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Abstract

We consider supersymmetric extensions of the standard model with two

pairs of Higgs doublets. We study the possibility of spontaneous CP violation

in these scenarios and present a model where the origin of CP violation is

soft, with all the complex phases in the Lagrangian derived from complex

masses and vacuum expectation values (VEVs) of the Higgs �elds. The main

ingredient of the model is an approximate global symmetry, which determines

the order of magnitude of Yukawa couplings and scalar VEVs. We assume

that the terms violating this symmetry are suppressed by powers of the small

parameter �PQ = O(mb=mt). The tree-level avor changing interactions are

small due to a combination of this global symmetry and a avor symmetry,

but they can be the dominant source of CP violation. All CP -violating

e�ects occur at order �2PQ as the result of exchange of almost-decoupled extra

Higgs bosons and/or through the usual mechanisms with an almost-real CKM

matrix. On dimensional grounds, the model gives �K � �2PQ and predicts for

the neutron electric dipole moment (and possibly also for �0K) a suppression

of order �2PQ with respect to the values obtained in standard and minimal

supersymmetric scenarios. The predicted CP asymmetries in B decays are

generically too small to be seen in the near future. The mass of the lightest

neutral scalar, the strong CP problem, and possible contributions to the Z

decay into b quarks (theRb puzzle) are also briey addressed in the framework

of this model.
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1 Introduction

Although the standard model is today in impressive agreement with all particle physics

data, its scalar sector has not been proven yet. A scalar sector de�ned by elementary

�elds seems to contradict the possibility of two very di�erent mass scales (namely, the

electroweak and the grand uni�cation or Planck scales). Supersymmetry (SUSY) [1]

would o�er an explanation for the stability at the quantum level of the di�erent scales

of the theory, provided that it is broken only by soft terms below the TeV region. A

lot of attention has been paid to the minimal SUSY extension of the standard model

(MSSM), which presents appealing features such as a consistent grand uni�cation of the

gauge couplings or a candidate for the cold dark matter of the universe. Experimentally,

the MSSM has been so far exible enough to avoid conict with any measurement, but

its most compelling prediction, the presence of a light neutral Higgs (lighter than the Z

boson at the tree level), is still missing.

The MSSM would also o�er distinctive predictions for CP violating processes. Arbi-

trary complex phases  in soft gaugino masses and scalar trilinears would give fermion

electric dipole moments (EDMs) well above their present experimental limits. This im-

plies generically  � 10�2 [2], a somewhat unnaturally small number. The MSSM

would also predict unsupressed avor changing neutral currents (FCNCs) unless there is

some degree of degeneracy between squark masses (something which occurs for super-

gravity Lagrangians with canonical kinetic terms) and correlation between the Cabibbo-

Kobayashi-Maskawa (CKM) matrix and its equivalent in the squark sector. In the usual

SUSY scenario [3] CP violation in K and B physics depends essentially on only one

phase (the CKM phase �), whereas the set of small phases in soft terms (uncorrelated

to the family structure) may have experimental relevance only in fermion EDMs. This

scenario, however, holds only for highly degenerated squark masses. In general, taking

the experimental limit
�m2

~q

m2

~q

� 1

30
[4] from K � �K mixing one obtains that acceptable

complex phases in gaugino masses may have an impact on the K system. For complex

gluino masses this was shown in [5], and a model with small phases has been recently

proposed in [6]. It was also shown [7] that due to large top-quark e�ects acceptable

complex phases in chargino mass terms may also contribute to CP asymetries in the K

system.

A di�erent approach to the origin of CP violation which is specially appealing in
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SUSY models is the idea of spontaneous CP violation (SCPV) [8]. All the phases in

the Lagrangian (initially CP -conserving) would have their origin in a small number of

complex vacuum expectation values (VEVs) of scalar �elds. Moreover, the sizes of these

phases could be correlated by approximate symmetries suppressing some couplings in

the Lagrangian [9]. Unfortunately, in the minimal Higgs sector of the MSSM there is no

room for SCPV [10, 11], and hard CP violation is required. The possibility of SCPV has

been also studied in SUSY extensions with singlet �elds [7, 12], where it can be obtained

but seems to require certain ammount of �ne tuning.

The SUSY models with more than two Higgs doublets are an obvious extension of

the MSSM [13]. They are minimal in the sense that no new species are introduced, but

just repeated. From the model building point of view there is no compelling reason to

disregard them, and they could appear naturally in models with fermion-Higgs uni�cation

(like E6) [14] or left-right symmetric scenarios, where two bidoublets are required in order

to obtain realistic fermion masses and mixings. Four Higgs doublet (4HD) models require

an intermediate scale to be consistent with grand uni�cation, but even this could be more

in line with recent data on �s(MZ) than the desert scenario [15]. Since more than one

Higgs doublet couples to quarks of a given charge, a possible concern in this type of models

is the presence of FCNC at the tree level. The experimental limits, however, can be easily

avoided just by invoking the action of an approximate avor symmetry (see next section).

On the other hand, a nonminimal scalar sector opens the possibility of SCPV and, in

general, widens the parameter space relevant in low-energy precision measurements (this

could be convenient, for example, if the anomalous value of Rb persists).

In this paper we present a 4HD SUSY model which seems to contain satisfactory

answers to many phenomenological questions. CP violation appears softly, in complex

Higgs masses and VEVs. The main ingredient of the model is a Peccei-Quinn like ap-

proximate symmetry which determines the order of magnitude of Yukawa couplings and

scalar VEVs. We de�ne this symmetry in such a way that the additional pair of doublets

has small VEVs with order one complex phases and is weakly coupled to all matter �elds.

As a consequence, the ratio mb=mt, CP -violating e�ects in K physics, and the neutron

EDM will appear suppressed by powers of the small parameter �PQ that parametrizes

the violation of this symmetry. The CP asymmetries in B decays are predicted to be

typically two or three orders of magnitude smaller than in CKM scenarios (the CKM
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matrix in the model is essentially real), a signal that can be used to discriminate this

4HD model with respect to the MSSM or the standard model.

