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Abstract

Quantum chaos|the study of quantized nonintegrable Hamilto-

nian systems|is an extremely well-developed and sophisticated �eld.

By contrast, very little work has been done in looking at quantum

versions of systems which classically exhibit dissipative chaos. Using

the decoherence formalism of Gell-Mann and Hartle, I �nd a quantum

mechanical analog of one such system, the forced damped Du�ng os-

cillator. I demonstrate the classical limit of the system, and discuss

its decoherent histories. I show that using decoherent histories, one

can de�ne not only the quantum map of an entire density operator,

but can �nd an analog to the Poincar�e map of the individual trajec-

tory. Finally, I argue the usefulness of this model as an example of

quantum dissipative chaos, as well as of a practical application of the

decoherence formalism to an interesting problem.
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1 Introduction

1.1 Classical laws and dissipative chaos.

Recently, Gell-Mann and Hartle, among others [1, 2, 3], have studied the

problem of classical laws arising from quantum theory in the light of the

decoherence formalism. In this approach, one considers possible histories of

a given system to which probabilities can be assigned that obey classical

probability sum rules. In order for histories to decohere in this way, it is

usually necessary to coarse-grain the description of the system, by giving the

values of its variables only at certain times, or averaged over certain intervals,

or by neglecting certain variables and retaining others, or a combination of

all of these.

They have found that within this formalism it is possible to de�ne in a

very rigorous way the classical equation of motion based only on the underly-

ing quantum theory. In doing so, both dissipation and noise typically appear,

arising as a consequence of coarse-graining over neglected degrees of freedom.

This takes advantage of the well-studied phenomenon of environmentally in-

duced decoherence [8]. In addition to casting new light on the problem of how

classical laws of physics arise, this provides an unparalleled tool for study-

ing quantum mechanical systems with dissipation, and seeing how this alters

their behavior from the more usual Hamiltonian behavior of closed systems.

One area which can pro�tably be treated this way is dissipative chaos.

There has been an enormous amount of work done on \Quantum Chaos,"

i.e., quantizing nonintegrable Hamiltonians which classically exhibit chaotic

behavior. This has turned up beautiful connections between classical chaotic

behavior and their quantum quasiperiodic equivalents. But very little has

been done in looking at the quantum versions of systems which classically

exhibit dissipative chaos, or on looking at their classical limit [4, 15]. Classical

dissipative chaos is qualitatively very di�erent from Hamiltonian chaos, and

one would expect their quantum equivalents to re
ect this di�erence, but this

has not been widely investigated. Indeed, even very extensive treatments of

quantum chaos rarely deal with dissipative systems at all [5].

There are a number of reasons for this. The �rst is that dissipation is di�-

cult to treat in normal quantum mechanics. The usual Schr�odinger equation

is only valid for closed systems without friction. Open systems in general,

and dissipation in particular, can be handled using the in
uence functional

2



approach of Feynman and Vernon [6]; this has been done in the case of Brow-

nian motion by Caldeira and Leggett [7] among others. This approach has

not been widely used, though, until recently, as it involves considerable con-

ceptual and mathematical baggage [8]. Also, the types of behavior of most

interest to those who study quantum Hamiltonian chaos involve the coher-

ent evolution of the wave function, with its attendant complicated structure

(e.g., the \scarring" of energy eigenfunctions about classical periodic orbits,

the statistics of energy level spacing). The presence of strong damping wipes

out this coherent structure.

Chirikov et al. have summed up the usual attitude towards quantum dis-

sipative chaos: \In what follows we will discuss only Hamiltonian (nondis-

sipative) systems, considering them to be the more fundamental ones. Phe-

nomenological friction is but a crude approximation of the molecular Hamil-

tonian chaos which is inevitably related to some noise according to the


uctuation-dissipation theorem." And further, they divide the problem of

quantum chaos into two parts, the quantum dynamics of the wave function

in isolation, and the results of measurement \with its unavoidable statistical

e�ect of the irreversible  collapse which is a sort of inevitable noise." [9]

While this is undeniably true, most systems are not isolated, and so it is

perhaps useful to consider systems for which dissipation is important. Dis-

sipative chaotic systems may not be fundamental, but they are nevertheless

interesting. Decoherence is an appropriate formalism in which to study them

[10].

