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1. Introduction

The complexity of nonlinear gravitational instability challenges our understanding of

the universe. Even though the law of gravity between two bodies is very simple in the

non-relativistic limit, the long-range interactions among exceedingly many bodies leads to

behavior that de�es simple analysis beyond the linear regime. Computer simulation with

N-body methods provides a comprehensive approach to this problem, but it su�ers from

�nite dynamic range and computational expense. Even more importantly, simulations do

not increase our understanding of dynamics without guidance from analytical approaches.

In this paper, we explore a class of what we call local approximations for the nonlinear

dynamics of self-gravitating cold matter. By local we mean that each mass element behaves

as if it evolves independently of all the others once the initial conditions are speci�ed. This

might sound quite implausible. After all, mass elements do inuence each other through

gravity. However, as we will demonstrate, the celebrated Zel'dovich (1970) approximation

(henceforth ZA) can be viewed as exactly an approximation of this sort.

In the past several years, there have been various attempts to improve upon the

ZA, including the adhesion approximation (Kofman, Pogosyan, & Shandarin 1990), the

frozen ow approximation (Matarrese et al. 1992), the frozen potential approximation

(Brainerd, Scherrer, & Villumsen 1993; Bagla & Padmanabhan 1994), the truncated

Zel'dovich approximation (Coles, Melott, & Shandarin 1993), and higher-order Lagrangian

perturbation theory (Melott, Buchert, & Weiss 1995) (note that the ZA can also be

regarded as the �rst-order solution in Lagrangian perturbation theory). Most of them are

attempts to deal with the evolution of high density regions after trajectories cross, when

the ZA ceases to be adequate. However, this is a diÆcult problem. Aside from the spherical

model (Peebles 1980) and its cousins, there still exists little in the way of approximations

methods for post-collapse evolution.

In this paper, we will not try to tackle the problem of trajectory crossing or the

subsequent nonlinear evolution. Instead we ask whether one can improve upon the ZA

even before orbits cross by seeking generalizations of the ZA within the framework of local

approximations. In simple terms, a local approximation is one in which the evolution

of each mass element is described by a set of ordinary di�erential equations in time in

which there is no coupling to other mass elements, aside from those implied by the initial

conditions. For instance, as we will explain more fully later, the evolution of a given mass

element under the ZA is completely determined once the initial expansion, vorticity, shear

and density at this mass element are speci�ed. (The �rst three quantities correspond to

the trace, antisymmetric part and traceless symmetric part of the velocity gradient tensor.)

The evolution of other mass elements have no e�ect on the evolution of these quantities
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at this mass element. In other words, under the ZA, all the information about other mass

elements is encoded in the initial conditions. Once these are speci�ed, each mass element

goes for its own \free ride"!

We shall seek generalizations of the ZA by �rst systematically writing down a set

of Lagrangian evolution equations for the velocity and gravity gradient for a given uid

element. We discuss two local approximations based on ignoring certain terms in the

evolution equation for the Newtonian tidal tensor. One of them was introduced by

Bertschinger & Jain (1994). They used the fact that if a quantity known as the magnetic

part of the Weyl tensor vanishes in the Newtonian limit, the set of exact Lagrangian

uid equations for cold dust becomes local. (This fact was proven in general relativity by

Matarrese, Pantano, & Saez 1993 following earlier work of Barnes & Rowlingson 1989; part

of the motivation for such an assumption was the statement of Ellis 1971 that there is no

counterpart to the magnetic part of the Weyl tensor in Newtonian theory.) Bertschinger

& Jain then obtained the result that spindle (�lamentary) collapse is favored in general as

opposed to pancake collapse. (Pancake collapse had been thought | correctly | to be

the generic outcome of gravitational collapse of cold dust following the work of Zel'dovich

1970.) Since then, it has been shown that the magnetic part of the Weyl tensor does have a

Newtonian counterpart (Bertschinger & Hamilton 1994; Kofman & Pogosyan 1995 obtained

equivalent results but describe their conclusions slightly di�erently). Until now, there has

been no quantitative determination of the magnetic Weyl term neglected by Bertschinger

& Jain in the tidal evolution equation. With reasonable assumptions, this term may

be negligible on super-horizon scales, leading to \silent universes" (Bruni, Matarrese, &

Pantano 1995).

Our second local approximation based on the tidal evolution equation is entirely new.

It is based on dropping several more terms in addition to the Weyl tensor term. We will

show why this is a better approximation compared to the one proposed by Bertschinger

& Jain (1994). In fact, in tests this new approximation performs even better than the

ZA, both in cases where exact solutions are known and where numerical solutions are

calculated. In this paper, we concentrate on a comparison of the three local approximations

for ellipsoids, with and without symmetries.

To understand the main ideas underlying these local approximation methods, and how

they di�er from other approaches, it is useful to draw an analogy with gravitational lensing.

Our use of Lagrangian uid equations is akin to solving the optical scalar equations (Sachs

1961), whereby one follows the two-dimensional cross-section of a congruence of light rays

propagating through space. Our approach is similar, with light rays replaced by cold dust,

and with the two-dimensional cross-section replaced by the three-dimensional volume of a
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mass element. In fact, both approaches follow from the pioneering work in general relativity

by Ehlers (1961) and Kundt & Tr�umper (1961). The �rst application of these methods to

matter was by Hawking (1966), who pioneered the covariant uid approach to cosmological

perturbation theory. The formalism was championed by Ellis (1971) and eventually was

applied to the formation of large scale structure (Bertschinger 1995 and the references cited

previously). As in the case of gravitational lensing, this approach can tell how a given

(mass) element evolves but does not give its trajectory. The optical scalar equations do not

replace the gravitational lens equation, they supplement it. Likewise, the local methods we

advocate can supplement N-body simulations or other approximations such as Lagrangian

perturbation theory, by providing accurate ways to follow the deformation of mass elements

as they evolve under gravity.

