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Abstract

We investigate the generalized Ising actions containing nearest neighbour, next to nearest neigh-

bour and plaquette terms that have been suggested as potential string worldsheet discretizations on
cubic lattices by Savvidy and Wegner. We use both mean �eld techniques and Monte-Carlo simula-

tions to sketch out the phase diagram. In particular, we look at the e�ect of varying the parameter �

that quanti�es the e�ects of self-avoidance and note some di�erences in behaviour between the � = 0
and � 6= 0 transitions.

(a) Permanent Address:

Department of Mathematics

University of Sri Jayewardenepura

Gangodawila, Sri Lanka.



1 Introduction

In a series of recent papers [1] Savvidy and his co-workers suggested a \Gonihedric" random surface

action which could be written as

S =
1

2

X

<ij>

j ~Xi � ~Xj j�(�ij); (1)

on triangulated surfaces, where �(�ij) = j���ijj and �ij is the angle between the embedded neighbouring

triangles with common link < ij >. This was intended as an alternative to gaussian plus extrinsic

curvature lattice actions of the form

S =
X

<ij>

( ~Xi � ~Xj)
2 + �
X

�i;�j

(1� ~ni � ~nj) (2)

which have been much explored [2] as discretizations of rigid membranes and strings [3]. Although a

simulation showed that the action of equ.(1) produced 
at surfaces [4], potential problems arising from

the failure to suppress the wanderings of vertices in the plane were pointed out in [5]. One possible way

to cure this is to add additional Gaussian or linear terms to the action [6], but a study of the scaling of

the string tension and mass gap in such a theory produced at best inconclusive results [7].

Another possibility for regularizing the Gonihedric action is to put the surfaces generated on a (hy-

per)cubic lattice. This approach has been pursued in some detail analytically in [8, 9, 10] and one

numerical simulation carried out in three dimensions [9]. The crucial observation in this work is that the

surface theory on a cubic or hypercubic lattice can be written equivalently as a one parameter family of

Ising actions, where boundaries between the spin clusters are the original surfaces. The free parameter

� arises from the choice of a self-intersection coupling. The net result of these considerations is that the

Hamiltonian of the system in three dimension has the form

H = 2�
X

<x;y>

�x�y �
�

2

X

<<x;y>>

�x�y +
1� �

2

X

[x;y;z;t]

�x�y�z�t (3)

where the generalized Ising action contains nearest neighbour (< x; y >), next to nearest neigbour

(<< x; y >>) and round a plaquette ([x; y; z; t]) terms. Such actions are not new, having been investigated

in some detail using both mean �eld methods and simulations in [11], but the particular combination of

coe�cients arising in equ.(3) was not considered explicitly there. Related surface models have also been

simulated directly in [12], but again the particular Gonihedric set of coe�cients was not of interest for

this work. A very rich phase structure was observed in [11], in common with various other Ising models

with extended interactions [13] of various sorts which display �rst and second order phase boundaries

as well as incommensurate phases. Given this, the action of equ.(3) merits investigation from purely

statistical mechanical considerations as well as from the point of view of �nding potential continuum

string theories.

A variation on the theme was explored in [10] where the action

H = (12�+ 4)
X

<x;y>

�x�y � (3�+ 4)
X

<<x;y>>

�x�y � (3�+ 4)
X

[x;y;z;t]

�x�y�z�t (4)

was suggested as a lattice discretization for three dimensional gravity. This is e�ectively one of the classes

of coe�cients already considered in [11], so we discuss it only brie
y in what follows.

In the context of string theory one is looking for a continuous transition (or transitions) at which a

sensible continuum surface theory may be de�ned. It is perhaps worth recalling that even this does not

guarantee a \good" surface theory. The interfaces in the standard nearest neighbour Ising model in three

dimensions, which has a continuous phase transition, have been investigated in some detail recently and

found to be very porous objects, decorated with lots of handles at the scale of the lattice cuto� [14].

Ideally one might hope that the surfaces generated by the Gonihedric action were smoother, given that

it is derived from a sort of sti�ness term.