The plan of the paper is as follows. In Section 2 we write the generic Lagrangian for

4HD SUSY models and review previous results on spontaneous CP violation. We show

that a realistic scenario for soft CP violation requires complex Higgs masses in the initial

e�ective model. In Section 3 we de�ne our model and minimize the Higgs potential. We

show that the order of magnitude of Yukawa couplings, complex scalar VEVs, and the

CKM complex phase are correlated by the approximate global symmetry. In Section 4

we explore the implications of the model on K and B physics as well as on the neutron

EDM. In Section 5 we discuss the resulting spectrum of scalar �elds (in particular, the

mass of the lightest neutral mode) and other possible phenomenological impacts of the

4HD model. Section 6 is devoted to conclusions. Details about the minimization of the

scalar potential can be found in the Appendix.

2 Complex VEVs in four Higgs doublet models

The most general superpotential with four higgs doublets is given by

W = Q(h1H1 + h3H3)D
c +Q(h2H2 + h4H4)U

c + L(he1H1 + he3H3)E
c

+ �12H1H2 + �32H3H2 + �14H1H4 + �34H3H4; (1)

where Q stands for quark doublets, Dc for down quark singlets, U c for up quark singlets,

L for lepton doublets, Ec for charged lepton singlets, and hi are the Yukawa matrices

(family indices are omitted). The Higgs doublets H1; H3 and H2; H4 have hypercharges

�1 and +1, respectively.

Including soft SUSY breaking terms the e�ective potential for the Higgs �elds is

V = m2
1H

y
1H1 +m2

2H
y
2H2 +m2

3H
y
3H3 +m2

4H
y
4H4 +

+ (m2
12H1H2 + h:c:) + (m2

32H3H2 + h:c:) +

+ (m2
14H1H4 + h:c:) + (m2

34H3H4 + h:c:) +

+ (m2
13H

y
1H3 + h:c:) + (m2

24H
y
2H4 + h:c:) + V 4HD

D +�V; (2)

where V 4HD
D contains the D-terms and �V the radiative corrections. For the neutral
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components �i of the doublets one has

V 4HD
D =

1

8
(g2 + g02) [�y1�1 + �

y
3�3 � �

y
2�2 � �

y
4�4]

2: (3)

The radiative contributions �V are generated by SUSY breaking e�ects. In our argu-

ments it will su�ce to consider the terms derived from large top (and possibly bottom)

quark Yukawa interactions [16]:

�V =
X
q

3

16�2
fm4

~q[ln(
m2

~q

Q2
)� 3

2
]�m4

q[ln(
m2
q

Q2
)� 3

2
]g; (4)

where q = t; b, m2
t = jh2t�2 + h4t�4j2, m2

b = jh1b�1 + h3b�3j2, and m2
~q = m2

s +m2
q.

Our �rst comment about the viability of 4HD models should make reference to the

size of FCNCs via Yukawa interactions. If the Yukawa matrices in (1) are uncorrelated,

there is no reason to expect that the unitary transformations de�ning mass eigenstates

also diagonalize (in avor space) the couplings to the extra Higgs doublets. This would

introduce unsuppressed FCNCs at tree level. The observed pattern of quark masses and

mixings, however, strongly suggests the possibility of an approximate avor symmetry as

the origin of the hierarchies required in the Yukawa matrices. In the simplest scenarios

[17, 18] the e�ect of such a symmetry would be to generate fermion matrices with o�-

diagonal elements of order O(
p
mimj=v), where mi is the mass of the ith quark and

v is the weak scale. If the extra Higgs doublets are a replica (with respect to this

avor symmetry) of the �rst doublet, they will introduce Yukawa matrices with the same

approximate structure. In that case the smallness of Yukawa couplings is enough to keep

all FCNC within the experimental limits. In particular, for extra Higgs masses around

1 TeV the tree-level contributions to K � �K and B � �B mixings would be of the same

order as the standard contributions [18, 19]. In our 4HD model we will assume this type

of approximate avor symmetry at work.

Our main motivation to study 4HD models concerns the origin of CP violation. In

these models explicit CP violation seems even more inconvenient than in the MSSM,

due to new processes mediated by the Yukawa interactions described above (the approx-

imate avor symmetry would not explain, for example, the small value of �K [19]). The

possibility of SCPV in 4HD models has been addressed in a recent paper [20]. There we

assume that all the parameters in the Lagrangian are real and the CP -violating phases

appear via VEVs vie
i�i of the Higgs �elds. We showed that at tree level (i.e., �V = 0)
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the minimum equations for the phases can be solved in terms of a simple geometrical

object but the remaining conditions are then uncompatible. Namely, after a rede�nition

of masses and �elds that cancels the terms m2
13 and m2

24, the four tree-level minimum

conditions for the VEVs vi with nonzero phases read [20]

v1
@V

@v1
= v21 [m

2
1 �

m2
12m

2
34 �m2

14m
2
32

m2
32m

2
34

1

h(v)
+ g(v) ] = 0

v2
@V

@v2
= v22 [m

2
2 �m2

12m
2
32h(v)� g(v) ] = 0

v3
@V

@v3
= v23 [m

2
3 +

m2
12m

2
34 �m2

14m
2
32

m2
12m

2
14

1

h(v)
+ g(v) ] = 0

v4
@V

@v4
= v24 [m

2
4 +m2

14m
2
34h(v)� g(v) ] = 0 ; (5)

where g(v) = 1

8
(g2 + g02)[v21 + v23 � v22 � v24], and

h(v) =
q
m2

12m
2
34 �m2

14m
2
32

vuut 1

m2

32
m2

34

v21 � 1

m2

12
m2

14

v23

m2
12m

2
32v

2
2 �m2

14m
2
34v

2
4

: (6)

Since the four equations above depend on only two combinations of VEVs, g(v) and h(v),

there will be no solution (i.e., phases di�erent from 0 or �) unless a �ne tuned value of

the mass parameters is imposed. Moreover, if this �ne tuning were used it would imply

the presence of two massless scalar �elds.