The organization of the paper is as follows. In x2, we show how the ZA is a local

approximation. Section 3 presents two additional local approximations based on dropping

terms from the tidal evolution equation, and shows under what circumstances these

approximations are exact. To compare the three di�erent local approximations for more

general initial conditions, in x4 we consider the motion of a homogeneous ellipsoid, in both

cosmological (Friedmann-Robertson-Walker background) and noncosmological (vacuum)

contexts. The Weyl tensor and other relevant terms in the tidal evolution equation are

evaluated. In x5 we discuss how di�erent nonlinear approximations predict pancake versus

spindle collapse from generic initial conditions, for which we also calculate the collapse

times. Conclusions are presented in x6. The Appendix presents some results of second-order

perturbation theory.

2. On the Zel'dovich Approximation

In this section we review the Zel'dovich approximation starting from the Eulerian

uid equations in comoving coordinates. We then show that it can be regarded as a local

approximation.

The cosmological uid equations for cold dust in a perturbed Robertson-Walker

universe with expansion scale factor a(� ) are (Bertschinger 1995):

@Æ

@�
+ri

h
(1 + Æ)vi

i
= 0 ; (1)

@vi

@�
+ vjrjv

i = �
_a

a
vi �ri� ; (2)

r2� = 4�Ga2��Æ : (3)
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The mass density is � = ��(� )(1 + Æ) and ~v = d~x=d� is the proper peculiar velocity where

~x is the comoving spatial position and � is the conformal time (hence, d� = dt=a where

t is the proper time). We are neglecting spatial curvature so that we can use Cartesian

coordinates where ri = ri = @=@xi for the ith spatial coordinate.

The trajectory of a uid element is xi(~q; � ) where ~q is a Lagrangian coordinate labeling

the element, conventionally chosen to be the initial position:

xi(~q; � ) = qi +  i(~q; � ) : (4)

Now we introduce the Lagrangian time derivative d=d� � @=@� +vjrj. This time derivative

commutes with @=@qi. Using vi = d i=d� , we can rewrite equation (2) as

d2

d� 2
 i +

_a

a

d

d�
 i � 4�Ga2�� i = �ri�� 4�Ga2�� i : (5)

Each term on the left-hand side is �rst order in  i. The right-hand side can be estimated

from the Poisson equation (3), but �rst we need the mass density. It follows in the

Lagrangian approach by noting that �d3x is conserved along a uid streamline provided d3x

is computed from the mapping ~q! ~x. If there are no displacements, ~q = ~x and � = ��. The

volume element follows from the Jacobian determinant, leading to

�(~q; � ) = ��

�����@x
i

@qj

�����
�1

: (6)

For small displacements the Jacobian may be expanded in a power series;

the �rst-order term gives � = ��(1 � @ i=@qi) + O( 2). Now note that

@ i=@xi = (@ i=@qj)(@qj=@xi) = @ i=@qi + O( 2). Therefore, using equation (3),

we see that the divergence of the right-hand side of equation (5) vanishes to �rst order in

 i. If  i is longitudinal (i.e., has vanishing curl), then the right-hand side itself vanishes

to �rst order. Displacements that grow by gravity are necessarily longitudinal in linear

theory. The ZA consists of setting to zero the right-hand side of equation (5). (It can be

generalized to allow for a transverse displacement; see Buchert 1993 and Barrow & Saich

1993.) Under the ZA, the evolution of displacement thus obtained is used in equation (6)

to get the density �eld. The ZA is equivalent to �rst order Lagrangian perturbation theory

for the trajectories ~x (~q; � ).

With vanishing right-hand side, equation (5) is identical to the linear perturbation

evolution equation for Æ (a fact that becomes obvious when one notes Æ = �@ i=@qi and

d=d� = @=@� to �rst order in  ). This second-order ordinary di�erential equation in time

has two independent solutions that we write D�(� ) (Peebles 1980). Taking the growing
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solution and requiring  i to be longitudinal, we get the solution

 i(~q; � ) = D+(� )
@'(~q )

@qi
(7)

where '(~q ) is a displacement potential which is �xed by initial conditions.

Next we will show that equations (4) and (7) imply that the ZA displacement �eld is

longitudinal in x-space (the irrotational initial conditions already imply it is irrotational in

q-space), a �rst step needed before we show that the ZA is a local approximation. We have

�
~r� ~ 

�
i
= D+(� )�ijk

@

@xj

 
@'

@qk

!
= D+�ijk

 
@ql

@xj

! 
@2'

@qk @ql

!
;

where �ijk is the usual antisymmetric Levi-Civita symbol. Now, note that the Jacobian

matrix de�ned by the transformation of equations (4) and (7), @xj=@ql = Æjl+D+@
2'=@qj @ql,

is real and symmetric. By a theorem of linear algebra its inverse, @ql=@xj, is also symmetric.

So is @2'=@qk @ql and, because they commute, so is their product. Thus, in the equation

for ~r� ~ above, �ijk is contracted with a matrix that is symmetric in j and k, yielding
~r� ~ = 0 (Zel'dovich & Novikov 1983).

The implication of this result is that ~ is longitudinal in ~x-space as well as in ~q-space.

