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Abstract

The problem of topology change description in gravitation theory is analized in

detailes. It is pointed out that in standard four-dimensional theories the topology of

space may be considered as a particular case of boundary conditions (or constraints).

Therefore, the possible changes of space topology in (3+1)-dimensions do not admit dy-

namical description nor in classical nor in quantum theories and the statements about

dynamical supressing of topology change have no sence. In the framework of multi-

dimensional theories the space (and space-time) may be considered as the embedded

manifolds. It give the real posibilities for the dynamical description of the topology of

space or space-time.

Moscow 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25183664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The assumption that topology of 3-space may change dynamically or undergo quantum


uctuations was stated for the �rst time byWheeler in connection with his geometrodynamics

program [1]. According to Wheeler observable properties of matter and �elds must be

explained by geometrical and topological properties of space-time and the dynamics of matter

and �elds con�guration are the result of the dynamics of space-time geometry and topology.

This assumption and its motivations were discussed by many authors [2]-[17]. It was shown

that the properties of matter and �elds is indeed closely connected with the topology of

space-time [18]-[20]. Some analogies between the topology of space-time and the properties

of matter �elds were also found recently [31]. The considerable progress was achieved in

the investigation of in the investigation of the "existence" and properties of the topology

change models [3], [4], [11]-[13], where the well known results of di�erential geometry and

topology may be used. The most essential results in this areas are the theorems about global

hyperbolicity and Cauchy problem in general relativity [21]-[24], the Geroch theorem [3] and

it's generalization [4]. The theorems about global hyperbolicity state that globally hyperbolic

space-time model (i.e. the space-time model which may be considered as a solution of

the Cauchy problem) must have topology of the direct product M3 �R1 of 3-dimensional
space M3 and the real line R1. The theorem of Geroch [3], [4] may be considered as a
supplement to the global hyperbolicity theorems. It states that space-time model with
di�erent topologies of space sections must be singular or contain closed time-like curves.

These statements jointly establish the impossibility of dynamical consideration (i.e. as a
solution of some Cauchy problem) of classical topology changes processes in the framework
of four-dimensional theory but they do not forbid to consider topology change models as
solutions of some boundary problem. As all experiments yields only local data, we have
no a priori basis for excluding from consideration the space-time models which solve some

boundary problem, but the physical meaning of such models is unclear.
Some additional restrictions on the topology change models were imposed also in a num-

ber of papers [11], [12], [13] but the most results of such type were obtained under di�erent
additional assumptions which concerns the global properties of both space-time itself and
some additional structures. The realization of such assumptions in the real space-time do not

follow from observations or from some fundamental physical principles which are essentially
local. For instance, in the recent proposal of so called "selection rules for topology changes"
by Gibbons and Hawking [13] the existence of spinor structure is supposed. However the
existence of any globally nonzero �eld (spinor, vector or tensor �eld) does not follows di-

rectly from observations. If we omit the condition of existence of globally nonzero sections

of spinor bundle than the more general class of four-manifolds than it claimed in [13] and

hence more general topological changes models will be admitted.

The particular models of topology changes were also discussed by several authors [17],
[26]-[28], [29], [30]. Unfortunately, all such models are made "by hand" and there is no topol-

ogy change models ware obtained as a solution of some dynamical or boundary problem.
Moreover there is almost no progress in the constructive description of topology change: up

to now there is no real (or toy) theory which describe the possible changes of space topology.
All existing attempts to describe topology change or topological 
uctuation are phenomeno-
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logical. It is often supposed that topology changes are pure quantum phenomena [2], [10],

[9], [13], but there is no real progress in their quantum description also.