The e�ect of the radiative corrections is twofold: they relax the ammount of �ne

tuning required in the equations above, and they generate masses for the two massless

modes. For these two e�ects to be sizeable we need (see �V in Eq. 4) large squark masses

and at least two large Yukawa couplings. These could be the two top quark couplings

h2t and h4t or one top (h2t) plus one bottom (h1b) coupling. However, for ms � 5 TeV

and Yukawas smaller than � 1:2 (as required to avoid Landau poles before the Plank

scale) we �nd that the two light scalar �elds have masses smaller than � 30 GeV. In

consequence we conclude that in 4HD models with all the parameters real the presence

of nontrivial complex phases in the Higgs VEVs implies two scalar �elds apparently too

light. (A more detailed examination of the parameter space might show, however, that

this possibility is not entirely excluded by current limits on the masses of the scalar

�elds.) The situation here is then similar to the MSSM (where the allowed mass of the

light scalar �eld is already excluded [11]) or the singlet model (which relay on radiative

e�ects to give mass to a mode with negative tree-level mass [12]).
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In 4HD scenarios there is, however, still another possibility which seems consistent

with the idea of SCPV. It requires that the four Higgs mass parameters � in the super-

potential (or, equivalently, the six parameters m2
ij in Eq. 2) are allowed to be complex.

This could be justi�ed since the Higgses are the only super�elds which are not protected

of mass contributions by the gauge symmetry. They could acquire their masses in an

intermediate scale, via complex VEVs of singlet �elds with no sizeable e�ect on the

rest of the low-energy e�ective Lagrangian. We will not assume complex phases on all

soft SUSY-breaking terms, since in principle these singlets do not couple to gauginos or

squarks (we will neglect the possibility of further phases or new contributions to SUSY-

breaking parameters due to the presence of nonsinglet heavy �elds [21]). The hypothesis

of complex Higgs masses, consistent with a soft origin of CP violation, is not possible

in the MSSM or the singlet model, since there (unlike here) all the Higgs masses can be

made real by �eld rede�nitions.

In the next sections we study the implications of a 4HD model where all the param-

eters in the initial Lagrangian are real except for the Higgs mass parameters.

3 De�nition of the model

The approximate avor symmetry described in the previous section suppresses all FCNC

amplitudes to acceptable limits. However, multi-Higgs models face a potential problem

also with CP violation: if the Yukawa couplings are complex with phases of order one,

CP -violating signals in K physics would be too large. In particular, �K would be typ-

ically two or three orders of magnitude larger than observed [19]. Thus it seems that

a general model of many Higgs doublets requires another ingredient in addition to the

avor symmetry. Its e�ect should be either a suppression of the Yukawa couplings of

the new doublets, or to make the complex phases small. The �rst approach is typical

in models with natural avor conservation (NFC) [22], whereas a natural suppression of

the phases has been obtained in the superweak model with SCPV proposed in [9]. In our

scenario these two e�ects will be achieved by the action of a global symmetry.

We will assume that the e�ective Lagrangian of the model obeys an approximate

Peccei-Quinn like symmetry with the following assignment of charges [23]:

Q(H3) = +1 Q(H4) = �1 Q(Dc) = +1 : (7)
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All other super�elds have zero charge1. The symmetry is approximate in the sense

that couplings of operators violating the symmetry are suppressed by powers of a small

parameter �PQ. In this section we discuss the impact of this global symmetry �rst on the

Higgs scalar part of the potential and then on the Yukawa sector.

The assignment of charges tells us that in the scalar potential m2
14, m

2
32, m

2
13, m

4
24 are

suppressed by �PQ. m
2
12 and m

2
34 remain unsuppressed (of the order of the SUSY-breaking

scale ms � 1 TeV). For easy reading we will write the suppression factors explicitly; for

example m2
32 becomes �PQm

2
32, where m

2
32 = O(m2

s). The tree-level scalar potential (we

neglect radiative corrections in the following) involving only neutral Higgs �elds is then

given by

V =
�
�
y
1 �

y
3

� m2
1 �PQm

2
13

�PQm
2�
13 m2

3

! 
�1
�3

!

+
�
�y2 �y4

� m2
2 �PQm

2
24

�PQm
2�
24 m2

4

! 
�2
�4

!

+ [
�
�1 �3

� m2
12 �PQm

2
14

�PQm
2
32 m2

34

! 
�2
�4

!
+ h:c:]

+
1

8
(g2 + g02)[

�
�
y
1 �

y
3

� �1
�3

!
�
�
�
y
2 �

y
4

� �2
�4

!
]2 : (8)

As explained in the previous section, we assume that the mass parameters m2
ij are

complex. The �rst two mass matrices above can be diagonalized through two unitary

transformations of order �PQ of the scalar �elds: 
�01
�03

!
= U1

 
�1
�3

!
;

 
�02
�04

!
= U2

 
�2
�4

!
: (9)

The quartic term in the potential will not change its form and can be obtained just by

replacing unprimed by primed �elds. The relative size of the four complex masses in

the third mass matrix above will stay the same (i.e., the o�-diagonal elements are still

suppressed by �PQ). A phase transformation of the �elds �i can be used to remove three

of the four phases, leaving only one phase � in the scalar potential. Dropping the prime

to specify transformed quantities, the mass terms read

Vm =
�
�
y
1 �

y
3

� m2
1 0
0 m2

3

! 
�1
�3

!
+
�
�
y
2 �

y
4

� m2
2 0
0 m2

4

! 
�2
�4

!

1There should also be charge assignments in the lepton sector, e.g. Q(Ec) = +1. We will comment

on this possibility when discussing the electron EDM.
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+ [
�
�1 �3

�  m2
12 �PQe

i�m2
14

�PQm
2
32 m2

34

! 
�2
�4

!
+ h:c:] : (10)

where the masses are now real and the phase � of m2
14 has been written explicitly. We

assume � to be of order one, since there is no symmetry reason for it to be suppressed.

It is easy to see how the Higgs �eld rede�nitions above change the mass parameters �ij

in the superpotential W (these parameters are relevant since they will appear in scalar

trilinears). We obtain �12 and �34 real up to order �2PQ whereas �14 and �23 will be mass

coe�cients with arbitrary complex phases but suppreessed by a power of �PQ.

We now go to the minimization of the Higgs potential. In particular, we want to �nd

what are the relative size and the phases of the scalar VEVs suggested by the approximate

symmetry. We write

< �1 >=
1p
2
v1 ; < �3 >=

1p
2
v3e

i�3 ; (11)

and

< �2 >=
1p
2
v2e

i�2 ; < �4 >=
1p
2
v4e

i�4 ; (12)

where a global hypercharge transformation has been used to rotate away the phase of

< �1 >. A detailed discussion of the minimum equations can be found in the Appendix.