The same conclusions hold for the velocity �eld ~v, since it di�ers from ~ by only a

time-varying factor _D+=D+. As a result, under the Zel'dovich approximation we can write

 i(~q(~x; � ); � ) = D+(� )
@�(~x; � )

@xi
and vi(~x; � ) = _D+(� )

@�(~x; � )

@xi
;

d�(~x; � )

d�
= 0 : (8)

The last equation follows from the fact that @�=@xi = @'=@qi (cf. eq. 7). Recall that under

the ZA the right-hand side of equation (5) vanishes. Using equation (8), we then get

~v = � _D+

�
4�Ga2��D+

��1 ~r� = �
2 _a f

3
0H2
0

~r� ; (9)

where f � d lnD+=d ln a. Thus, in the Zel'dovich approximation, the velocity �eld is always

(not just to �rst order in ~ ) proportional to the gravity �eld (Kofman 1991). It is clear

geometrically that this result must be correct for planar, cylindrical, or spherical ow for

growing mode initial conditions. For plane-parallel ows, but not otherwise, the coeÆcient

of proportionality of the ZA is also correct, so that the ZA is exact (until orbit-crossing) in

one dimension.

We are now going to present the ZA from another point of view. Similar work has

been done by Kofman & Pogosyan (1995). Our aim is to motivate how one might improve
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the ZA by generalizing it to a broader class of local approximations. It will become clear

shortly exactly what we mean by local approximations.

Let us �rst give a brief summary of the Lagrangian uid equations (Bertschinger &

Jain 1994). First of all, the gradient of the uid velocity �eld is decomposed into its trace,

traceless symmetric and antisymmetric parts, which are the expansion �, shear �ij and

vorticity !ij respectively:

rivj =
1

3
� Æij + �ij + !ij �ij = �ji ; !ij = �ijk !

k = �!ji ; (10)

where 2~! = ~r�~v. Then, converting time derivatives from Eulerian to Lagrangian, equation

(1) becomes
dÆ

d�
+ (1 + Æ) � = 0 (11)

Taking the trace of equation (2) and using equations (3) and (10), one obtains the

Raychaudhuri equation:

d�

d�
+

_a

a
� +

1

3
�2 + �ij�ij � 2!2 = �4�Ga2��Æ ; (12)

where !2 � !i!i. Similarly, taking the antisymmetric and traceless symmetric parts of

equation (2) gives respectively

d!i

d�
+

_a

a
!i +

2

3
� !i � �i

j !
j = 0 (13)

and
d�ij

d�
+

_a

a
�ij +

2

3
� �ij + �ik�

k
j + !i!j �

1

3
Æij
�
�kl�kl + !2

�
= �Eij ; (14)

where Eij � rirj�� (1=3) Æij r2� is the gravitational tidal �eld.

In keeping with the spirit of Lagrangian uid dynamics, we would like an evolution

equation for Eij. From equations (1) and (3), Bertschinger & Hamilton (1994) derived

dEij

d�
+

_a

a
Eij �rk �

kl
(iHj)l + �Eij + Æij �

klEkl � 3�k
(iEj)k � !k

(iEj)k = �4�Ga2� �ij : (15)

Parentheses around a pair of subscripts indicates symmetrization, e.g., �k
(iEj)k =

(�k
iEjk + �k

jEik)=2. The new quantity Hij is the Newtonian limit of the magnetic part

of the Weyl tensor in the uid frame. The de�nition and discussion of this term will be

deferred until the next section.

Equations (11) to (15) form a hierarchy of Lagrangian uid equations. It is an

incomplete set because we have not stated the evolution equation for Hij . In order to arrive
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at a local set, we must eliminate the gradient term in equation (15), either by �nding an

approximation for �rk �
kl

(iHj)l or by truncating the hierarchy in a way that eliminates our

need to determine it.

The ZA eliminates the need to calculate Hij by approximating the evolution of the

gravity �eld | equation (9) relates ~r� to ~v. As a result, the tidal tensor in the ZA follows

from the shear:

Eij = �
4�Ga��

Hf
�ij = �

3
0H
2
0

2 _a f
�ij : (16)

Furthermore, the divergence of the gravity �eld is given in the ZA by the velocity expansion

scalar � instead of the density uctuation. Thus, the ZA is equivalent to solving the local

evolution equations

d�

d�
+

_a

a
� +

1

3
�2 + �ij�ij � 2!2 =

4�Ga��

Hf
� ; (17)

d�ij

d�
+

_a

a
�ij +

2

3
� �ij + �ik�

k
j + !i!j �

1

3
Æij
�
�kl�kl + !2

�
=

4�Ga��

Hf
�ij : (18)

Together with equations (11) and (13), these give a closed set of equations for the evolution

of quantities for a single mass element with no spatial gradients. This is what we mean by

locality. Note that we have assumed the irrotational ow initial condition and so !ij = 0

from equation (13) at all times before trajectories intersect. Equation (18) can be written

also as an evolution equation for Eij by making use of equation (16) (Kofman & Pogosyan

1995). But it is clear that in terms of obtaining a closed set of local equations, it is suÆcient

to stop at the level of the shear equation (18).

Hence, we have shown that the ZA is a local approximation based on truncating the

set of Lagrangian uid equations at the shear evolution equation by setting Eij proportional

to �ij and by approximating the gravitational source term in the Raychaudhuri equation.

It is then very natural to ask whether we can go further, by using the exact Raychaudhuri

equation and by truncating the system of equations at the tidal evolution equation with a

di�erent approximation from the ZA.

There is a simple argument for why we should expect to be able to improve on the

ZA. It is well known that the ZA gives incorrect results for spherical infall. For spherical

infall, the velocity and gravity �elds are isotropic around a point, so that �ij = Eij = 0 at

that point. Yet, the ZA overestimates the collapse time for a uniform spherical tophat.