Our motivation in this paper is to investigate the action of equ.(3) in order to sketch out a map of its

phase structure for various values of �. In [9] one particular value, � = 1, was investigated in a simulation

and the similarity to the two dimensional Ising model transition temperature and critical behaviour
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remarked on. A few cautionary words are in order before we go on to discuss the mean �eld approach

and simulations. It has been emphasized in [8, 9] that the ground state of the action in equ.(3) is very

degenerate as parallel planes of spins can be 
ipped at no energy cost, particularly for the case � = 0.

The ability to 
ip arbitrary spin planes makes de�ning a magnetic order parameter rather problematic.

Even the staggered local order parameters de�ned in [11] would miss the lamellar phases with arbitrary

intersheet spacings that could be generated at no cost by 
ips of spin planes. We have not attempted to

measure the exhaustive global order parameters suggested in [9]

M� =<
X

~r

�
�

~r (vac) �~r > (5)

(with � = 1; 2 : : :23L for � = 0 on a lattice of size L) in our simulations as this is prohibitively slow on

even moderately sized lattices, but simply contented ourselves with the standard magnetization. This is

su�cient to verify the absence of simple ferromagnetic order.

2 Zero Temperature and Mean Field

As the Gonihedric model is a special case of the general action considered in [11] we can apply the methods

used there for both the zero temperature phase diagram and mean �eld theory. For the zero temperature

case this involves writing the full lattice Hamiltonian as a sum over individual cube Hamiltonians

hc =
�

2

X

<x;y>

�x�y �
�

4

X

<<x;y>>

�x�y +
1� �

4

X

[x;y;z;t]

�x�y�z�t (6)

and observing that if the lattice can be tiled by a cube con�guration minimizing the individual hc then

the ground state energy density is �0 = min hc.

The inequivalent spin con�gurations on a single cube and their multiplicities are listed in [11] for

general coe�cients. We repeat these in Table.1 using the same notation with our choice of couplings to

highlight the degeneracies that appear with the Gonihedric action. In the list of spins the �rst column

represents one face of the cube and the second the other. In the table two con�gurations are considered

equivalent if one can be transformed into the other by re
ections and rotations or if they are related

by a global spin 
ip. The antiferromagnetic image of a con�guration is obtained by 
ipping the three

nearest neighbours and the spin at the other end of the cube diagonal from a given spin and is denoted

by an overbar. With the Gonihedric values of the couplings the freedom to 
ip spin planes is clear even

at this level as  0, which would represent a large single surface when used to tile the lattice, and  6
which would represent 
ipped spin layers, have the same energy for any value of �. The higher energy

con�gurations  4 and  �4 are also identical. The degeneracies increase when � = 0, as the arguments of

[9] indicate they should, the club of states of energy �3=2 is now composed of  0;  �0;  6;  �6 and various

extra degeneracies appear for higher energy states. From these results the ground state is clearly highly

degenerate whatever the value of �.

In the mean �eld approximation the spins are in e�ect replaced by the average site magnetizations.

The calculation of the mean �eld free energy is an elaboration of the method used above to investigate

the ground states in which the energy is decomposed into a sum of individual cube terms. The next

to nearest neighbour and plaquette interactions in the Gonihedric model give the total mean �eld free

energy as the sum of elementary cube free energies �(mc), given by

�(mC ) = �
�

2

X

<x;y>�C

mxmy +
�

4

X

<<x;y>>�C

mxmy

�
1� �

4

X

[x;y;z;t]�C

mxmymzmt +
1

16

X

x�C

[(1 +mx)ln(1 +mx) + (1�mx)ln(1 �mx)] (7)

where mC is the set of the eight magnetizations of the elementary cube. This gives a set of eight mean-�eld

equations
@�(mC )

@mi (i=1:::8)

= 0 (8)
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(one for each corner of the cube) rather than the familiar single equation for the standard nearest neigh-

bour Ising action. More explicitly, we have

m1 = tanh[4��(m2 +m4 +m5) � 2��(m3 +m6 +m8)

+2�(1 � �)(m2m3m4 +m2m5m6 +m4m5m8)]

...

m8 = tanh[4��(m2 +m5 +m7) � 2��(m1 +m3 +m6)

+2�(1 � �)(m3m4m7 +m1m4m5 +m5m6m7)] (9)

where we have labelled the magnetizations on a face of the cube counterclockwise 1 : : :4 and similarly

for the opposing face 5 : : :8 as shown in Figure.1. If we solve these equations iteratively we arrive at

zeroes for a paramagnetic phase or various combinations of �1 for the magnetized phases on the eight

cube vertices, and the mean �eld ground state is then give by gluing together the elementary cubes

consistently to tile the complete lattice, in the manner of the ground state discussion.