The results are the following. For nonzero values of the phase � the minimum is allways

complex. The suppression in terms of �PQ of the mass parameters determines the order

of magnitude of the VEVs and phases:

v1 ; v2 = O(v)

v3 ; v4 = O(�PQv)

�2 = O(�2PQ)

�3 ; �4 = O(1) (13)

where v denotes the weak scale. A remarkable feature of the model is that one can

understand its structure in terms of an expansion in �PQ from the model with just two

doublets. In the limit �PQ = 0 the sectors (H1;H2) and (H3;H4) decouple; the minimum

gives then equations for v1 and v2 identical to the VEVs in the MSSM, whereas v3 = v4 =

0. The phase �2 is then zero, while the phases �3 and �4 are irrelevant. Turning on a small

value of �PQ gives (proportionally) VEVs to the extra pair of scalars. Simultaneously it

allows a nonzero value of �, which translates into unsuppressed complex phases in the
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(H3;H4) sector and a phase of order �2PQ in the (H1;H2) standard sector. The mixings

between the two sectors are small: either in a basis of scalar mass eigenstates or in a

basis where v03 = v04 = 0 (useful when discussing FCNCs via Yukawas), both are obtained

from the original basis just by unitary transformations of order �PQ.

We now turn to the Yukawa sector of the theory. The charge assignments dictates

that the matrix h2 is unsuppressed, h1 and h4 are suppressed by a factor of �PQ, while h3

is suppressed by �2PQ. Making this suppression explicit the Yukawa sector for the quark

�elds reads

LY = Q(�PQh1H1 + �2PQh3H3)D
c +Q(h2H2 + �PQh4H4)U

c ; (14)

where now hi (i = 1; :::; 4) just carry the suppression from the avor symmetry. In

our model the Yukawa couplings of the initial Lagrangian are real. However, the �eld

rede�nitions performed to leave only one phase � in the Higgs potential will also rede�ne

the Yukawa couplings and introduce complex phases. As we show, these phases translate

into a CKM phase and complex FCNC couplings which are naturally suppressed by the

approximate global symmetry.

We �rst performed the unitary transformations in Eq. (9), which rede�ne the �elds

Hi by (complex) factors of order �PQ. They imply a rede�nition of the Yukawa matrices

which introduces phases of order �2PQ in h1 and h2 and of order one in h3 and h4. Then

we performed the (order one) phase rede�nitions of the Higgs doublets that make all

mass parameters real except for m2
14. This translates into overall phases of order one

multiplying the Yukawa matrices hi. However, we can still rede�ne the quark �elds

and absorb the phases which multiply h1 and h2 (the leading Yukawa couplings). The

net result is that the Lagrangian in (14) expressed in terms of the Higgs �elds used to

minimize the potential has real (up to order �2PQ) couplings in h1 and h2 and arbitrary

complex phases in h3 and h4.

After spontaneous symmetry breaking, the structure of VEVs in (13) suggests (note

that v1 amd v2 are not suppressed by powers of �PQ) tan� �
r

v2
2
+v2

4

v2
1
+v2

3

= O(1) and

�PQ = O(mb=mt). Thus, the approximate global symmetry is used to accommodate the

small ratio mb=mt, while the hierarchy between generations of the same charge is left

to the avor symmetry (the avor symmetry would be exact in the limit with only the

third generation being massive). The complex Yukawas h3 and h4 and the corresponding

VEVs (v3 and v4) are both suppressed by a power of �PQ, whereas the leading Yukawas
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and VEVs are real up to order �2PQ. We then obtain quark mass matrices where all the

entries have complex phases of order �2PQ. In consequence, the complex phase in the

CKM matrix is also of order �2PQ.

It is also easy to see what is the pattern of FCNC and CP violation via scalar

exchange predicted by the model. It will be convenient to de�ne a basis where only two

of the four Higgs �elds develop VEV and then only the second pair of scalars mediates

FCNC processes. Again, this involves a unitary transformation of order �PQ, which

leaves almost decoupled the extra pair of Higgses (essentially (H3;H4)). In addition, the

mixings in the scalar mass matrices between the two sectors are also suppressed. The

overall suppression by a power of �PQ, when added to the one with origin in the avor

symmetry, renders these tree-level FCNCs smaller than CKM (box) diagrams typically

by a factor of �2PQ. In particular, the K � �K and B � �B mixings are dominated here by

the standard contributions, like the W -exchange box diagram in Fig. 1. This fact will

distinguish our scenario from typical multi-Higgs models with soft CP violation where

the tree-level superweak interactions are the main source of avor changing processes [9].

On the other hand, the sector (H3;H4) involves arbitrary phases in Yukawa couplings

and scalar VEVs. Although suppressed by a factor of �2PQ, these couplings can be the

dominant source of CP violation through diagrames like the one shown in Fig. 2. In

particular, as shown in the next section, they are the main source of complex phases in

K physics and compete with box contributions in B physics.

We need as well that FCNC contributions via SUSY particles (wino and gluino box

diagrams) are within the experimental limits, which in general requires certain degree

of squark-quark alignment and squark degeneracy. In fact, the squark-quark alignment

could appear here as a natural consequence of the avor symmetry[24]. Since we assumed

no complex phases in soft-SUSY parameters others than Higgs masses, their CP violat-

ing e�ects will follow the same pattern described above. We explore these and other

phenomenological implications of the model in the next sections.

4 CP violation in K and B physics and the neutron

EDM

K physics. As our �rst example we look at the K system. In this scenario the FCNC
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processes via Yukawa interactions (see previous section) are highly suppressed, and the

dominant contribution to Re �M12 comes from the box diagram in Fig. 1. The leading

imaginary contribution to �M12, however, will come from the neutral Higgs exchange

in Fig. 2. The avor-changing Yukawa couplings are complex (with phases of order 1)

and generically suppressed by the Peccei-Quinn and the avor symmetries (for example,

in Fig. 2 the couplings are of order �PQ
p
mdms=v). When the mass of the exchanged

scalar is around 1 TeV, this (complex) diagram is roughly suppressed by �2PQ with respect

to the box diagram in Fig. 1. Since the CKM matrix and then the box contributions

are approximately real, the leading contribution to Im (�M12) comes from the Higgs

exchange in Fig. 2. On dimensional grounds, the CP violating parameter �K (see [25]

for de�nitions and notation) in the K system and �PQ are related:

j�Kj � 1

2
p
2

Im �M12

Re �M12

� �2PQ: (15)

The parameter �PQ sets the overall strength of Yukawa couplings of the Higgs doublets

and suggests the order of magnitude of all the scalar VEVs. In particular (see section

3), one expects tan� = O(1) and �PQ = O(mb=mt). Then the relation above establishes

�K � 10�3, as experimentally required.