Such situation indicate that the di�culties which arise in connection with the problem of

topology change description are of principal nature. It is indeed the case because to describe

the manifold structure the following data must be given: (i) the �nite or countable set of

coordinate maps and the order of their junction; (ii) the set of functions which connect the

coordinate systems of di�erent maps in their intersections [33], [32]. These data must be

given before the solution of any equations. They may be considered as constraints or as a

part of boundary conditions which are given "by hand". Therefore to describe the changes of

space or space-time topology the number of the coordinate maps, the order of their junction

and the junction conditions must be converted from the class of constraints or boundary data

into the class of dynamical variables. This problem does not trivial because any change of

the number of coordinate maps and identi�cation or re-identi�cation of points of space-time

must induce the rede�ning of the space of functions on it. However, the formalism of the

current �eld theory does not contain any tools which make possible to change the number

of coordinate maps and to perform identi�cation of space or space-time points including

the rede�nition of the function space. By this reason, the Hawking's proposal to include
degenerate metrics into path integrals for description of the topological 
uctuations [9] does
not solve the problem because the values of functions along degenerate space path do not
identi�ed automatically. The same is true for the so-called 'minimalist wormhole model'
which was supposed recently by Smolin [31].

The main goal of this paper is to analyze formally several aspects of topological change

description, consider several di�erent attempts to the solution of this problem and discuss
some perspectives. For this purpose in the next section we discuss the role of space-time
topology in the �eld theory. In particular, using the results of our previous papers [35], [36]
it will be formalized the above statement that in the current classical �eld theory topology
of space-time is a constraint. Some possibilities of the topology change consideration in the

framework of (3 + 1)-dimensional theory will be discussed in the section 3. The rest part of
paper contains some discussion and speculations about di�erent possibilities of the topology
change description in multidimensional space-time theory.

2 Topology of space-time in current �eld theory

Consider the action integral of the some �eld theory (both classical and quantum in its path

integral form) in four-dimensional space-time in the following general form

S =
Z
M

L(�A;�A;� )d
4�; (1)

where L(�A;�A;� ) is the Lagrangian which is depend from the �elds potentials �A and their
derivatives, A is the cumulative index and d4� is the invariant volume element which in the

local coordinates fx�; � = 0; :::; 3g has the form

d4� =
p�gd4x =

p�gdx0�:::�dx3 (2)
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where � is the exterior product of di�erential forms, g = det kg��k and g�� is the metric

tensor of Lorentzian signature diag(+;�;�;�) on M.

In the equality (1) the integration are carried out over the full manifold M, so both

action S and corresponding Feynman amplitude expfiS=hg are the functionals of both �eld

variables �A and the manifold itself.

To formalize the action dependence from the manifold structure, let us consider some

atlas U = fVkg of M, i.e. �nite or countable covering of M by coordinate maps Vk which

are di�eomorphic to unit cube D4 of the Euclidean space R4 :M =
S
k2P

Vk, where Vk � D4

and P � N is a subset of the set N of natural numbers, which numerate the elements of

the covering U. Let fx�kg are the local coordinates in the region Vk and
n
x�i0:::il

o
are some

local coordinates in the intersection Vi0 \ ::: \ Vil (which is also di�eomorphic to D4). In

any intersection Vi0 \ :::\Vil the �eld potentials �A must satisfy to the natural consistency

conditions which may be considered as an additional constraints.

In the atlas U the integral (1) may be rewritten in the following form [35]

S =
X
k2P

Z
Vk

L(�A(xk);�A;� (xk))
p�gd4xk �

X
k<l

Z
Vk\Vl

L(�A(xkl);�A;� (xkl))
p�gd4xkl + :::

+(�1)K
X

i0<:::<iK

Z
Vi0\:::\ViK

L(�A(xi0:::iK);�A;� (xi0:::iK))
p�gd4xi0:::iK (3)

where K <1 because of standard supposition about paracompactness of space-time mani-
fold M [21].

For the following formalization of the action integral (1) consider the set �U of subsets

of the set P such that (i0; :::; ik) 2 �U if and only if Vi0 \ ::: \Vik 6= ;, where ; denotes
the empty set. The set �U which satis�es to such condition is called a nerve of the covering
U [48] and its elements of type Ik = (i0; :::; ik) are known as k-dimensional simplexes [48].
The zero-dimensional simplexes, i.e. elements of the type I0 = i0, are vertexes. It is follows
from de�nition that if Ik 2 �U and Jl 2 Ik, where l < k, then Jl 2 �U. This property

shows that the nerve �U of the covering U is a particular case of the abstract simplicial
complex [48]. Such constructions are widely used in the algebraic topology, in particular,
in Cech cohomology theory whose connections with topological quantization was discussed
in [49].