In the rest of this section I give a brief introduction to the decoherent

histories formalism of Gell-Mann and Hartle. Then in section 2 I derive

a model for a quantum forced, damped nonlinear oscillator, following the

usual system/environment coarse-graining. In section 3 I discuss the classical

properties of the forced, damped Du�ng oscillator, and describe some of the

properties of dissipative chaos which it exhibits. In section 4 I treat the

quantum version of this problem, and show how one can make close contact

with the classical theory using the decoherent histories formalism. In section

5 I illustrate this with a numerical example, and in section 6 I summarize

my conclusions.
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1.2 Decoherent histories.

In the formalism of decoherent histories, systems are described by a set of

exclusive and exhaustive histories f�g, which can be thought of as di�erent

possibilities for the system's evolution. While there is a vast range of possible

sets of histories to choose from, these sets are restricted by the decoherence

condition

D[�;�0] = p����0; (1)

where D[�;�0] is the decoherence functional and p� is the probability of

history � occurring. This decoherence condition restricts one to histories

which obey the usual probability sum rules; these histories do not interfere

with each other.

To make this more explicit, in ordinary nonrelativistic quantum mechan-

ics one can specify a history by enumerating a complete set of orthogonal

projection operators fP i
�i
(ti)g at a sequence of times ti. A single history

is then given by choosing one projection operator at each time. This is

equivalent to enumerating a set of possible assertions about the system at

a sequence of times, and having each history be a string of such assertions.

One can de�ne a history operator

C� = P n
�n
(tn) � � �P

2
�2
(t2)P

1
�1
(t1); (2)

where � is a shorthand for the choices �i at times ti. The decoherence

functional is then

D[�;�0] = TrfC��C
y

�0g: (3)

The density operator � is the system's initial condition.

As a rule, it is impossible for very �ne-grained histories to decohere;

thus, considerable coarse-graining is required. One very common coarse-

graining used to study decoherence in systems with many degrees of freedom

is to completely trace out certain freedoms (the \environment") while leaving

others completely �ne-grained (the \disinguished subsystem"). This was �rst

studied by Feynman and Vernon [6] and applied to decoherence by Zurek [8]

among others. We will initially be considering this type of coarse-graining.
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2 The Model

The particular model we will study is based on earlier work on decoherence

in systems with dissipation [8, 1, 3, 10]. In this model we will divide our

system into a distinguished variable x, termed the system variable, and a

set of reservoir variables fQkg which we will trace over. This system and

reservoir will have a total action

S[x(t);Q(t)] = Ssys[x(t)] + Sres[Q(t)] +

Z tf

t0

Vint(x(t);Q(t))dt; (4)

where the system variable will be treated as a particle moving in a potential

Ssys[x(t)] =

Z tf

t0

�
M

2
_x2(t)� U(x(t))

�
dt; (5)

the reservoir is approximated as a collection of harmonic oscillators

Sres[Q(t)] =
m

2

X
k

Z tf

t0

�
_Qk(t)

2
� !2

kQk(t)
2

�
dt; (6)

and the interaction is linear in x and Q:

Vint(x;Q) = �x
X
k


kQk: (7)

We will make the additional assumption that the initial density matrix of

the system and reservoir factors, and that the reservoir is initially in a ther-

mal state. Then �total(x;Q;x0;Q0) = �(x;x0) 0(Q;Q0), where  0 = �T is a

thermal density operator at temperature T .