Other sizeable contributions to �K may come from SUSY box diagrams with chargino

or gluino exchange. Both of them require large SUSY contributions to �M12 (of the

same order as the standard box diagram). Chargino box diagrams would then give

[7] contributions of order �K � 10�1�2PQ, whereas gluino boxes [6] could be as large as

�K � �2PQ (i.e., of the same order as the dominant tree-level scalar exchange). The

factors �2PQ above derive from the suppresion in Yukawa couplings or extra scalar VEVs.

Large gluino box contributions, however, also require large left-right squark mixing �LR �
m2
LR=m

2
s � 10�3 (a naive estimate would give �LR � A

p
mdms

m2
s

� 10�4). In addition, the

tree-level contributions to �K can be easily enhanced [23] assuming Higgs masses ligheter

than 1 TeV, so the clear tendency in our model is that this type of nonstandard Higgs

exchange provides the dominant contribution to �K.

In contrast, the expected value for �0K di�ers in principle from the standard model

prediction. An estimate of �0K can be obtained from the phase t0 � ImA0/ReA0, where

Ai is the decay amplitude of a K0 into two pions of isospin i (see [25] for notation). In
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particular one has the experimental constraint

t0 �
p
2jA0

A2

jj�0Kj � 10�4 : (16)

The dominant contribution to ReA0 arises from the standard penguin diagram:

Lp � �s�W

3m2
W

sin �c ln
m2
c

m2
K

OLR +H:c: ; (17)

where

OLR = (�sL�T
adL)(�qR�T

aqR) (18)

and T a are the 3-dimensional generators of SU(3). In our scenario, however, the imagi-

nary part of this penguin diagram is suppressed by the smallness of the phase (of order

�2PQ � 10�3) in the CKM matrix. Since the standard model prediction for t0 is of order

s13s23=s12 � 10�3, we obtain a �rst contribution of order 10�6. Other contributions to t0

may come from penguin diagrams with chargino and stop (Figure 3) and tree-level dia-

grams with charged scalars. The �rst contributions have been studied in [7] in the context

of SUSY models with SCPV. It is found that they are typically of order t0 � 10�3 sin �,

being � the complex phase in the VEV of H2 (the scalar �eld giving mass to the top

quark). In our model the Higgs �elds H and ~H in Fig. 3 can correspond to H2 or H4.

In the �rst case the phase � is of order �2PQ, and in the second case the same degree

of suppression comes from the small VEV and the small Yukawa coupling of H4. The

contributions via exchange of charged Higgses have been analyzed in [9] in the context

of two-Higgs doublets models. In our model either the Yukawas are almost real (for the

doublets with dominant couplings, as it happens in [9]), or the Yukawas themselves are

suppressed. Hence, from the three types of diagrams we obtain contributions (taking

�2PQ � 10�3) of order t0 � 10�6 or �0
K

�K
� 10�5 (for jA2=A0j � 1=22).

Potentially larger contributions to �0K are expected from gluino-mediated penguin di-

agrams (Figure 4). Although gluino masses in our model are real, there will be complex

phases of order �2PQ (see discussion of chargino penguin above) in left-right squark mix-

ings. This type of contributions to �0K have been studied in detail in [6]. There it is found

that for complex phases in gluino masses of order 10�3 they could result in values as large

as
�0
K

�K
� 10�3. An analogous result has been recently obtained in [26], with contributions

from squark mixings of CKM type and small CP -violating phases (which are natural

in our scenario). These values are only obtained, however, when gluino box diagrams
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saturate the value of �K. Since we have assumed that the FCNCs are here dominated

by standard box diagrams, we expect a value for �0K typically smaller. Modulo hadronic

matrix element uncertainties, we estimate

�0K
�K

� 10�4 � 10�5 ; (19)

with the possibility to consistently increase this value via gluino penguin contributions.

B physics. We consider now CP violation in B physics [27]. Although today the only

observed CP violation is in the K system, the standard model predicts clear signals in B

decays that should be observed in the near future. These CP asymmetries are generally

parametrized in terms of the complex phases �iq, which in turn depend on the product

of phases in three amplitudes: the direct b decay, the B � �B mixing, and (possibly) the

K� �K mixing. In CKM scenarios the phases �iq are constrained by unitarity and have a

simple geometrical interpretation (these predictions are not expected to change much in

minimal SUSY models). However, in our 4HD scenario the three amplitudes above have

complex phases of order �2PQ (see below), and the predictions change to the extent that

no CP asymmetries will be observed at the projected B factory at SLAC.

To see why this is so, we will �rst consider the decay amplitude of a b quark into lighter

avors. The main contribution corresponds to a tree-level diagram with W exchange.

Since it will be proportional to elements of the CKM matrix, its imaginary component

will be suppressed by a factor of �2PQ. The decay via charged Higgs are suppressed by the

same factor due to the relative smallness of their Yukawas and the smallness of the mixing

(in the scalar mass matrix) between the standard and the extra Higgs sectors. In non-

SUSY models with NFC the second e�ect can give signi�cant contributions (proportional

to mt) in B decays and in avor-changing processes [9].

The main contribution in this model to B � �B mixing �MBB comes from the stan-

dard box diagrams, and is proportional to CKM elements. The tree-level diagrams with

exchange of neutral scalar give contributions which are suppressed by the avor and the

Peccei-Quinn symmetries, with a relative factor of �2PQ with respect to the box diagrams.

Both types of diagrams introduce imaginary components of order �2PQ with respect to

the main real component, and the contribution to the complex phase �iq from B � �B

mixing is negligible (of that order). As discussed above, the same conclusion applies to

the contribution from K � �K mixing.
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In consequence, in this scenario one expects that all CP asymmetries in B decays

negligibly small (of order �2PQ � 10�3). This type of prediction is shared, for example, by

non-SUSY multi-Higgs doublet models [9, 19] or SUSY models with real Yukawa matrices

[7, 6]. In CKM scenarios the situation is essentially di�erent. There the smallness of CP

violation in the K system is atributed to the smallness of the CKM elements involving

the third family of quarks, whereas CP -violating asymmetries in the B system are large:

the B� �B mixing and the b decays are proportional to elements of the CKM matrix with

arbitrary complex phases. The absence of CP asymmetries at the SLAC B factory would

point to a non-CKM origin of CP violation, and many-Higgs doublet model (SUSY or

non-SUSY) would appear as a natural candidate.