With the nerve �U of the covering U we may associate the system of its characteristic

functions which will be denoted as F� =
n
f0
�
; :::; fK

�

o
[35], [36] where the functions f l

�
=

f l
�
(Il) 2 F� , 0 � l � K, are de�ned on the set of natural numbers as follows

f l
�
=

X
i0<:::<il

aI
l

�
f0i0 ^ ::: ^ f0il (4)

where im 2 N, N is the set of natural numbers, "^" denote exterior multiplication,

f0i = f0i (j) = �ij (5)
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and

a
Il
�
= 1; if Il 2 �U ; and a

Il
�
= 0; if Il =2 �U (6)

It is follows from de�nitions that the connection of the system F� of characteristic function

of nerve �U with atlas U is one-to one and hence F� de�nes the topology of the manifold

M as well as corresponding atlas U.

Using the de�nitions (4)-(6) we may rewrite equality (3) as follows [35], [36]

S =
KX
k=0

(�1)k
X

i0<:::<ik

S
Ik
k f

k
�
(Ik) (7)

where

S
Ik
k =

Z
Vi0

\:::\Vi
k

L(�A(xi0:::ik);�A;� (xi0:::ik))
p�gd4xi0:::ik (8)

Equalities (7), (8) together with de�nitions (5)-(6) formalize the dependence of the action

integral from the topology of space-time. They make possible to do several observations.

First, equalities (7) and (8) formalize the above statement that the topology of manifold
play the role of the additional constraint. Second, the topology of arbitrary manifold may

be coded by the system F� which may be done �nite for compact manifolds. Some another
methods of the manifold structure coding are described in [47], but they are less suitable for
our purpose. It is known also, that independently from the method of the manifold structure
coding in three or more dimensions, the set of codes which describe all manifolds of the
given dimensionality is in�nite with in�nite subset of codes which de�ne the given manifold.

Moreover, if dimension of manifold is three or more then there is no so simple classi�cation
of manifold structures as in two dimensions [47]. Third, any changes in the topology of
manifold M may be represented as corresponding changes of the system F�. Really to
change the topology of M it is necessary to change its atlas U, i.e. the order in which the
coordinate maps Vi are joined with each other and their number. The change of atlas U

induce the change of its nerve �U and hence the system F� because the correspondences
U$ �U $ F� are one-to-one. However the representation of the action functional S in the
form (7) does not contain any sign of the F� changes. Moreover, such representation does not
contains any information about joining conditions in the intersections of coordinate maps.
So, any changes of space or space-time topology may be done only "by hands" and does
not follow from the general formalism. Therefore the standard methods of the current �eld

theory (both classical and quantum in its path-integral form), which are based on the usage
of the action functional S, does not permit to describe the dynamical change of space-time

topology. To make possible such description it is necessary to use functionals which contain

not only F� but also some objects that may be called as "discrete derivatives" of F� (as an
example of such objects may be used operators ��Ik [35], [36] which may be interpreted as

creation and annihilation operators of the simplex Ik). The introduction of such objects is
equivalent to introduction of some non local (topological) interaction which has no analogies

in the current �eld theory therefore it is almost hopeless to solve this problem directly but
it is possible to investigate some possibilities in the construction of the consecutive topology

change theory and its main features in the scope of the standard theories.
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In the above the general 4-dimensional form of the action integral was considered while

in the context of the topology change description the usage of some parameterization would

be more suitable. The introduction of such parameterization is straightforward and we do

not consider it here. In particular, in parameterized form the action integral (1) reads

S =
Z
Ldt (9)

where the Lagrangian L is de�ned analogously to (7), (8):

L =
KX
k=0

(�1)k
X

i0<:::<ik

L
Ik
k f

k
�(Ik; t) (10)

where fk
�
(Ik; t) and L

Ik
k are straightforward analog of (4)-(6), (8).

It is easy to see that parameterization of the action integral does not change result:

(i) both in general four-dimensional form and in the parameterized form the topological

variables are the discrete valued functions, and (ii) the action functional S contains the

topological variables only as parameters (or constraints).

