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Quantum oscillator and a bound system of two dyons
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Abstract

It is shown that U(1){Hamiltonian reduction of a four{dimensional isotropic

quantum oscillator results in a bound system of two spinless Schwinger's dyons. Its

wavefunctions and spectrum are constructed.
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Introduction

In this note, we carry out the U(1){Hamiltonian reduction of the Schr�odinger equation

and constants of motion of a four{dimensional quantum isotropic oscillator to the sys-

tem describing nonrelativistic interaction of two bound spinless Schwinger's dyons in the

center{of{mass system and construct its wavefunctions and spectrum. This system was

�rst constructed by Zwanziger [1] (see also [2]). It is speci�ed by hidden symmetry caused

by constants of motion of the type of the Runge{Lenz vector in the Kepler problem.

The proposed scheme of reduction is the Kustaanheimo{Stifel transformation [3] with

a nonzero eigenvalue of the generator of the group U(1). A similar reduction was made

in ref. [4]; however, the authors did not know the physical meaning of the system they

constructed, therefore, its important properties were unnoticed [6]. In our consideration,

we will omit the details of calculation coincident with those of classical reduction [5].

We will use the following notation: � and ! are oscillator parameters; z� = u�+ iu�+2

and ~r = (x1; x2; x3) are Cartesian coordinates of spaces IC2 = IR4 and IR3 respectively,

u = jzj; r = j~rj; ~� are the Pauli matrices in a standard representation; and a = (�!
�h
)
1

2 is a

parameter with the dimension of inverse length.

Schr�rodinger's equation and constants of motion

An isotropic oscillator on the space IC2 is described by the Schr�rodinger's equation
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	 = 0 , Hosc	 = E	: (1)

Its constants of motion
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form the algebra:

fJk;Jlg = i"klmJm; fJk;Ilg = i"klmIm; fIk;Ilg = i(2�h!)2"klmJm: (3)

Let us now perform the quantum reduction of this system with respect to the action of
group U(1) given by the operator

J0 =
1

2
(z�

@

@z�
� �z�

@

@�z�
); (4)

commuting with the constants of motion (2) and with the oscillator's Hamiltonian

[J0;Hosc] = 0; [J0;Ji] = 0 [J0;Ii] = 0: (5)

To this end, we introduce the operators

~r = �z�~���z
�; ~̂p =

i�h

2(z�z)
(z��̂��

@

@z�
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); (6)
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obeying the relations

[J0; ~r] = 0; [J0; ~̂p] = 0 (7)

[xk; xl] = 0; [xk; p̂l] = i�h�kl; [p̂k; p̂l] = �h2"klm xm

r3
J0: (8)

To a �xed eigenvalue of the operator J0

J0	 = s	 (9)

there corresponds the wavefunction

	(z; �z) =  (~r)eis ; (10)

where  is a function conjugate to the operator J0:

 =
i

2
(log z1=�z1 + log z2=�z2);  2 [0; 4�) : [J0; ] = i: (11)

Here also we have
~̂p( eis) = (�̂ )eis; (12)

where

�̂ = �i�h
@

@~r
� �hs ~A; ~A =

~n3~r

r

~n3 � ~r

r2 � (~n3~r)2
: (13)

and ~A is a vector potential of the Schwinger's monopole with a unit magnetic charge and
a singular line along the axis x3; ~n3 = (0; 0; 1).

Owing to the relations (5) and (7), the oscillator's Hamiltonian and constants of motion

(2) are expressed through ~r; ~̂p;J0. As a result, the substitution (10) reduces equation (1)
to the form

Ĥ = �
�!2

8
 ; Ĥ =

�h2

2�
�̂2 �

E

4r
+

�h2s2

2�r2
; (14)

whereas the constants of motion of the oscillator (2) are reduced to the operators

~J = ��̂ � ~r +
�hs~r

r
; ~I =

�h2

2�
�̂ � ~J +

~r

2r
; (15)

i.e. to the total angular momentum of the system and to an analog of the Runge{Lenz
vector.

From the requirement for the wavefunction (10) being single{valued we derive imme-
diately

s = 0;�1=2;�1; : : : : (16)

The obtained system describes nonrelativistic interaction of two spinless dyons with

electric amd magnetic charges (e1; g1) and (e2; g2) and energy E if we put

e1g2 � e2g1

�hc
= s; e1e2 + g1g2 =

E

4
; E = �

�!2

8
: (17)

The parameter � represents the reduced mass; the description holds in the centre-of-mass

system [1]. The �rst of formulae (17) together with (16) acquires the meaning of the
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Dirac's condition of charge quantization.