Neutron EDM: As in usual SUSY scenarios, the prediction of our model for the neu-

tron EDM dn is much larger than in the non-SUSY standard model. In the MSSM

the explicit phases  in SUSY-breaking gaugino mases and scalar trilinears introduce

contributions which roughly require a suppression of 2 or 3 orders of magnitude: dn �
10�25(  

7�10�3 ) e cm [2]. These diagrams are also present in our scenario, but their con-

tribution has a natural suppression of order �2PQ respect to the MSSM. The origin of

this factor is (again!) either the smallnes of the complex phase �2 (of order �
2
PQ) in the

two standard Higgs doublets, or the combined relative smallness of VEVs and Yukawa

couplings (both suppressed by a factor of �PQ) of the two extra doublets.

To illustrate this fact, let us consider the contribution from the the one-loop chargino-

squark diagram (Figure 5). When H corresponds to H1, then the complex phase in the

Yukawa coupling is suppressed. When H is H3, then the VEV and the Yukawa coupling

are of order �PQ. In consequence, in this 4HD one expects

dn � 10�23�2PQ e cm � 10�26 e cm ; (20)

a value which is close to the present experimental limit jdnj < 1:2 � 10�25e cm [28].

Here we also comment on the lepton sector. We still have the freedom to assign a

global symmetry charge to Ec (or even L). For simplicity let us consider Ec = +1,

which would be consistent with m� = O(mb). In this sector all FCNC processes via

nonstandard scalars will be completely negligible (the size of Yukawas suggested by the

avor symmetry would be enough to control all these processes). The pattern of CP

violation will be analogous to the one discussed in the quark sector, with the relevant
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complex phases suppressed by a factor of �2PQ. The leading contribution to the electron

EDM comes from a diagram similar to the one shown in Fig. 5. If all the superparticles

have comparable masses it is expected that de � 10�2dn [29], so that in our model the

electron EDM is not far from the present experimental limits.

5 Other phenomenological implications

As shown by Flores and Sher in [13], the presence of a light neutral scalar �eld (with a

tree-level mass smaller than MZ) is a prediction shared by all SUSY models with Higgs

doublets only, regardless of the number of doublets. Since in the limit �PQ ! 0 the

scalar sector of our 4HD model essentially coincides with the MSSM, we expect small

corrections to the standard predictions.

To see how these corrections arise we will �rst consider the model with � = 0 and,

consequently, with all the VEVs real. The approximate symmetry dictates that v � v1 �
v2 and �PQv � v3 � v4. We can perform two rotations of order �PQ of the Higgs �elds

(one in the space �1 � �3 and another in �2 � �4) in such a way that v3 = v4 = 0. It is

then straightforward to �nd the mass 4 � 4 matrix M2
h

M2
h =

 
M2

0 M2
1

M2 T
1 M2

2

!
(21)

for the CP -even scalar �elds hi. The 2 � 2 matrix M2
0 corresponding to h1 � h2 is

identical to the one obtained in the MSSM, with an eigenvalue m2
h smaller than M2

Z

and another m2
H � m2

s. The submatrix M2
2 in the h3 � h4 sector has two eigenvalues

of order m2
s. The Peccei-Quinn symmetry forces all the elements in M2

1 = O(�PQm
2
s)

and, through mixing, tends to lower the lightest eigenvalue in M2
h by terms of order

�2PQm
2
s. For nonzero values of � the scalar VEVs will be allways complex (see Section

3), introducing mixing betweeen CP-odd and CP -even states. Due to the approximate

symmetry, however, the mixings of the lightest scalar �eld with CP -odd states are small

and introduce corrections of the same order. In consequence, we conclude that these

corrections do not change signi�cantly the tree-level bound mh < MZ (for �2PQ = 10�3

and ms = 500 GeV this bound is lowered by less than 2 GeV). However, we expect

radiative top quark e�ects to be much more important.

We note that the spontaneous breaking of the (approximate) global symmetry do

not introduce light �elds. The reason for this is that in the limit of exact symmetry
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(�PQ = 0) the only VEVs breaking the symmetry (v3 and v4) go to zero too: there are

no light pseudo-goldstone states because the size of the spontaneous and the explicit

symmetry breaking terms is of the same order.

It is also easy to see that this model accommodates the small ratio mb=mt without

need of �ne tuning to avoid too light charginos [30] (in the MSSM, a small mass ratio

mb=mt based on a large value of tan� implies such �ne-tuning problem). The chargino

mass matrix is here 0
BB@

�12 �PQ�14
gvp
2

�PQ�32 �34
g�PQvp

2
gvp
2

g�PQvp
2

M

1
CCA ; (22)

where we used the VEVs in (13) and denoted the gaugino mass by M . This structure

has no light eigenvalues.

Another possible implication of 4HD models concerns the value of Rb. Within the

standard model, the partial width of the Z boson to bb seems to be very sensitive to top-

quark radiative correction. For the top observed in CDF the predicted value is well below

(a three-� deviation) the present experimental limits [31]. In minimal SUSY scenarios

the main correction results from the balance between Z vertices with Higgs-top and their

SUSY partners, and the anomalous value of Rb can be alleviated for light charginos and/or

light stop scalars [32]. In 4HD SUSY models the situation is similar (especially in our

scenario, due to the global approximate symmetry assumed in the Yukawa sector), with

more freedom than in the MSSM to adjust the corrections. Note, for example, that large

bottom Yukawa couplings do not imply necessarily a large value of tan � (�
r

v2
2
+v2

4

v2
1
+v2

3

).

Our last comment concerns the strong CP problem. In the model under consideration

there are (tree-level) contributions to � of order �2PQ � 10�3, a value much bigger than

the present experimental limit (� < 10�9). It seems possible, however, that the interme-

diate scale used to break CP would also de�ne a realistic axion scenario. Some of the

ingredients (a Peccei-Quinn symmetry or singlet VEVs breaking the global symmetries)

are already present in the model. Of course, for this scenario to work other requirements

(on the dimension of the operators breaking the anomalous Peccei-Quinn symmetry, on

the ratio of the scales involved,...) are also needed.
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6 Conclusions

The origin of CP nonconservation in SUSY models provides a good reason to explore

nonminimal extensions. In the usual MSSM scenario CP -violating phases occur in two

di�erent sectors: in Yukawa couplings, where they would be responsible for CP violation

in K and B physics, and in SUSY-breaking terms (gaugino masses and scalar trilinears),

where they would induce too large fermion EDMs unless suppressed by two or three

orders of magnitude.