The decoherence functional in this coarse-graining is then

D[x0(t); x(t)] = exp
i

�h

�
Ssys[x

0(t)]� Ssys[x(t)] +W [x0(t); x(t)]

�
�(x0;x

0

0): (8)

W [x0(t); x(t)] is the in
uence phase, which includes the collective e�ects of

the traced-over reservoir degrees of freedom. As shown by Caldeira and

Leggett [7], this functional is

W [x0(t); x(t)] =
X
k

i
2k
m!k

coth(�h!k=kT )

�

Z tf

t0

dt

Z tf

t0

ds cos(!k(t� s))(x0(t)� x(t))(x0(s)� x(s))

�

2k

2m!k

Z tf

t0

dt

Z t

t0

ds sin(!k(t� s))(x0(t)� x(t))(x0(s) + x(s)): (9)
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We can now switch to new variables X = (x + x0)=2 and � = x� x0. In

these variables

Ssys[x
0(t)]� Ssys[x(t)] =Z tf

t0

�(t)

�
�M �X(t)�

dU

dt
(X(t))

�
dt� �0M _X0 +O(�3); (10)

which as we see contains the Euler-Lagrange equations. We also go to a con-

tinuum of oscillator frequencies with a Debye distribution, in which the dis-

crete sums become integrals over a weighting function g(!) = �!2 exp(�!=
),

where 
 is a large cuto� frequency, so that 1=
 << tf � t0. In this limit, the

in
uence phase becomes

W [X(t); �(t)] =

Z tf

t0

�(t)

�
�M�X(t)� 2� _X(t)

�
dt

+iK
Z tf

t0

�2(t)dt+O(
�2): (11)

where � = �
=m, � = ��=4mM , and K = 4M�kT=�h. The � term has the

form of a linear force; it can be absorbed into the system action by going to

an e�ective potential

Ue�(X) = U(X) +M�X2=2: (12)

The � term has the form of a dissipation.

The imaginary term is of particular interest. It suppresses D[X(t); �(t)]

when � 6= 0. Since � 6= 0 corresponds to the \o�-diagonal" terms of the

decoherence functional (x(t) 6= x0(t)), the suppression of these terms results

in approximate decoherence of this set of histories. This suppression of o�-

diagonal terms is clearly related to the presence of noise [8, 1]. The kernel

of this term can be identi�ed with the two-time correlation function of a

stochastic driving force F (t) in the quasiclassical limit. This correlation

function is

hF (t)F (s)i = �hK�(t� s) (13)

in the continuum case, with hF (t)i = 0. So in the quasiclassical limit this

system obeys the classical equation of motion

�x+
1

M

dUe�

dx
(x) + 2� _x = F (t)=M: (14)
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Instead of taking the reservoir to be in a thermal state initially, we can

take it to be in a displaced thermal state,

�DT = D̂(q(!); p(!))�T D̂(q(!); p(!))y; (15)

D̂(q(!); p(!)) is the coherent state displacement operator:

D̂(q(!); p(!))j0i = jq(!); p(!)i;

where jq(!); p(!)i is the coherent state centered on (q(!); p(!)) at frequency

!. If we take q(!) to be sharply peaked around a certain frequency, q(!) =

q�(!�!0), and p(!) = 0, then in the quasiclassical limit the above equation

of motion (14) gains an additional term

�x+
1

M

dUe�

dx
(x) + 2� _x = q cos(!0t) + F (t)=M: (16)

This is exactly the form for a nonlinear oscillator with damping and a periodic

driving force, with additional noise.

In a truly classical system, F (t) would vanish as T ! 0, but in the

quantum theory noise is always present, even at absolute zero. One can think

of it as arising from the zero-point oscillations of the reservoir oscillators. At

low temperatures, however, the two-time correlation function of the noise is

highly nonlocal in time. At T = 0,

Re W [X(t); �(t)] �
Z tf

t0

dt

Z tf

t0

ds �(t)�(s)=(t � s)2: (17)

Correlations in the noise persist for all times. Because of this form of the

kernel, doing exact (or even numerical) calculations in the low-temperature

limit is extremely di�cult. This is why the high T limit is generally used.