The reason for this is that the ZA does not obey the Poisson equation, so the right-hand

side of equation (17) is not exact. We can at least correct this term. We have tested this

approximation | using equation (12) in place of equation (17), and using equation (18) for

the shear evolution | and found that it works poorly aside from spherical ow. Thus, we

seek improved approximations based on a more accurate treatment of the tidal tensor.
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3. Two Local Approximations Based on the Tidal Evolution Equation

As remarked in the last section, the hierarchy of Lagrangian uid equations can be

truncated at the tidal evolution equation, provided that we approximate, or eliminate,

the Hij term (and possibly other terms also). If possible, we would like to �nd local

approximations that retain the successes of the Zel'dovich approximation. These include

giving the correct results in linear perturbation theory and giving the exact solution for

plane-parallel ows. Ideally, we would also like to improve on the Zel'dovich approximation

by giving exact results for spherical and/or cylindrical ows. We use these criteria in

seeking improved approximations.

Let's look at the magnetic part of the Weyl tensor more closely. The de�nition is given

in Bertschinger & Hamilton (1994):

Hij � �
1

2
r(iHj) � 2 vk �

kl
(iEj)l (19)

where Hi satis�es:
~r� ~H = �16�Ga2 ~f? ; ~r � ~H = 0 : (20)

Here ~f? is the transverse part of the mass current, de�ned as follows:

~f? � f � fk = �~v � fk ; ~fk = �
1

4�Ga3
~r

 
@ a�

@�

!
: (21)

Using these de�nitions, we can rewrite equation (15) as follows:

dEij

d�
+

_a

a
Eij +Mij = �4�Ga2��ij ; (22)

where

Mij � �rk �
kl

(iHj)l + �Eij + Æij �
klEkl � 3�k

(iEj)k � !k
(iEj)k

= �4�Ga2�r(ivj) �
1

a

d

d�
(rirja�)

= �4�Ga2r(if?j) � vkr
krirj�+ v(irj)r

2� : (23)

Let us �rst consider plane-parallel ows, for which the ZA is exact. The velocity and

gravity gradient tensors may be written

rivj = � diag(0; 0; 1) ; rirj� = r2�diag(0; 0; 1) ; (24)

where diag() denotes the elements of the diagonalized tensor. Evaluating Mij using

equations (23), we �nd that the curl Hjl term as well as the sum of terms proportional to
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the tidal tensor vanish identically. The individual tidal terms do not vanish. This result

suggests two di�erent closure schemes for the tidal evolution equation (22). The �rst one

is to discard rk �
kl

(iHj)l. The second is to discard the complete tensor Mij . If some of

the tidal terms of Mij were retained, the resulting approximation would not be exact for

one-dimensional ows, hence would not improve on the Zel'dovich approximation.

The �rst choice, setting Hij = 0 in equation (15), was proposed by Bertschinger & Jain

(1994):

dEij

d�
+

_a

a
Eij + �Eij + Æij �

klEkl � 3�k
(iEj)k � !k

(iEj)k = �4�Ga2� �ij : (25)

We shall call this the non-magnetic approximation (NMA). Combined with equations

(11){(14), it provides a closed set of local evolution equations. The NMA was inspired,

in part, by the remark of Ellis (1971) that the magnetic part of the Weyl tensor has no

Newtonian counterpart. However, it leads to unusual behavior, implying that cold dust uid

elements generically collapse to spindles (Bertschinger & Jain 1994). Also, Bertschinger

& Hamilton (1994) were able to derive equation (15) with Hij de�ned using equations

(19){(21) from Newton's laws in an expanding universe, as well as constraint and evolution

equations for Hij itself (the latter using post-Newtonian corrections), from which we now

know that Hij is not identically zero in the Newtonian limit, aside from some special cases

of high symmetry.

Thus, we are motivated to try the second approximation, setting Mij = 0 in equation

(22):
dEij

d�
+

_a

a
Eij = �4�Ga2��ij : (26)

Equation (26) and equations (11){(14) form our new set of closed local equations. We shall

call this the Local Tidal Approximation (LTA) to distinguish it from equation (25), the

non-magnetic approximation.

The LTA, like the ZA, is exact for plane-parallel ows prior to the intersection of

orbits. What about spherically and cylindrically symmetric ows, for which the ZA is not

exact? For the LTA, we use equations (23) to evaluate Mij for ows that are spherically

symmetrical around the uid element under consideration. As long as the gravity gradient

is �nite at the origin (a condition that holds for any continuous �nite-density mass

distribution), this restriction implies that all three eigenvalues of rirj� are equal, so

Eij = 0 identically (similarly �ij = 0). Equations (25) and (26) are satis�ed trivially. Thus,

the LTA is exact for spherical mass elements. So is the NMA.

Next we consider a non-singular uid element on the symmetry axis of a cylindrically

symmetric ow. By this we mean that two eigenvalues of rirj� are equal and the third
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one vanishes and similarly for rivj. In this case we have

rivj =
1

2
� diag(1; 1; 0) ; rirj� =

1

2
r2�diag(1; 1; 0) : (27)

Using this, it is easy to show that the sum of tidal terms in the �rst form of equation (23)

do not vanish, while, with equations (3) and (11), the second form for Mij leads to Mij = 0.

Thus, the LTA is also exact for cylindrical ows, while the NMA is not. Bertschinger &

Jain (1994) erred in saying that the NMA was exact for cylindrical ows.

One can generalize these results to show from the second form of equation (23)

that Mij = 0 for any ow for which (r2�)�1rirj� equals ��1r(ivj) and is a constant

tensor. These conditions are equivalent to saying that the orientation and axis ratios

of the gravitational and velocity equipotentials are constant for the mass element under

consideration. Thus, the LTA is exact for ows with equipotentials of constant shape.

Although this condition does not always hold, it is valid for the growing mode in the linear

regime and it includes spherically and cylindrically symmetric ows as well as plane-parallel

ows. Moreover, the gravitational potential contours are more nearly spherical than the

density contours around a peak, so their shape would be expected to change relatively

slowly with time, suggesting that the LTA may be a good approximation in general.