3 Topology change in four-dimensional theory: appli-

cation of Morse theory

To simplify the problem consider the particular case than the part of space-time is a compact
four-manifoldM4 whose boundary is a disjoint sum of three-dimensional space-like manifolds
M3

1 and M
3
2: i.e. @M4 = M3

1 [M3
2, and M

3
1 \M3

2 = ;. The manifold M4 is often called

as interpolating manifold. Such models may be described in the framework of Morse theory
[33], [34] which state that:

(i) there is a smooth function ' on the manifold M4, such that 0 � '(p) � 1 for all
p 2M4, '(p1) � 0 for all p1 2 M3

1, '(p2) � 1 for all p2 2M3
2, and moreover ' has a �nite

number of nondegenerate critical points onM4 (the point p 2M4 is called the nondegenerate

critical point of smooth function ' if in arbitrary system of local coordinates x� the following
conditions are satis�ed: ';� (p) = 0 and det k';�� (p)k 6= 0);

(ii) M3
2 may be obtained from M3

1 by a �nite number of spherical modi�cations which
correspond to the critical points of '.

The correspondence between the non-degenerate critical points of function ' and the

topology of the level surfaces of this function is the follows [33].
Let p� is a non-degenerate critical point of ', '(p�) = c and let there is no other critical

points on the level surface ' = c. In some neighborhood of p� a system of local coordinates
fx�g exists such that ' is represented in the form

' = '(p�) +
1

2

4X
�=1

a� � (x�)2 (11)

where coe�cients a� are equal to �1. Let r + 1 is the number of negative a� in (11):
r + 1 = Ind� k';�� (p�)k. Then, the level surface ' = c+ � may be obtained from the level
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surface ' = c � �, where � = const > 0, through the spherical modi�cation of rank r [33],

[34]. In the case of 3-manifolds such modi�cation may be represented as a contraction of the

sphere Sr into the critical point p� along the trajectories of the vector �eld l� = ';� and the

following in
ation of the sphere S3�r�1 from the same point p�. Within this the contraction

of Sr is realized in the subspace with coordinates x� which coincides with a� = �1 in (11),

while the in
ation of S3�r�1 is realized in the subspace with coordinates x� with a� = +1.

More formally such modi�cation is described by the equation

M3
2 =

�
M3

1 n (E3�r � Sr
�
[
�
Er+1 � S3�r�1

�
(12)

whereM3
1 andM

3
2 are the level surfaces of ' = c�� and ' = c+� respectively and E3�k�Sk

is the tubular neighborhood of a directly embedded sphere Sk. The generalization of such

procedure on arbitrary-dimensional case is straightforward.

The 3-sphere creation (; ! S3) and its annihilation ( S3 ! ;) are described by spherical
modi�cations of rank r = �1 and r = 3 respectively, while the wormhole creation is the

spherical modi�cation of the zero rank.

It is obvious that the spherical modi�cations theory may be applied to the description of

3-spaces topology changes on the given four-manifold M4 with given topological structure,
because the topological structure of manifold must be given before introduction of smooth-
ness and before de�nition of Morse function ' (or arbitrary smooth function). The main
principles of such application are the follows (for details see [38] - [40] ).

It is supposed that the level surfaces ' =const are space-like and the vector �elds l� = ';�
is time-like everywhere except the critical points of ', where l� = 0. Outside the critical
points of ' the metric tensor of space-time may be represented in the form

g�� =
2l�l�
f

� eg�� (13)

where f = g��l�l� = eg��l�l� and eg�� is a positive de�nite metric on M4.
Using representation (13) we may investigate the asymptotic properties of space-time

models in the vicinity of nondegenerate critical point of function ' (i.e. e. in the vicinity of
the topology change points). In particular, the direct calculation of Ricci tensor and scalar

curvature gives

R�� = eR�� +
4X

n=1

 
1

f

!n
n

R�� (14)

and

R = � eR +

 
1

f

!n
4l�l� eR�� � 2

�
(l�j�)

2 � l�j�l
�

j�

�
� 2f�;�

o
+ 

2

f

!2 n
2l�j�l

�f;�+2f;
� f;�+l

�l�f;�j�
o
� 4

f3
(l�f;� )

2 (15)

where tilde "~" denote quantities correspond to the metric eg�� and the
n

R�� are certain

polynomials on l�, f;� and their covariant derivatives with respect to eg�� (The explicit form
of R�

�
� and R�� are given in [29] ).
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It is easy to see from (11), (13) that non-degenerate critical points of ' are essentially

singular points of metric g��: the limits of right-hand side of (13) at these points exists,

but depends on the direction [38], [39]. Further, it is easy to see that near non-degenerate

critical points of ' the curvature tensors of space-time have the following asymptotic

n

R
�

�
�;
n

R��� fn�1 (16)

and hence

R�
�
�; R��; R � 1

f
(17)

Therefore the topology change points are the scalar curvature singularities of space-time.