Turning loose a numerical solver on the mean �eld equs.(9) gives generically a single transition to one of

the phases listed in Table.1 from the high temperature paramagnetic phase. The transition temperatures

and the resulting low temperature phase are listed in Table.2. We have taken the liberty of carrying out

global 
ips where necessary to tidy up the table. Rather remarkably, we see that apart from � = 0 the

transition appears to be to the simple ferromagnetic phase,  0. However, remembering that  0 and  6
have the same energy the best we can say is that we end up in a layered phase with arbitrary interlayer

spacing in all directions. Although the � = 0 case appears to be super�cially di�erent, the  �0 phase that

is found at low temperature here is one of the phases that is degenerate with  0 and  6 when � = 0.

Although � = 1 �ts the pattern as far as a transition to  0;6 at decreasing � is concerned it appears

to be rather atypical in that further transitions are observed at larger �. However, this is a numerical

instability that is peculiar to this particular value of �. It was observed in [11] that an iterative solution

of the mean �eld equations written in the form

m
(n+1)

i = f [E;i(m
n)] (10)

where E is the individual cube Hamiltonian could fail to converge if an eigenvalue of @m
(n+1)

i =@mn
j was

less than �1. Modifying the equations to

m
(n+1)

i =
(f [E;i(m

n)] + �mn
i )

1 + �
(11)

for suitable � cures this. This is precisely what happens for � = 1, where introducing a non-zero �

suppresses the extra \transitions".

The three dimensional gravity action of equ.(4) has zero temperature ground states of  4;�4;  7;�7 and

the Monte Carlo simulations of [11] give a transition from a high temperature paramagnetic phase to a

 �4 or  7 low temperature phase for any (positive) value of �. This action thus appears to generate the

lattice version of minimal surfaces, rather than the freely movable spin planes of equ.(3).

In summary, the mean �eld theory suggests a rather simple phase diagram for the Gonihedric model

with action equ.(3), with a single transition that is pushed down to � = 0 at large �. The low temperature

phase is generically of the  0;6 type, apart from � = 0 where we see a  �0 phase that is degenerate with

these. Although there still appears to be only a single transition for the three dimensional gravity action

of equ.(4), the ground states are di�erent. We now go on to see how the results for the Gonihedric action

tally with a direct Monte-Carlo simulation.

3 Simulations

We carried out simulations with rather modest statistics for � = 0:0; 0:5; 1:0;2:0 on lattices of size

53; 103; 153; 203 and 253 and for � = 5:0; 10:0 on the four smaller lattice sizes only. In all cases periodic

boundary conditions were imposed in the three directions. We carried out 50K sweeps for each � value

with a measurement every sweep after allowing su�cient time (typically 20K sweeps) for thermalization.

A simple metropolis update was used because of the di�culty in concocting a cluster algorithm for a
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Hamiltonian with such complicated interaction terms. The program was tested on the standard nearest

neighbour Ising model and the parameters used in [11] to ensure it was working.

We measured the usual thermodynamic quantities for the model: the energy E, speci�c heat C,

(standard) magnetization M , susceptibility � and various cumulants. Bearing the earlier comments on

the possibility of 
ipping spin planes in mind it is clear that the magnetization and susceptibility are

unlikely to be particularly informative. This makes a serious scaling analysis rather di�cult as the option

of using Binder's cumulant for some staggered variant of the magnetization to determine the critical

point and � independently of the speci�c heat or susceptibility peaks is lost if the ground states are of

the degenerate form suggested by the zero temperature and mean �eld analyses. In these circumstances

the strongest evidence for phase transitions is likely to come from the speci�c heat and the energy.