3 The Classical Forced Damped Du�ng Os-

cillator

We are interested in �nding quantum equivalents to classical systems which

exhibit dissipative chaos. While many such systems (e.g., 
uid mechanics)

have no easily realizable quantum limit, there are some which can be readily
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quantized as shown in section 2. These are the nonlinear oscillators with

damping and driving.

One much-studied classical nonlinear oscillator is the Du�ng oscillator,

characterized by a two-welled polynomial potential,

U(x) =
x4

4
�
x2

2
: (18)

With forcing and damping, this gives an equation of motion

�x+ (x� x3) + 2� _x = q cos(!0t); (19)

where we take M = 1. This system is chaotic for certain values of q, �, and

!0 [11]. For example, q = 0:3, � = 0:125 and !0 = 1:0 is a common choice.

Since this system has explicit time dependence, its phase space is three-

dimensional, (x; p; t). It is common to discretize the dynamics by taking a

Poincar�e section, considering only the points on a surface of constant phase

(xi; pi) at times ti = 2�i=!0. The continuous dynamics de�nes a map f :

(xi; pi) ! (xi+1; pi+1) = f(xi; pi): (20)

If the oscillator is non-chaotic, there is a stable attracting �xed point or group

of periodic points to which the (xi; pi) quickly tend. These points correspond

to a periodic orbit of the continuous dynamics. When the oscillator becomes

chaotic, the stable set becomes a strange attractor, a fractal structure with

non-periodic behavior. There are, in addition, an in�nite number of unstable

�xed points and periodic points. (See �gure 1.)

We can also look at the classical dynamics from the point of view of

probability measures P (x; p) on phase space. The map f of points in phase

space induces a map on probability measures

Pi(x; p) ! Pi+1(x; p) =
Z
dx0dp0 �((x; p)� f(x0; p0))Pi(x

0; p0): (21)

By means of this sort of map we can readily make contact with the quantum

theory.

Of particular interest are invariant probability measures Pinv. There are

many of these, most corresponding to unstable �xed points and periodic

points of the map f . It is possible to eliminate these unstable solutions by
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including a small amount of noise in the equation of motion (19). This e�ec-

tively broadens the delta functions in (21) into peaks of �nite width �, and

eliminates all unstable solutions, leaving a single unique Pinv corresponding

to the strange attractor. Classically, we can then allow the noise to go to

zero, and look at Pinv in the zero-noise limit. In that limit, the invariant

probability measure becomes a generalized function with substructure at all

length scales. It is a fractal.

4 Decoherent Histories, Quantum Maps, and

Probability

At best, the functional described in (8) can only be approximately decoher-

ent. Clearly, o�-diagonal terms will not vanish for su�ciently small j�(t)j.

More coarse-graining is needed in the description of x(t) and x0(t). Also,

specifying a value, even an approximate value, of x(t) for all times t is an

extreme �ne graining. It is more common to instead specify x at a series

of discrete times ti. Thus, instead of a complete trajectory x(t) one gives

only a series of x values fxig. Coarse-graining in position as well, one could

divide up the range of x into �nite non-zero intervals �i
j, where j is an index

specifying which interval x fell in at time ti. A history would now be a se-

ries of indices f�ig, specifying that x fell in the interval �i
�i
at time ti. Note

that to achieve decoherence, these times ti cannot be too close together; they

must generally be separated by at least the decoherence time [1]. For high

temperature systems this is typically quite short, of the order �h2=2M�kTd2,

where d is the size of the intervals.

Such a coarse-graining gives us a new decoherence functional:

D[�;�0] =
Z
�
�x

Z
�0

�x0 D[x(t); x0(t)]; (22)

where the limits specify integration only over those paths which pass through

the series of intervals �i
�i
at the times ti. The probability of a given history �

is of course given by the diagonal terms of this functional. Since the original

decoherence functional given by (8) has an exponent quadratic in �, the path

integrals over � can be carried out; we then let � = �0 and get

p(�) =

s
2�

K

Z
�
�X exp

�
�

1

K�h

Z
t0

e2(t)dt

�
w(X0;M _X0); (23)
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where e(t) = M �X + (dUe�=dt)(X) + 2M� _X � q cos(!0t) is the right-hand

side of the equation of motion [10]. From this we see that the probability will

by peaked about histories which approximately obey the classical equation

of motion e(t) = 0, more and more sharply as we approach the classical limit

where M is large. The w(X0;M _X0) is the initial Wigner distribution of the

system.