We have presented here an extension of the MSSM with four Higgs doublets where the

complex phases appear spontaneously, induced by explicit phases in Higgs masses. An

approximate Peccei-Quinn symmetry almost decouples the pair of extra Higgs �elds, but

their small couplings (also suppressed by the avor symmetry) turn out to be responsible

for all CP -violating phenomena. In particular, tree-level FCNC diagrams are irrelevant in

Re�M12 but responsible for �K. The resulting CKM matrix of the model has a negligible

complex phase of order �2PQ � 10�3. This suppression appears in all CP signals either

from small phases in the dominant scalar sector or from small ratios of VEVs and Yukawa

couplings in the extra sector.

On dimensional grounds, the parameter �PQ specifying the violation of the Peccei-

Quinn symmetry sets:

� the ratio mb=mt � �PQ, and the relative suppression of the Yukawa couplings of the

extra Higgses (h3=h1 � h4=h2 � �PQ);

� the parameter �K � �2PQ and the ratio �0K=�K � �2PQ (with a preferred value (10�1�
10�2)�2PQ);

� the neutron EDM � 10�23�2PQe cm, being 10�23 an estimate for typical SUSY-

breaking parameters;

� and the CP violating asymmetries �iq � �2PQ involved in B physics.

In consequence, a neutron EDM close to its present experimental limit, negligible CP -

violating e�ects on B physics, and a small value of the �0K parameter could be regarded

as typical predictions of the model. In addition, we have estimated the e�ects of the

extra sector on the mass of the lightest neutral scalar and commented on other aspects

of the model (Rb and the strong � parameter).

We think that 4HD models constitute an interesting possibility in SUSY extensions

which, however, seems almost absent in the literature. We have de�ned a scenario where
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CP violation is brought under control in a consistent way (due to the action of an approx-

imate symmetry), in contrast to SUSY models where the complex phases are assumed

small without explanation. Although we have analyzed a particular model, we think that

it contains essential ingredients which may be shared by any satisfactory multi-Higgs

SUSY model. In a generic multi-Higgs model hard (CKM-like) CP violation seems to

imply too large imaginary FCNCs mediated by the extra Higgs �elds. This fact strongly

suggests a soft origin of CP violation. Then the problem of containing simultaneously

FCNC and too large CP violation forces these models to have, for example, unobservable

CP asymmetries in B decays, a prediction that will be tested in the near future.
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Appendix: Solutions to minimum equations

The vacuum expectation value of the scalar potential is

< V > =
1

2
m2

1v
2
1 +

1

2
m2

2v
2
2 +

1

2
m2

3v
2
3 +

1

2
m2

4v
2
4 +m2

12v1v2 cos �2 +

+ �PQm
2
14v1v4 cos(�4 + �) + �PQm

2
32v3v2 cos(�3 + �2) +m2

34v3v4 cos(�3 + �4) +

+
1

32
(g2 + g02)[v21 + v23 � v22 � v24]

2: (23)

The conditions at the minimum are

v1
@V

@v1
= m2

1v
2
1 +m2

12v1v2 cos �2 + �PQm
2
14v1v4 cos(�4 + �) + v21g(v) = 0 ;

v2
@V

@v2
= m2

2v
2
2 +m2

12v1v2 cos �2 + �PQm
2
32v3v2 cos(�3 + �2)� v22g(v) = 0 ;

v3
@V

@v3
= m2

3v
2
3 + �PQm

2
32v3v2 cos(�3 + �2) +m2

34v3v4 cos(�3 + �4) + v23g(v) = 0 ;

v4
@V

@v4
= m2

4v
2
4 +m2

34v3v4 cos(�3 + �4) + �PQm
2
14v1v4 cos(�4 + �)� v24g(v) = 0 (24)
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where g(v) = 1

8
(g2 + g02)[v21 + v23 � v22 � v24], and

�@V
@�2

= m2
12v1v2 sin �2 + �PQm

2
32v3v2 sin(�3 + �2) = 0 ;

�@V
@�3

= �PQm
2
32v3v2 sin(�3 + �2) +m2

34v3v4 sin(�3 + �4) = 0 ;

�@V
@�4

= m2
34v3v4 sin(�3 + �4) + �PQm

2
14v1v4 sin(�4 + �) = 0: (25)

First, we can estimate the relative sizes of VEVs. The solutions to (24) are consistent

with either one of the pairs of VEVs (v1; v2) or (v3; v4) being suppressed by order �PQ

with respect to the weak scale. Depending on the sizes of the unsupressed parameters

m2
1;m

2
3;m

2
13 and m

2
2;m

2
4;m

2
24 the absolute minimum will prefer one of the above choices.

This can easily be seen from the following. Imagine for a moment that �PQ = 0. The

equations in (24) reduce to two pairs of equations, with �rst pair depending on the

ratio v1
v2

and g(v), and the second on v3
v4

and the same function g(v). Thus, one pair of

VEVs is forced to be zero. Turning back on a small �PQ, the terms in the Lagrangian

suppressed by �PQ can make the previously trivial pair nonzero, but suppressed. The

only question left is which pair of the VEVs is small, and this will depend on the choice of

the unsuppressed mass parameters in the potential. We will assume that the parameters

are such that (v1; v2) are unsuppressed (and of the order weak scale), while (v3; v4) are

of the order �PQ times the weak scale. This assumption does not involve �ne tuning but

only \halves" the available parameter space. For the phases �i, it was shown in [20] that

in the limit � = 0 there is no nontrivial solution (i.e., �i di�erent from 0 or �). It is easy

to see, however, that for � 6= 0 the equations (24) do not have this trivial solution, and

complex phases are guaranteed. In particular, for � = O(1) from the two �rst equations

in (25) it follows that �2 is of order �
2
PQ (modulo �, depending on the sign of m2

12) and

�3 and �4 are unsuppressed.