In the linear regime, the LTA, NMA, and ZA all agree. It is already clear that they

must di�er in second-order perturbation theory; the Appendix presents the calculation of

rk �
kl

(iHj)l andMij. However, it is more important to see how these various approximations

behave as collapse is approached. We know already that generic initial conditions lead

to collapse along one dimension (pancake) with the ZA (from Bertschinger & Jain 1994)

while the NMA leads to collapse along two dimensions (spindle). What about the LTA?

How accurate is the LTA for asymmetrical initial conditions? Before answering these

questions we �rst examine the relative sizes of the terms in equation (22) for an overdense

homogeneous ellipsoid in an expanding universe.

4. Collapse of a Homogeneous Ellipsoid

We summarize here the equations of motion for an irrotational homogeneous ellipsoid

embedded in an expanding universe. The various interesting quantities in the tidal evolution

equation are then calculated for the collapse of a particular ellipsoid.

We consider an irrotational homogeneous ellipsoid with proper axis lengths R1, R2,

and R3 embedded in a Friedmann-Robertson-Walker background. The equations of motion



{ 12 {

are (Icke 1973; White & Silk 1979):

d2Ri

dt2
= �2�GRi

�
2

3
�b + �i(�e � �b)

�
; (28)

where t is the proper time (dt = ad� ) and �i is de�ned by

�i = R1R2R3

Z 1

0

ds

(Ri
2 + s)

q
(R1

2 + s)(R2
2 + s)(R3

2 + s)
: (29)

Here �e is the total density within the ellipsoid while �b is the density of the expanding

universe surrounding the ellipsoid. They are related to the mean and perturbed densities

used previously by �b = �� and �e = ��(1 + Æ). We evaluate them from the evolution of the

axis lengths and the background expansion scale factor:

�eR1R2R3 = �eo ; �ba
3 = �bo ; (30)

where �eo and �bo are constants. Note that �1 + �2 + �3 = 2 and we assume 
0 = 1.

Note also that since equation (28) is second order, there are in general two independent

modes. We choose growing mode initial conditions. For small a the �rst order solution or,

equivalently, the ZA result, is

Ri(t) = a(t)Xi

�
1 �

1

2
�i0Æ0a

�
(31)

where the Xi's give the initial axis ratios, �i0 gives the initial ellipsoid parameter, and Æ0
gives the linear amplitude of the density perturbation. We set Æ0 = 1 for overdense ellipsoids

without loss of generality.

Equation (30) implies that the total mass, including the mass inside the ellipsoid as

well as outside, is actually not conserved even though the mass inside the ellipsoid is.

Hence equation (28) can only be an approximation to the true evolution of an initially

homogeneous ellipsoid. In general, one expects that such an ellipsoid would cause the

density of its immediate surroundings to deviate from the cosmic mean. Tidal �elds from

this perturbed external material should then induce departure from homogeneity in the

ellipsoid. Based on results from an N-body simulation (S. D. M. White 1993, private

communication), we assume that it is a good approximation to ignore departures from

homogeneity inside and outside the ellipsoid when calculating the evolution of the axis

ratios.

It is noteworthy that equation (28) is exact if �b = 0, i.e., for a homogeneous ellipsoid

in a vacuum. Later in this section we will test our approximations using the exact solution

in this case.
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The peculiar velocity �eld inside the homogeneous ellipsoid is described by:

vi =

 
_Ri

Ri
�

_a

a

!
xi (32)

and the gravitational potential within the ellipsoid is:

� = �Ga2(�e � �b)
X
i

�ix
2
i : (33)

(The xi are comoving coordinates and dots denote conformal time derivatives.) Quantities

like the expansion, shear, and tidal �eld can be immediately read o� from these expressions:

� =
X
i

_Ri

Ri
� 3

_a

a
; (34)

�ij = diag

 
_Ri

Ri
�
1

3

X
k

_Rk

Rk

!
; (35)

Eij = 2�Ga2(�e � �b) diag
�
�i �

2

3

�
: (36)

The tensor Mij de�ned in equation (23) is given for the homogeneous ellipsoid by

Mij = 2�Ga2�e diag

"
�2�ij +

�
�i �

2

3

�
� �

Æ

1 + Æ
_�i

#
: (37)

Using the time evolution of Ri given by equation (28), the evolution of the various

quantities above can be calculated. In particular, we are interested in the relative magnitude

of various terms in the tidal evolution equations (15) and (22). We integrated equations (28)

and (29) numerically starting from equation (31) at a = 10�8 with axis ratios 1 : 1:25 : 1:5.

From the axis lengths Ri and their time derivatives, using equations (34){(36) we calculated

the velocity and gravity gradient terms inside the ellipsoid. From these we then calculated

the evolution of �rk �
kl

(iHj)l, Mij , and 4�Ga2��ij inside the ellipsoid. Note that in this

test we do not integrate the tidal evolution equation itself; rather, we evaluate the terms

in it assuming that the system evolves according to the homogeneous ellipsoid solution.

Although, as we noted above, this solution is not exact, we are being self-consistent by

evaluating the various tensor quantities using equations (34){(37), which assume spatial

homogeneity inside the ellipsoid.

