϕ
(m1,m2,...,mM )
σ[0] (ω)Ω̃(m1,m2,...,mM ),q=0 =

= ω
1
2

∑M

i=1
mi(mi+1)Ω̃(m1,m2,...,mM ),q=0. (6.6.19)

Since Ω(m1,m2,...,mM),q=0 is not zero we can argue that same holds for any generic value of q (not a root of
unity) and therefore H(m1,m2,...,mM )

B (ω) and W (m1,m2,...,mM) are isomorphic U -modules for any generic q and
(m1,m2, . . . ,mM )
∈ MN .

5. From consideration of the case q = 0 we deduce that

H =
⊕

(m1,m2,...,mM)∈MN

W (m1,m2,...,mM). (6.6.20)

Since the U -modulesH(m1,m2,...,mM )
B (ω) have different Drinfeld polynomials (6.6.9) for different motifs (m1,m2, . . . ,mM )

any two of these modules do not intersect except at zero vector. Therefore we can take the direct sum of all
these modules. Since dimH(m1,m2,...,mM )

B (ω) = dimW (m1,m2,...,mM ), we conclude from (6.6.20) that

H =
⊕

(m1,m2,...,mM )∈MN

H
(m1,m2,...,mM )
B (ω). (6.6.21)

Thus we have found the complete decomposition of the space of states into eigenspaces of the operator Ξ(u;ω),
as well as the U -representation content of this decomposition.
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