More detailed investigation of space-time properties near topology change points and some

simple examples may be found elsewhere [39], [29].

The representation of the Lorentzian metric g�� in the form (13) may be used not only for

investigation of space-time near the critical points of the function ' (i.e. near the topology

change points) but for the construction of some variants of the topology change theory on the

given four manifold. For this purpose the scalar function ' and positive de�nite metric eg��
are used as new independent variables instead of the Lorentzian metric g�� which de�nes the
motion of the sources. Such program leads to a new class of scalar-tensor theories of gravity,

which partially realized Hawking's idea about the Euclidean nature of space-time [10]. The
outline of such model theories were discussed in [39]-[40]. In particular, the action integral
in such theory in the approximation of minimal coupling with sources may be written in
standard form

L =
Z
(Lg + �Lm) d� (18)

where Lg is the gravitational Lagrangian depending on scalar �eld ' and metric tensoreg�� and their derivatives, Lm is the standard Lagrangian of the source �elds �A (A is the
cumulative index) and their covariant derivatives with respect to g��, d� is invariant volume
element. The stationarity condition gives

�Lg=�eg�� � �T��D
��
�� = 0; (19)

�Lg=�'� �(T��P
���)j� = 0 (20)

and

�Lm=��A = 0 (21)

where �=�eg��, �=�' and �=��A are variational derivatives, T�� is the standard energy-

momentum tensor of the source �elds (the same as in classical general relativity) and tensors
D
��
�� and P ��� are equal to

D
��
�� = @g��=@eg�� = 4

f
l(��

�)

(�l�) �
4

f2
l�l�l�l� � �

�

(��
�
�); (22)

P ��� = @g��=@';�= (4=f) l(�g�)� �
�
4=f2

�
l�l�l� (23)

Equations (21) are the classical equations for the source �elds and the equations (19) and
(20) de�ne the scalar �eld ', the positive de�nite metric eg�� and the pseudo-Riemannian
(Lorentzian) structure of space-time through (13).
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Some problems of such approach, namely, the choice of the Lagrangian Lg and the sin-

gularities problem were discussed in [29], [30], [39]-[40]. Here we want to point out several

main features of such approach.

First, the structure of four-manifold must be given. This condition is very restrictive,

because it automatically excludes from consideration a big class of topological changes or a

big class of histories (intermediate states).

Second, the equation (20) is an elliptic one. So, this approach does not lead to the

dynamical description of the topological change, because minimum one independent variable

is a subject of the boundary problem. In application to the Universe evolution it means that

both initial and �nal states of the Universe are given. The physical meaning of such problem,

in particular, the nature of such boundary conditions, is very unclear.

At last, the direct application of the Morse theory lead to the singular space-time models

and singular theory as it is follows from the above consideration. Using this fact De Witt

made conclusion about dynamical suppressing of topology changes in quantum gravity [6].

His conclusion were reanalyzed in [7]. Nevertheless, De Witt conclusion cannot be considered

as a general theorem because both in [6] and [7] only particular topology change model were

considered in the framework of standard general relativity without any references to some
theory of topology change. To obtain nonsingular theory some type of regularization [40]
or so-called Lorentz cobordism [5] may be used. In the �rst case the additional boundary
conditions must be introduced but the possibility to include them into the general formalism
is not obvious. In the Lorentz cobordism case some additional restrictions on the 4-manifold
structure is necessary and vector �eld l� in (13) become nonintegrable. The resulting model

will describe transition from "initial" manifold M1 to the "�nal" manifold M2 and may be
both singular and regular but non-causal [3]. To obtain nonsingular model some additional
surgical operations may be necessary. The consideration of full set of histories between
"initial" and "�nal" states is impossible in both methods.