The Wigner distribution is de�ned in terms of the density matrix:

w(X; p) =
1

�

Z
e�i�p=�h�(X + �=2;X � �=2) d�: (24)

The distribution behaves very similarly to a classical probability distribution

on phase space, except that w(X; p) can be locally negative (though it must

sum to 1 over all of phase space, and be non-negative on average over regions

with volumes larger than �h). The expectation values of functions of X and

p can be calculated by averaging them over phase space using w(X; p) as a

weighting function, though there is usually some ambiguity about the order-

ing of operators. As one goes to the classical limit, on scales large compared

to �h, this ambiguity becomes unimportant.

An interesting way of looking at this system is in terms of the evolution of

the Wigner distribution with time. If we consider surfaces of constant phase,

as in the classical case, we can de�ne a quantum map,

wi ! wi+1 = Twi;

wi+1(X1; p1) =
Z
dX0

Z
dp0 T (X1; p1;X0; p0)w(X0; p0): (25)

The transition matrix T is de�ned by the path integral

T (X1; p1;X0; p0) =
1

�

Z
d�0d�1e

�i(�1p1��0p0)

�

Z
�X�� exp

i

�h

�
Ssys[X(t) + �(t)=2]

�Ssys[X(t)� �(t)=2] +W [X(t); �(t)]

�
; (26)

=
1

�

Z
d�0d�1e

�i(�1p1��0p0)

�

Z
�X exp

�
�

1

�hK

Z ti+1

ti

e2(t)dt+ i(�1M _X1 � �0M _X0)

�
; (27)

= 4�

Z
�X �(p0 �M _X0)�(p1 �M _X1) exp

�
�

1

�hK

Z 2�=!0

0
e2(t)dt

�
:
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This evolution strongly resembles the classical evolution of probability mea-

sures induced by the phase-space map, and in the classical limit we expect

w(X; p) to evolve towards an invariant distribution winv(X; p) which closely

resembles the classical invariant measure Pinv(x; p). Graham [4] has demon-

strated this sort of behavior in his work on the quantum Lorenz model, which,

though very di�erent in approach from this paper, may nevertheless be in-

dicative; and the author's own numerical simulations [13] seem to bear this

out (though of course one would not expect numerical simulations to exhibit

unstable alternative solutions).

In the quantum case, it is impossible for the noise to ever truly vanish.

Even at absolute zero, zero-point 
uctuations remain that prevent w(X; p)

from becoming a true fractal. Though the invariant distribution may strongly

resemble Pinv for a wide range of scales, there is always some scale at which

the quantum noise \smears out" winv(X; p).

While these maps on Wigner distributions make contact with the classi-

cal theory, ideally we would like to �nd some quantum analog to (20), i.e.,

a description in terms of individual histories, rather than probability distri-

butions. To do this, let us consider yet another coarse graining. Consider

the decoherence functional (3), where we take the sequence of times to be

those corresponding to the surface of section ti = 2�i, and let the projection

operators Pq;p be onto localized cells of phase space centered at (q; p). While

there are no true projections onto cells of phase space, there are approximate

projectors which can be used to get approximate decoherence [12, 10]. For

example, simple coherent state projections jq; pihq; pj can be used.