In summary, the structure of values of VEVs and their phases is

v1 ; v2 = O(v)

v3 ; v4 = O(�PQv)

�2 = O(�2PQ)

�3 ; �4 = O(1) (26)

where v denotes the weak scale.
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We now explore this structure in more detail (at �rst order in �PQ). The �rst equation

in (25) gives �2 to be of order �2PQ up to2 a factor of �. Such �2 does not contribute to

leading order (its contributions are O(�2PQ)) to the minimum of the scalar potential (23),

and can be neglected in the rest of equations. The minimum equations (24) to leading

order are

v1
@V

@v1
= m2

1v
2
1 +m2

12v1v2 + v21go(v) = 0 ;

v2
@V

@v2
= m2

2v
2
2 +m2

12v1v2 � v22go(v) = 0 ;

v3
@V

@v3
= m2

3v
2
3 � �PQm

2
32v3v2 cos �3 +m2

34v3v4 cos(�3 + �4) + v23go(v) = 0 ;

v4
@V

@v4
= m2

4v
2
4 +m2

34v3v4 cos(�3 + �4) + �PQm
2
14v1v4 cos(�4 + �) � v24go(v) = 0 ;(27)

where go(v) =
1

8
(g2 + g02)[v21 � v22], and

�@V
@�3

= ��PQm2
32v3v2 sin �3 +m2

34v3v4 sin(�3 + �4) = 0 ;

�@V
@�4

= m2
34v3v4 sin(�3 + �4) + �PQm

2
14v1v4 sin(�4 + �) = 0: (28)

The �rst two equations in (27) are just the equations of the MSSM, and they �x v1 and

v2 in the usual way. Thus, we expect both v1 and v2 to be of the order of weak scale and

tan � = O(1) (i.e. no supression by �PQ, and no �ne tuning producing large tan �).

The goal now is to �nd the phases �3 and �4 in terms of quantities c = �PQm
2
32v3v2,

f = m2
34v3v4 and y = ��PQm2v1v4 and the angle � in order to eliminate them in the

third and fourth equation of VEVs in (27). We note that the three quantities c, f , and y

are of order O(�2PQ), and so we expect �3 and �4 unsupressed. In order to �nd �3 and �4

we use a geometrical interpretation similar to the one devised in [20]. It is possible to see

that the two equations (28) de�ne one of the objects shown in Figure 6 (which one it is

will depend whether 1=c, 1=f and 1=y can form a triangle or not). The quantities p and q

there are not independent, and can be expressed in terms of c, f , y and �. The di�erence

between the two types of solutions can be understood in the limit � ! 0, where only

the trivial solutions �3 = 0 and �4 = � exist. For � = 0 the object in Fig. 6(b) implies

nonzero �3 and �4, a type of solution which requires �ne tuning between mass parameters

2In the following we choose m2

12
positive without loss of generality and thus �2 � � + O(�2PQ).
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once it is substituted in the equations for v3 and v4. In consequence, for small values of

� only the solutions of the type in Fig. 6(a) appear. When � is nonzero the �ne tuning

is lifted, and both types of objects de�ne possible solutions to the minimum equations.

We performed numerical solutions to the above equations when � 6= 0 and large (order

1) and we found that the minima satisfy the structure given in (26). For simplicity and

to illustrate the discussion above we will give the equations for v3 and v4 at �rst order

in �.

Fig. 6(a): When �! 0 we see that �3 ! 0 and �4 ! �, while 1=p! 1=c+ 1=f and

1=q ! 1=y � 1=f . From the �gure we �rst �nd cosines of the relevant angles (�3 + �4,

�3 and �4 + �) to leading order in �. Then we are in the position to �nd v3 and v4 by

substituting these expressions into the two last equations of (27)

v3
@V

@v3
= m2

3v
2
3 � c[1� �2

2
(

1

c
1

f
+ 1

c
� 1

y

)2]� f [1� �2

2
(

1
f

1

f
+ 1

c
� 1

y

)2] + v23g(v) = 0 ;

v4
@V

@v4
= m2

4v
2
4 � f [1� �2

2
(

1

f

1

f
+ 1

c
� 1

y

)2] + y[1� �2

2
(

1

y

1

f
+ 1

c
� 1

y

)2]� v24g(v) = 0(29)

where, again, c = �PQm
2
32v3v2, f = m2

34v3v4 and y = ��PQm2v1v4. These equations,

although still complicated, can be solved in v3 and v4, (remember that v1 and v2 are

already �xed). Then we can go back and �nd �3 and �4, thus completing the search for

the �rst case.

Fig. 6(b): In this case 1=p ! 1=y and 1=q ! 1=c, while �3 and �4 tend to go to

angles in the triangle with sides 1=c, 1=f and 1=y (we denote this (order O(1)) asymptotic

angles as �o3 and �o4). We can again �nd the relevant angles to leading order in � and

then �nd v3 and v4 by substituting these expressions into the two last equations of (27)

v3
@V

@v3
= v23[m

2
3 +

m2
32m

2
34

m2
14

v2

v1
+ g0(v)] + 2�f

sin(�o3 + �o4)

tan �o3 tan �
o
4

= 0 ;

v4
@V

@v4
= v24[m

2
4 +

m2
34m

2
14

m2
32

v1

v2
� g0(v)] + 2�f

sin(�o3 + �o4)

tan �o3 tan �
o
4

= 0 ;

(30)

Remembering that v1 and v2 are already �xed in terms of m2
1, m

2
2 and m2

12, we see

clearly the �ne tuning for vanishing �[20]: the terms in square brackets would be forced

to vanish, implying two relations between mass parameters. However, once we include

� 6= 0 these degeneracies get lifted.
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Figure 1: Leading contribution to Re �M12.

24



�
�
�
�
�
�

@
@
@
@
@
@ �

�
�
�
�
�

@
@
@
@
@
@

d

sc

s

dc

H
�

�
�
��

@
@
@R

�
�
��

@
@
@R

Figure 2: Leading contribution to Im �M12.
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Figure 6: The two possible geometrical objects which represent the CP nontrivial solution

of equations (29) generated by a nonzero soft phase �. Each object consists of two
triangles, ABC and ADE. The sides of the triangles are AB = 1=p, BC = 1=f , AC =
1=c, AD = 1=y, DE = 1=f , AE = 1=q. (a) The object is such that the sides 1=c, 1=f and

1=y cannot form a triangle. (b) The object is such that the sides 1=c, 1=f and 1=y can

form a triangle.
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