4 Topology change in multidimensional gravity

The most of the current uni�ed theories require space-time to be of more then four di-
mensions. Independently from the reasons which lead to the nonobservability of additional
dimensions, the multidimensionality of space-time gives several possibilities for the dynam-
ical description of topology change of 3-space. Here we shall discussed brie
y two such

possibilities.

4.1 E�ective topology change via dynamical in
ation-contraction

In the standard dynamical dimensional reduction paradigm multidimensional space-time

supposed to have the topological structure of direct product of real line (global time coordi-

nate) and several topological spaces, i.e.

M = R�M1 �M2 � :::�Mk

such that one of space, for instance M1, has dimension 3, while dimension of other spaces
may be arbitrary. It is supposed also, that all spacesMi, i = 1;...,k, are compact. The model
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of space-time is constructed by such a way that 3-manifold M1 (our universe) expands from

initial singular or Plank state while other manifolds contract from the state with �nite scales

to the Plank scales.

It may be speculatively supposed that universe may pass through several stages such that

at each stage one 3-manifold expands and one 3-manifold contracts while other manifolds

remain in the state with Plank scales. As a result at di�erent stages of evolution universe

will have di�erent e�ective topologies.

Unfortunately, this idea has two serious de�ciencies. First, to describe the wide class of

the topological changes the total dimension of multidimensional space-time in such scheme

must be enormously big (in�nite) while there are no quantum �eld theories with total dimen-

sion of space-time more then 26. Second, it is very di�cult to �nd some natural mechanism

which may control the transitions between di�erent stages of the universe evolution in such

scheme. Therefore, the paradigm of e�ective topology change of universe via in
ation-

contraction must be considered today as pure principal possibility.

4.2 Topology change in the embedding models

Analysis of the Morse theory gives some ideas about topology change description in multi-
dimensional theories. Namely, it is easy to see that the Morse function ' de�nes embedding
of space-time (M4; g) in 5-dimensional topological space V5 = M4 � R. As the natural
generalization, we may consider our space-time as submanifold of some multidimensional

manifold with given topology, in particular, as a submanifold of the Euclidean space of the
appropriate dimensionality N which depends from the type of embedding. For instance,
for arbitrary four-dimensional manifold N = 8, 10 and (10+7) for smooth, isometrical Rie-
mannian and isometrical pseudo-Riemannian (with arbitrary metric signature) embedding
respectively [41], [42]. In di�erence with standard Kaluza-Klein-type theories we do not
demand nor the existence of any dimensional reduction mechanism, nor the representation

of the whole manifold, namely RN , as a direct product Mn �VN�n, where Mn and VN�n

are some smooth manifolds. Instead this the existence of two type of observes and �elds is
supposed: the external observers and �elds which are de�ned in the whole RN , and the in-
ternal observers and �elds which are de�ned on Mn. The class of internal �elds may include
both the induced �elds and the surface distributed �elds. The full theory must contains two

parts: the description of the embedding and the description of the interior dynamics.
It is necessary to note, that the possibility of the space-time consideration as a membrane

in higher dimensional space is not new and were discussed by several authors [43]-[46], but

only the local properties of embedding were considered. The most principle feature of our
approach is the consideration of both global and local properties of embedding in the uni�ed

formalism.
Here we shall brie
y discuss only the outline of such approach. The detailed consideration

is the subject of separate papers and will be published elsewhere.
We begin our consideration from reproduction of some well-known facts about embedding

of manifolds into Euclidean space.

Let Mn is a smooth n�dimensional submanifold of the Euclidean space RN with Carte-

sian coordinates
n
XP ;P = 1; :::; N

o
, and the number k = N � n is called the codimension
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of Mn. The embedding Mn �! RN is de�ned locally by the set of equations

XA = XA
�
x1; :::; xn

�
(24)

where (x1; :::; xn) are the local coordinates in Mn and the matrix



@XP=@xi




, i = 1; :::; n,

has maximal rank n. Equations (24) may be obtained as a solution of the well known

Gauss-Kodazzi equations [32], [44] which connect the intrinsic and extrinsic geometries of

submanifolds. Unfortunately, such description does not admit to de�ne the global structure

of Mn or investigate its dynamics. Therefore we shell use the alternative description of Mn

as the intersection of N � n hypersurfaces in RN , i.e. by the system of equations