Figure 1 shows the results of this calculation. The magnitudes of �rk �
kl

(iHj)l and

Mij are divided by the magnitude of 4�Ga2��ij, where by the magnitude of a matrix we

mean the square root of the trace of its square. We see that �rk �
kl

(iHj)l and Mij are both



{ 14 {

Fig. 1.| Evolution of the magnitudes of �rk �
kl

(iHj)l (dashed line) and Mij (solid line)

divided by the magnitude of 4�Ga2��ij, evaluated for a homogeneous ellipsoid with initial

axis ratios 1 : 1:25 : 1:5 embedded in an expanding universe. The magnitude of a matrix is

de�ned here as the square root of sum of squares of eigenvalues.

small compared to 4�Ga2��ij at both early and late times, but not intermediate times (near

maximum expansion). Interestingly, the magnetic term and Mij have similar magnitude

throughout the collapse process.

We can easily understand why 4�Ga2��ij is much bigger than both �rk �
kl

(iHj)l and

Mij at early times using perturbation theory. The shear is �rst order. The last form of

equations (23) is the best place to see that Mij is second order: f?i is second order because,

to �rst order, fi = ��vi is longitudinal (we assume irrotational initial conditions). The other

contributions to Mij are obviously second order. From the �rst form of equation (23), we

conclude also that �rk �
kl

(iHj)l is second order. Expressions for these two tensors in second

order perturbation theory are given in the Appendix. They are both nonzero in general.

The behavior of these quantities close to the moment of pancake collapse can also
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be estimated analytically. Suppose that the third axis collapses while the other two axes

still have �nite lengths. The term 4�Ga2��ij diverges at the moment of pancake collapse

because � diverges and so does �ij, owing to the _R3=R3 term in equation (35). For the

behavior of �rk �
kl

(iHj)l and Mij approaching collapse, we need to understand the behavior

of the �i's.

It follows from equation (29) that �1 and �2 vanish in the limit of vanishing R3 for �nite

R1 and R2, because the integral is �nite while the factor of R3 in front vanishes. Note also,

by de�nition, the three �i's always add up to 2. Hence �3 = 2 at collapse. Moreover, it can

be veri�ed using equation (29) that the _�i's are �nite at the moment of collapse, assuming

the _Ri's are �nite. It can then be shown using equations (34){(37) that the particular

combination of �i's conspires to render both Mij=4�Ga2� and �rk �
kl

(iHj)l=4�Ga
2� �nite.

Hence at the moment of pancake collapse, �rk �
kl

(iHj)l and Mij are indeed much smaller

than 4�Ga2��ij .

The fact that �rk �
kl

(iHj)l and Mij are both small compared to 4�Ga2��ij at early

times and at the moment of pancake collapse suggests that the NMA and LTA might both

be good approximations. However, Figure 1 shows that these terms are not negligible

throughout the collapse process. Hence there is no guarantee that either approximation

can reproduce the correct features of the collapse process. In particular, we do not know

from these results whether the NMA or LTA would produce pancake collapse given the

initial conditions we have chosen. We also do not know which approximation will be more

accurate for generic initial conditions, although Figure 1 suggests that it may be better to

neglect Mij than Hij .

5. Pancakes Versus Spindles

The oblate and prolate con�gurations are distinguished by the signature of the

eigenvalues of Eij and �ij. For the collapsing oblate (pancake) con�guration, the eigenvalues

of Eij have the signature (�;�;+) and those of �ij have (+;+;�). For the collapsing

prolate (spindle) con�guration, Eij has eigenvalues with signature (�;+;+) and �ij has

(+;�;�). One way to see why this is true is by inspecting equations (35) and (36). For

the pancake con�guration, one can use the fact that �3 is close to 2 (supposing collapse

occurs in the third direction) while �1 and �2 almost vanish. For the spindle con�guration,

suppose that collapse occurs for the second and third direction and suppose for simplicity

that they collapse at the same rate. Then from equation (29), one can show that close to

the spindle con�guration, �3 ' �2 ' 1 and �1 ' 0. Using this and equations (35) and (36),

it is possible to obtain the signature for the eigenvalues of Eij and �ij. Note also that it is
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suÆcient to consider only the divergent parts of Eij and �ij to get the right signatures.

Consider equation (25). This is the tidal evolution equation of the NMA, which ignores

the magnetic part of the Weyl tensor. First of all, the term proportional to _a=a always

tends to decrease Eij , encouraging spherical collapse. But by the time the motion of the

object under consideration breaks away from the expansion of the universe, this term

becomes unimportant. Suppose now that the object is close to the pancake con�guration

with Eij having signature (�;�;+) and �ij having (+;+;�). Then it can be seen that

all the terms favor pancake collapse (or favor neither pancakes nor spindles) except the

shear-tide coupling terms Æij�klEkl � 3�k
(iEj)k. The net sign of these two terms is such

that the growth of Eij towards the pancake signature is suppressed. Suppose on the other

hand that the object is close to the spindle con�guration with Eij and �ij having signatures

(�;+;+) and (+;�;�) respectively. Then all the terms, including the shear-tide couplings,

encourage the growth of tide towards the spindle signature. In other words, the NMA on

the whole favors collapse toward the prolate or spindle con�guration.

Consider, on the other hand, the exact tidal evolution equation (22). For an object

with a very short third axis compared to the other two, we expect �3 to be slightly less

than but close to 2 and �1 and �2 to be small and positive. Substituting this into equation

(37) and looking only at the most divergent terms, one can verify that Mij has signature

(�;�;+) close to the pancake con�guration. Using similar arguments, it can be deduced

thatMij has signature (�;+;+) close to the spindle con�guration. Hence,Mij has the same

signature as Eij close to collapse, whether it be pancake or spindle; therefore it stabilizes

collapse just like the Hubble damping term proportional to _a=a. Hence ignoring Mij, which

is the LTA, does not favor spindles over pancakes. This is very di�erent from the NMA.