Remark. The vector{potential shape in (13) depends on the choice of the coordinate 

conjugate to the operator J0. For instance, the vector potential of the Dirac's monopole

is described by the following choice of the coordinate  [4] :

 = i log z1=�z1;  2 [0; 4�)) ~A =
1

r

~n3 � ~r

r � (~n3~r)
: (18)

This system can be interpreted only as the \charge{Dirac's dyon" system [5, 1].

Wavefunctions and spectrum

The system of equations

Hosc	 = E	 ; JiJi	 = j(j + 1)	;

J0	 = s	 ; J3	 = m	; (19)

is separated in the coordinates u 2 [0;1); � 2 [0; �]; � 2 [0; 2�);  2 [0; 4�):

z1 = u cos
�

2
e�i

�+

2 z2 = u sin
�

2
ei
��

2 : (20)

As a result, the solution to the system (19) is of the form

	Ejms = REj(u)D
j
ms(�; �; ): (21)

where Dj
ms(�; �; ) is the Wigner function

Dj
ms(�; �; ) = eim�djms(�)e

is; (22)

and the radial function REj obeys the equation

d2REj

d�2
+

3

�

dREj

d�
� [

4j(j + 1)

�2
+ �2 � �]REj = 0; (23)

with � = (au)2, � = 2�E

�h2a2
,

The substitution REj = �je��=2W (�) reduces eq. (23) to the equation for the conuent
hypergeometric function

�W 00 + (2j + 1� �)W 0 + (
�

4
� j � 1)W = 0:

The solution regular at the point � = 0 is given by

W (�) = constF (j + 1 �
�

4
; 2j + 1; �):

As a result,

Rnj(�) = const �je��=2F (�n+ 1; 2j + 1; �); (24)
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where j + 1 � �=4 = �n + 1. Expressions (21), (22) and (24) determine the oscillator

basis.

From the requirement REj(1) = 0 and uniqueness of the function (22)it follows, that:

n = 1; 2; 3; : : : ; m; s = �j;�j + 1; : : : ; j � 1; j; 2j = 0; 1; : : : : Then, upon introducing

the principal quantum number N = 2n+2j �2 , we obtain the following relations for the

oscillator spectrum:

E = �h!(N + 2); N = 0; 1; 2; : : : ; (25)

2j = 0; 1; : : : N ; (26)

m; s = �j;�j + 1; : : : ; j � 1; j : (27)

At �xed j the (2j + 1)2 states corresponds to the level EN . Since j = N=2; N=2 � 1; : : :,

the degree of degeneracy of the Nth level is equals to

gN =
1

6
(N + 1)(N + 2)(N + 3):

Now we can construct the wavefunctions and spectrum of the reduced system.

The coordinates of space IC2 transform into the spherical coordinates of space IR3 :(r =

u2; � = �; � = �).
Comparison of (10) with (21) gives the following wavefunction of the reduced system

 njm(~r; s) = const Rnj(ar)d
j
ms(�)e

im�: (28)

and expressions (17), (25) result in the energy spectrum for the system

Esk = �
�(e1e2 + g1g2)

2

2�h2(k + jsj)2
; k = 1; 2; : : : : (29)

For �xed Esk

j = jsj; jsj+ 1; : : : ; k + jsj � 1; m = �j;�j + 1; : : : ; j � 1; j:

Therefore, the energy levels (29) are degenerated with multiplicity gsk = k(k + 2jsj):
Thus, having reduced a 4{dimensional quantum oscillator, we have constructed the

Schr�rodinger's equation for a bound system of two Schwinger's dyons, its constants of
motion, wavefunctions and the spectrum.

We stress that the quantum numbers j;m characterize the total angular momentum

(spin) and its projection onto the axis x3. Therefore, integer and half{integer values of

s represent, respectively, integer and half{ integer values of the system's spin . At s = 0
the system becomes hydrogen{like.

Under the identical transformation � ! � + 2�, the wavefunction of the reduced

system acquires the phase 2�m: it is single{valued at integer s and changes in sign at

half{integer s.
The wavefunction of the ground state (k = 1; j = jsj) of the system is of the form

 1;m(~r; s) = const rjsje�r=(jsj+1)(sin �)jsj(tan
�

2
)�meim�:
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It is seen that the ground state is degenerated (with respect to the quantum number m)

and is not spherically symmetric: the system has a nonzero dipole moment.

Note is to be made that when m 6= �jsj, we have j (� = 0)j2 = j (� = �)j2 = 0,

which means that the system is attened to the plane x3 = 0 and the charge cannot be

on the singular line. This property holds valid for excited states as well.

At m = jsj we have j (� = 0)j2 6= 0; j (� = �)j2 = 0, which implies that the charge

cannot be on the lower semiaxis x3. At m = �jsj the charge cannot be on the upper

semiaxis x3.
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