�A
�
XP

�
= 0 (25)

where �A
�
XP

�
, A = 1; :::; k, are some smooth functions on RN , and the matrix




�A;P



 =


@�A=@XP




 must have maximal rank, i.e.
rank




�A;P



 = 


@�A=@XP




 = k = N � n (26)

To introduce the atlas onMn let's consider arbitrary point p 2Mn � RN . By force of the

implicit function theorem there is a neighborhood Up � RN of arbitrary point p 2Mn � RN

such that the system (25) may be solved in the form (24) with xi = Xmi , i = 1; :::; n and the
numbers fm1; :::;mng are a subset of the set f1; :::; Ng. It means that there is a one-to-one
correspondence between the points of Up \Mn and one of n -dimensional coordinate planes
in RN : Taking di�erent points of p 2Mn we may obtain the covering of Mn by the regionsfUp = Up \Mn which de�ne the atlas on Mn.

Equations (25) are the algebraic constraints, but the smooth functions �A may be ar-
bitrary. In particular, these �elds may be considered as usual scalar �elds in RN . In the
simplest model the action functional will have the form

SN =
Z
dNX

�
�PQ�AB�

A;P �
B;Q�V

�
�A
��

(27)

where dNX - is an invariant volume element of RN , �AB - is Kronecker symbols, A;B =
1; :::; k; k = N �n is a codimension of Mn, �PQ is the Euclidean or pseudo-Euclidean metric

on RN with given signature, �A;P = @�A=@XP and V
�
�A
�
is the potential. Of cause, the

action SN may contain not only the scalar �elds �A but additional scalar, vector and tensor

�elds also. Moreover, instead of Kronecker symbols �AB an arbitrary nondegenerate k � k

matrix may be used.
The set of equations

�SN 0��A = 0 (28)

together with the constraints (25), the consistency condition (26) and appropriate initial

or boundary conditions give dynamical description of the topology of Mn by means of its
embedding into RN . Such description of the topology of Mn does not unique because the
same manifold may be embedded into RN by di�erent manners. The interior dynamics of
�elds on Mn does not described by these equations.
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To describe the dynamics of �elds on Mn the full action must contain additional surface

term. For de�niteness we shall write this term in the form

Sn =
Z

�A=0

dn� (Rn + Lm) (29)

where dn� - is an invariant volume element on Mn, Rn - is a scalar curvature and Lm - is the

Lagrangian density of the matter �elds on Mn. In general, Lm may contain both induced

�elds, in particular, the �elds XA = XA (x1; :::; xn), and the �elds which are distributed on

Mn (surface-distributed �elds). In the simplest case

Lm = �ABg
��XA;�X

B;� (30)

where g�� is some metric on M
n, and the action Sn become the direct generalization of the

Nambu-Goto string action. The full action

S = SN + Sn (31)

describes both the topology of Mn (by means of its embedding into RN) and the dynamics
of �elds on Mn. Equations

�Sn0�g�� = 0; (32)

�Sn0�XA = 0 (33)

and other analogous equations describe the dynamics of �elds on Mn and its internal geom-
etry. It is easy to see that these equations give additional constraints for the equations (25)
which de�ne the topology of Mn and the embedding Mn �! RN .

Such scheme may be directly applied to the description of our space-time (in particular,
to the Universe evolution) if we put in the above equalities n = 4 and N � 17 (so that
k = N � n � 13). It is not contradict also to the standard Kaluza-Klein approach, if we
suppose that the multidimensional space-time of the Kaluza-Kline theory is a submanifold
of some RN . However we will not consider such possibility here.

More detailed consideration of the considered approach is the subject of the separate

paper. Nevertheless some additional remarks are necessary. The existence theorems gives
only necessary conditions for isometrical pseudo-Riemannian embedding. Unfortunately, the
induced metric is not necessary Lorentzian even if the space RN is Lorentzian. To obtain

Lorentzian metric onMn we may use several possibilities. First, we may omit the isometrical
condition and suppose that g�� is an arbitrary metric with Lorentzian signature on Mn

(simultaneously the necessary dimension of RN will be reduced). Second we may demand

that induced metric g�� on Mn is Lorentzian. Both ways are seems to be unsatisfactory

because in the �rst case the connection between external and internal geometries is very weak
and in the second case additional constraints on the functions �A

�
XP

�
must be introduced.