Equation (23) tells us that Mij contains both �rk �
kl

(iHj)l and the shear-tide coupling

terms. We can now see what is wrong with the NMA | for the spindle con�guration,

�rk �
kl

(iHj)l has a signature that is opposite to the shear-tide coupling terms, and it is

large enough to reverse the spindle-enhancing e�ect of the latter. As a result, Mij as a

whole, which includes the sum of these terms, plays no favorites.

Numerical integration bears out this analysis. We tested the LTA and NMA by

integrating the sets of local Lagrangian uid equations which are obtained by ignoring the

relevant terms in the tidal evolution equation: equations (11), (12), (14), and either (25) or

(26). The tensor equations were diagonalized along principal axes. Initial conditions were

chosen using equations (31) and (34){(36) so as to correspond to the homogeneous ellipsoid

model with initial axis ratios 1 : 1:25 : 1:5. Given the numerical solution for �(� ) and

�ij(� ), we then predicted the evolution of the homogeneous ellipsoid axis lengths by solving

equations (34){(35) for _Ri=Ri and numerically integrating it to get Ri(� ). For comparison,
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we also computed the prediction of the ZA for the axis evolution given the same initial

conditions. We obtained the same results for the ZA by integrating the local Lagrangian

uid equations (17) and (18) as we did from equation (31).

Fig. 2.| The evolution of axis lengths for a homogeneous ellipsoid embedded in an expanding

universe. The initial axis ratios are 1 : 1:25 : 1:5. The \exact" solution (ignoring development

of inhomogeneity, solid curve) is compared with the ZA (short dashed curve) and two

local approximations: the local tidal approximation (LTA, long dashed curve) and the non-

magnetic approximation of Bertschinger & Jain (NMA, dotted curve).

Figure 2 compares the local approximations (ZA, LTA, NMA) for the evolution of

the axis lengths with each other and with the solution given by integrating equations

(28). Both the ZA and LTA reproduce the qualitative features of pancake collapse. As

we have already noted, the NMA predicts collapse to a spindle instead of pancake. For

these initial conditions, at least, the LTA is even more accurate than the ZA. The LTA

overestimates the expansion factor at collapse by only 3%, compared with 52% for the ZA.

The LTA appears to rectify one of the well-known problems with the ZA, namely the fact
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that it underestimates the rapidity of collapse for non-planar perturbations. This result is

consistent with our observation in x3 that the LTA is exact for spherical and cylindrical

symmetry.

Fig. 3.| The evolution of the radius of a cylindrical perturbation in an expanding universe,

corresponding to a homogeneous ellipsoid with axes R : R : 1 (a cylinder). The exact

solution (solid curve) is compared with the ZA (short dashed curve) and the NMA (dotted

curve). The LTA is exact for this case.

It is also useful to compare the local approximations with the exact solution for

cylindrically symmetric perturbations. Consider a homogeneous overdense cylinder in an

Einstein-de Sitter universe, with radius R(t). The equation of motion is given by Fillmore

& Goldreich (1984). It can be written in a form corresponding to equation (28):

d2R

dt2
= �2�GR

�
2

3
�b + (�c � �b)

�
; (38)

where �c is the density inside the cylinder. In fact, this is identical to equation (28) for

a homogeneous ellipsoid with axis ratios R : R : 1, for which �1 = �2 = 1, �3 = 0.
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We repeated the comparison of local approximations with the exact solution given by

integrating equation (38). The results are shown in Figure 3. The LTA is exact, while the

NMA underestimates the expansion factor at collapse (by 23%) and the ZA overestimates

it (by 36%).

Fig. 4.| The evolution of axis lengths for a homogeneous ellipsoid embedded in empty

space. The initial axis ratios are 1 : 1:25 : 1:5. The exact solution (solid curve) is compared

with the predictions of LTA (long dashed curve) and NMA (dotted curve).

An exact solution also exists for a homogeneous ellipsoid in a vacuum (non-expanding)

background (Lin, Mestel, & Shu 1965). It is easy to modify the NMA and LTA equations

for this case, by setting a = 1 and �b = �� = 0. We did not integrate the non-cosmological

analog of the ZA. As for Figure 2, we set the initial axis ratios to be 1 : 1:25 : 1:5, although

in this case we set the initial velocity �eld to zero. Figure 4 shows the results. Once again

we see that the LTA is rather accurate for generic initial conditions (the collapse time here

is 1.5% too large) and leads to pancake collapse, while the NMA incorrectly predicts spindle

collapse.
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To compare the three local approximations (ZA, NMA, LTA) with more general initial

conditions, we follow the notations of Bertschinger & Jain (1994) and write traceless

symmetric tensors in terms of a magnitude and an angle:

�ij =
2

3
�Qij(�) ; Eij =

8�

3
G��a2 � (1 + Æ)Qij(�) : (39)

We have introduced new scalars � � 0, � � 0, � and � (0 � �; � � �), and a one-parameter

traceless quadrupole matrix

Qij(�) � diag
�
cos

�
� + 2�

3

�
; cos

�
�� 2�

3

�
; cos

�
�

3

� �
: (40)

With this parametrization, oblate con�gurations have cos� > 0 while prolate con�gurations

have cos� < 0. Of course, the shape of a perturbation can change with time. The equations

of motion for �, �, �, and � for the NMA are given by Bertschinger & Jain. For the LTA,

their equations (13) and (14) are changed to become

d�

d�
� �� = �� cos

 
�� �

3

!
; (41)

d�

d�
= �

3�

�
sin

 
�� �

3

!
: (42)

One quantity of interest for general initial conditions is the expansion factor at collapse,

i.e., the linear overdensity when a given mass element collapses. Following Bertschinger &

Jain (1994), we parametrize the initial conditions by �0 and �0, which are related to the

values of � and � in linear theory through � = a�0 and � = �0. Because initially underdense

perturbations can collapse if the shear is suÆciently strong, we treat both initially overdense

and underdense perturbations by specifying Æ0 = �1, respectively (Æ0 being related to