The absolute value of the energy for various � on lattices of size L = 20 is plotted against � in Figure.2,

where we can see that the zero temperature prediction of 3=2(1 + �) is satis�ed with good accuracy for

su�ciently large �. We can therefore observe that the zero-temperature/mean-�eld analysis has correctly

identi�ed the ground state(s) of the theory:  0;6 for � 6= 0; or  0;�0;6;�6 for � = 0 as these are the only

states with the observed energies. The possibility of the simple ferromagnetic ordered state  0 can be

excluded by looking at the standard magnetization, which is plotted in Figure.3 for various �, again on

lattices of size L = 20. In all the cases it is either zero or 
uctuates wildly as � is changed, showing that

the standard M is not a good order parameter for the large � phase.

One feature of the full Monte-Carlo simulations, however, does not agree with the mean �eld analysis,

namely the behaviour of the transition temperature itself. In the mean �eld theory �c drops quite sharply

with increasing �. Visual inspection of Figs. 2,3 shows that although �c, taken as the crossover in the

energy or spin values, drops from �c ' 0:6 at � = 0 to �c ' 0:44 at � = 1 (in agreement with the value

measured in [9]) it appears to remain pegged at this value for � > 1 rather than decreasing further.

Further evidence for this can be garnered by looking at the speci�c heats for various �. In Figures

4,5,6 we show the speci�c heat curves for � = 0; 0:5 and 1 respectively. The curves for � > 1 are essentially

identical in shape to � = 1, with maxima around �c ' 0:44 although the maximum height of the peaks

rapidly drops to a value that is constant for increasing � after reaching a maximum at � = 1. The quality

of our data for the speci�c heat peaks is not really su�cient to reliably extract the exponent �, especially

given the presence of an additional constant in the scaling form for C and the absence of an independent

estimate of �c. We can, however, say with some degree of con�dence that the transitions for all � > 0

appear to be of second order.

We can con�rm the continuous nature of the transition by examining the energy cumulants for various

values of �

UE = 1�
< E4 >

3 < E2 >2
(12)

which we would expect to scale trivially at a continuous transition to 2=3 with this choice of normalization.

At a �rst order transition a non-trivial value would be observed. A glance at Figure.7 reveals that the

continuous scaling is satis�ed at �c ' 0:44 for � 6= 0 and �c ' 0:6 for � = 0, although the error bars are

considerable in the latter case. In spite of this the speci�c heat peak suggests that the transition that is

observed at � = 0 is, if anything, weaker than the generic case and may even be of higher than second

order.

The di�erence in behaviour at � = 0 is further emphasized by looking at the standard susceptibility

�. As one might expect from the behaviour of the magnetization this is not particularly informative for

general �. Although it rises sharply around �c ' 0:44, for � > �c it is essentially noise. � = 0, however,

throws up a surprise as we can see in Figure.8. The susceptibility is equal to one for � < �c and zero for

� > �c. Given that the standard magnetization is close to zero in both phases and that

� =< M2 > � < M >2 (13)

a suitable order parameter for the � = 0 theory would thus appear to be < M2 >. This is curiously

reminiscent of spin glass order, but in this case it is the high-temperature (small �) phase that is displaying

a non-zero < M2 >. It thus perhaps better to think of the system in the dual language discussed in

several of the papers in [9]. The dual Hamiltonian can be written as

H =
X

i6=j 6=k

�j(�)�k(�)�j(� + ei)�k(� + ei) (14)
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where each vertex now has three Ising spins and the ei are the unit lattice vectors in the various directions.

Both the original action and its dual above are of the general form suggested for models of self-induced

disorder [15], so it is conceivable that such behaviour is playing a role here too. It would be an interesting

exercise to simulate the dual model directly to examine the nature of its low temperature phase more

carefully. The magnetization cumulant

UM = 1�
< M4 >

3 < M2 >2
(15)

is of no use in the general case, as we have indicated above, but its behaviour is smoother for � = 0,

increasing sharply from zero to 2/3 at � ' 0:6.

4 Conclusions

We have conducted zero-temperature, mean-�eld and Monte-Carlo investigations of the generalized Ising

model action suggested in [8, 9, 10] as a cubic lattice discretization of the Gonihedric string action [1]

using essentially the methods of [11]. Although the phase structure of such generalized Ising models

is generically very rich [13], the one parameter family of models examined here seems to be a fairly

simple \slice" of the phase diagram, with one transition, apparently of second order, to a layered ground

state. The zero-temperature/mean-�eld analyses are in agreement with the Monte-Carlo simulations on

the nature of the ground state and its energy, but intriguingly the full simulations indicate a transition

temperature that changes little, if at all, from its value at � = 1 (�c ' 0:44), which is close to that of the

two-dimensional Ising model. The mean �eld theory on the other hand indicates a fairly sharp decline in

�c as � is increased.