It seems that the most appropriate choice is to introduce additional smooth function 	 on

RN and take metric g�� on M
n in the form (13), i.e.

g�� =
2l�l�

f
� eg�� (34)
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where l� and f are the same as in (13), � is the restriction of 	 on Mn, i.e. � = 	 jM ,
and eg�� is induced by the Euclidean metric of RN . As an example of the function 	 the

projection of Mn on T -axes may be used. It is easy to see, that if external space RN has the

only time-like direction then such projection will be de�ned by the elliptic equation and so

the de�nition of global structure of space-time could not be reduced to the pure dynamical

problem. Moreover, de�nition of the metric ofMn in the above form to the same singularity

problem as in the case of direct application of Morse theory discussed in section 2. To avoid

this problem the condition of integrability of vector �eld l� may be omitted. In this case the

Lorentz cobordism models will be included in the general formalism also.

5 Conclusion

We have consider some possible approaches to the description of the topology of space-time

and the topology changes in the framework of both four-dimensional and multidimensional

theories. Our results may be summarized as follows.

First, the simplicial approach make possible to formalize the statement that the topology

of manifold play the role of the additional constraint. Namely, in this approach topology
of space or space-time is represented by means of the system F� of characteristic function
of the nerve of some atlas of space-time. However action functional S contains F� by
linear manner and does not contain any sign of the F� changes. Therefore the standard
methods of the current �eld theory (both classical and quantum in its path-integral form),

which are based on the usage of the action functional S, does not permit to describe the
dynamical change of space-time topology. To make possible such description it is necessary
to use functionals which contain not only F� but also some objects that may be called as
"discrete derivatives" of F� (as an example of such objects may be used operators ��Ik [35],
[36] which may be interpreted as creation and annihilation operators of the simplex Ik). The

introduction of such objects is equivalent to introduction of some non local ("topological")
interaction which has no analogies in the current �eld theory.

Second, the direct application of Morse theory or its nonintegrable generalization (Lorentz
cobordism) make possible to describe topology change on the given four-dimensional man-
ifold. This condition is very restrictive because they do not permit to consider all possible

intermediate states or all topological histories. Moreover, this approach leads to the singular
space-time models. To obtain nonsingular models some additional conditions must be im-
posed or additional topological transformations must be made. Both way are unsatisfactory

because they could not be included in the general formalism. Furthermore, the equation
(20), which de�nes the simultaneity hypersurface is an elliptic one. Therefore the space

topology in such models is a subject of the boundary problem with boundary conditions
on di�erent space-like hypersurfaces. The physical meaning of such boundary conditions is

unclear.
Third, the multidimensional theories give several possibilities for the topology change

description. The most radical way is to describe space-time as a membrane in the Euclidean
space of appropriate dimensionality. In di�erence with the existing embedding space-time

theories, the full action in such approach must contain two terms: the term which de�ne

13



embedding of 4-dimensional space-time into Euclidean space of appropriate dimensionality

and the surface term which describe the dynamics of �elds. Such approach make possible

to consider all topological histories including 4-manifolds with exotic smoothness, whose

possible role in physics was discussed recently by Brans [50]. Of cause, this approach does

not free from the number of di�culties most of which are the subject of separate paper.

Here we pointed out only two of such problems. The �rst one is pure technical: it is also

hopeless to obtain exact solution with non trivial topology of space-time in any variant

of such theory while any known solution may be easily rewritten in such scheme. The

second problem is of principle nature because the �nite classi�cations of smooth manifolds

whose dimension more or equal 3 does not exist. Moreover, the problem of identi�cation of

manifolds is algorithmically unsolvable in 4 or more dimensions and its algorithmic solvability

in 3 dimensions is an open question [47]. Nevertheless, such approach is seems to be of

considerable interest because it is consistent with multidimensional paradigm of the most

current �eld theories and admit to consider all possible topological con�gurations of 4-

dimensional space-time.
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