A history can then be speci�ed by a series of points fqi; pig at the times

ti, and the decoherence functional calculated

D[fqi; pig; fq
0

i; p
0

ig] = TrfPqn;pnT(� � �T(Pq1;p1�0Pq0

1
;p0

1
� � �)Pq0

n;p
0

n
g: (28)

Here we have taken T to be the transition matrix on density operators rather

than Wigner distributions; it is simple to go from one representation to the

other. This is a quantum surface of section. At each time ti the system is

localized in a cell in phase space centered on (qi; pi), and probabilities can

be assigned to each possible next point (qi+1; pi+1). This di�ers, of course,

from the classical case where the evolution is deterministic; but from (23) it

is clear that these histories will be peaked about the classical evolution in

the quasiclassical limit. This is shown explicitly by the numerical example

in the next section.
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5 Numerical simulation and quantum state

di�usion

While the decoherent histories formalism has great interpretational power,

it is not very convenient for numerical simulation. Enumerating all the pos-

sible histories and calculating the elements of the decoherence functional is

a daunting task. What one would like is a method of generating the his-

tories with the correct probabilities without having to solve the full master

equation at every step.

Recently, it has been shown that the theory of quantum state di�usion

provides just such a technique. Quantum state di�usion is one of the so-

called quantum trajectory methods, in which the master equation evolution

is unravelled into quantum trajectories of individual states. These states obey

a nonlinear stochastic di�erential equation which in the mean reproduces the

master equation. Because one need deal only with a single quantum state at

a time, this is very suitable for numerical calculation [16].

Diosi, Gisin, Halliwell and Percival [17] have shown that these individual

quantum trajectories correspond to a set of approximately decoherent his-

tories. In the case of a dissipative interaction, these correspond to histories

of systems localized into small cells in phase space, and their probabilities

match those given by decoherent histories. Thus it is ideal for the sort of

problem we are interested in.

For further details see the references. More work on the connections be-

tween decoherent histories and quantum state di�usion, and their application

to dissipative chaos, is currently underway [13].

In �gure 2 we see one such trajectory, generated in the quasiclassical limit

(where �h = 10�4). One can see that this is very close to the classical limit,

but with additional \smearing" due to the presence of noise. This smearing

sets a lower cuto� scale to the substructure of the strange attractor. As one

continues to go to the classical limit, more and more substructure appears,

and the noise becomes less and less important.

Note that in this chaotic system we expect the trajectory to evenly sample

the \invariant" Wigner distribution winv over time. From the distribution of

points we see that this is indeed very close to the structure of the classical

strange attractor in �gure 1.
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6 Conclusions

As we have seen, it is possible to use the decoherence formalism to study at

least some systems exhibiting classically chaotic behavior, and to do so in a

way which includes dissipation in a simple and natural fashion. Though the

model treated here is very much a special case, intended only to illustrate the

basic ideas of the theory, it is remarkable how many details can be brought

out and studied by its means.

Certainly these techniques should work for any kind of nonlinear oscil-

lator, or for multivariable extensions of them. It might well be possible to

treat systems of experimental interest, arising in �elds such as quantum op-

tics. Some work on such systems has already been done by other workers

[14].

Using the usual master equation formalism it is possible to draw a close

connection between the classical theory of probability measures and the quan-

tum Wigner distribution. But with decoherent histories, one can also �nd a

quantum analog to individual chaotic orbits, such as the quantum surface of

section de�ned in section 4.

One can then argue analytically that these quantum histories become

more and more closely peaked about the classical equations of motion as one

goes to the classical limit; and this correspondence can also be demonstrated

numerically.

Further analytical study may yield better results for the probabilities

and decoherence of phase space histories. And it may be fruitful to explore

what equivalents there are in the quantum case to classical quantities such

as Lyapunov exponents, fractal dimension, and Kolmogorov entropy. This

theory should amply reward further study, both analytical and numerical.
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Figure 1. The classical forced damped Du�ng oscillator surface of section

in the chaotic regime. q = 0:3, � = 0:125, !0 = 1:0.

Figure 2. The quantum forced damped Du�ng oscillator surface of sec-

tion, generated by the quantum state di�usion algorithm in the quasiclassical

limit. �h = 10�4, q = 0:3, � = 0:125, !0 = 1:0.
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