We were unable to extract reliable values for the speci�c heat scaling exponent from our data essentially

because of the absence of an independent estimate of �c from a cumulant analysis and the extra adjustable

constant that appears in the �nite size scaling form for the speci�c heat. The degenerate nature of the

ground state for any � means that not even the staggered magnetizations considered in [11] would be

useful for the models here.

As the increased symmetry that is present in the Hamiltonian at � = 0 might indicate, this is a special

case. The transition appears weaker, it is at �c ' 0:6 and there are indications that < M2 > functions

as an order parameter. It is somewhat surprising that the case with the highest degree of symmetry

lends itself to such a simple characterization of phases. The form of the � = 0 Hamiltonian suggests links

with models of self-induced disorder which might be more transparent in the dual formalism, given that

< M2 >= 1 in the high temperature phase of the direct model.

The most obvious extension of the work reported here is to carry out a much higher statistics sim-

ulation near the transition point in order to extract accurate values for the speci�c heat exponent and

�c. Finding the magnetic exponents for these models requires �rst attacking the conceptual problem

of de�ning a magnetic order parameter for general � that is easier to handle than the suggested global

magnetizations of [10] in equ.(5). Another obvious path is to investigate the various higher dimensional

generalizations that were formulated in [8, 9, 10]. The links between the � = 0 model and self-induced

disorder are also intriguing and deserve pursuing.

If we return to our original stringy motivation another useful extension would be to characterize the

surfaces generated by the gonihedric action in the style of [14] to see whether they were any less spongy

than those in the standard 3D Ising model. As a playground for exploring plaquette discretizations of

string and gravity inspired models the generalized Ising models clearly have some interesting quirks that

are worthy of further exploration.
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Figure Captions
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Fig.1 The labelling of the cube vertices for the mean �eld equations.

Fig.2 The energies for various �, all on lattices of size L = 20.

Fig.3 The standard (unstaggered) magnetization for various �, all on lattices of size L = 20.

Fig.4 The speci�c heat for � = 0 on various lattice sizes.

Fig.5 The speci�c heat for � = 0:5.

Fig.6 The speci�c heat for � = 1.

Fig.7 The Energy cumulant for various �.

Fig.8 The susceptibility for � = 0, showing the sharp transition to a value of one for � < �c.
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TABLES

Table.1

State Top Bottom Energy Multiplicity

 0 + + + + �3=2� 3�=2 2

+ + + +

 �0 - + + - �3=2 + 21�=2 2

+ - - +

 1 + + + + �3�=2 16

- + + +

 �1 - + + + 9�=2 16

+ - - +

 2;�2 - + + + 1=2 + �=2 24

+ - + +

 3 + + + + �1=2� 3�=2 24

- - + +

 �3 - - + + �1=2 + 5�=2 24

- + + -

 4 - + + + 3=2� 3�=2 8

+ + + -

 �4 - - - + 3=2� 3�=2 8

- + + +

 5 - - + + �3�=2 48

- + + +

 �5 - + - + �=2 48

+ - + +

 6 - - + + �3=2� 3�=2 6

- - + +

 �6 + + - - �3=2 + 5�=2 6

- - + +

 7;�7 - - + - 1=2� 3�=2 24

- + + +

Table.1: The inequivalent spin con�gurations of a single cube and the associated energies and degeneracies
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Table.2

� �c
0.0 0.325 + - - +

- + + -

0.25 0.31 + + + +

+ + + +

0.5 0.278 + + + +

+ + + +

1.0 0.167 + + + +

+ + + +

2.0 0.09 + + + +

+ + + +

5.0 0.0335 + + + +

+ + + +

10.0 0.02 + + + +

+ + + +

15.0 <0.02 + + + +

+ + + +

Table.2: The ground state con�gurations and transition temperatures for various �.

The states shown appear above the quoted temperature.
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