Æ in linear theory by Æ = aÆ0). The expansion factor at collapse, ac, is determined by

integrating the local evolution equations for the LTA and NMA. For the ZA, it is simpler

to use equations (4) and (8), noting that collapse occurs when the determinant of @xi=@qj
vanishes. With our parametrization of the initial velocity and gravity gradient tensors, it

follows that

ac =
3

Æ0 + 2�0 cos(�0=3)
(ZA) : (43)

The collapse expansion factor ac is de�ned to be the absolute value of the linear overdensity

when a given mass element collapses to in�nite density. For example, an overdense spherical

perturbation collapses when ac = 1:686, while a cylindrical perturbation collapses when

ac = 1:466 and a plane-parallel perturbation collapses when ac = 1. Although there exists

no exact solution for arbitrary initial conditions, it is informative to compare all three

methods. Based on our previous results we expect the LTA to be accurate to a few percent.



{ 21 {

We plot contours of constant collapse time for di�erent initial tidal parameters �0 and

�0 for the three local approximations in Figure 5. In each part, the left panel gives results

for overdense perturbations while the right panel is for initially underdense perturbations.

Figure 5b presents the same results as Figures 1 and 2 of Bertschinger & Jain (1994).

We see that the LTA and ZA are qualitatively similar, although the ZA overestimates

the collapse time for overdense con�gurations with small tide (near the center of the

�gures). According to the ZA, ac = 3 for spherical perturbations while the exact value is
5
3
(2=3�)2=3 = 1:68647 : : :. Both the ZA and LTA indicate more rapid collapse for initially

oblate con�gurations. As noted by Bertschinger & Jain, initially prolate con�gurations

collapse faster in the NMA because according to its incorrect dynamics initially oblate

con�gurations must change shape before collapsing to a spindle.

Bertschinger & Jain (1994) also noted that shear can lead to collapse of underdense

perturbations. From Figure 5, we see that that the size of the non-collapsing region in

parameter space (in the middle of the right-hand panels) is largest for the NMA and smallest

for the ZA, indicating that the NMA underestimates the fraction of initial underdense

perturbations that can collapse, while the ZA overestimates it. Using the probability

distribution of �0 and �0 derived by Bertschinger & Jain for a Gaussian random �eld,

we �nd that the probability that a randomly chosen mass element will collapse is 0.780

for NMA, 0.888 for LTA, and 0.920 for ZA. Thus, taking the LTA as the most accurate,

approximately 78% (= 2 � 0:888 � 1) of the underdense perturbations (and 100% of the

overdense ones) will collapse. This estimate neglects the crossing of mass elements, which

increases the likelihood of collapse by increasing the density. Indeed, we expect every mass

element collapses eventually in a perturbed self-gravitating cold dust medium.

6. Conclusion

In this paper, we have discussed three di�erent local approximations for gravitational

collapse of perturbations in an expanding universe: the Zel'dovich approximation (ZA),

the non-magnetic approximation (NMA) of Bertschinger & Jain (1994), and a new local

tidal approximation (LTA) introduced here. Conventionally, the ZA is presented as a

mapping of Lagrangian to Eulerian positions. However, we showed that it can also be

regarded as a certain truncation of the set of Lagrangian uid equations for the density,

velocity gradient, and tide following a uid element of cold dust. With the ZA, the gravity

gradient is explicitly proportional to the velocity gradient, resulting in modi�cations to the

Raychaudhuri and shear evolution equations. The tidal evolution equation need not be

integrated in the ZA because the gravity �eld acting on a mass element is given by a simple
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extrapolation of initial conditions. The other two approximations we discuss extend the ZA

by integrating the exact Raychaudhuri and shear evolution equations, with approximations

made only to the tidal evolution equation.

All three local approximations are exact for plane-parallel perturbations. However, the

behavior for other shapes of perturbations shows signi�cant di�erences in behavior. The ZA

is only approximate for non-plane-parallel distributions. The NMA is exact for spherical

perturbations but not cylindrical ones. The LTA is exact for spherical and cylindrical

perturbations and, more generally, for any growing-mode perturbations whose gravitational

equipotential surfaces have constant shape with time.

In order to test these approximations for non-symmetrical shapes, we compared them

in the case of the collapse of a homogeneous ellipsoid. As expected from the results

of Bertschinger & Jain (1994), we �nd that the NMA generically produces spindle-like

singularities at collapse. The LTA, on the other hand, generically produces pancakes,

just like the ZA. For triaxial ellipsoids, we compared numerical integrations of the local

evolution equations with known solutions for a homogeneous ellipsoid in both cosmological

and vacuum backgrounds. (An exact solution exists for the latter case while, in the former

case, the homogeneous ellipsoid solution is not really exact because tides will cause the

background, and then the ellipsoid itself, to become inhomogeneous. However, these e�ects

are expected to be small.) We �nd that the LTA is signi�cantly more accurate than the ZA

(see Fig. 2).

These results suggest we have found a promising new approximation for nonlinear

gravitational instability. However, we have only studied the evolution of isolated irrotational

perturbations. Caution is needed because we do not know how accurate the LTA is for more

general initial conditions, for example, those with vorticity. Moreover, we do not know by

how much the tide produced by other mass elements degrades the accuracy. External tides

modulate the equipotentials surrounding a mass element; qualitatively, we expect little

e�ect as long as the external tide evolves weakly or is small compared with the trace part

of the gravity gradient. Quantitative analysis is best done using N-body simulations, which

we leave for later work.

The LTA has one signi�cant limitation compared with the ZA. It tells us only the

internal state of a given mass element (density, expansion rate, shear) and the tide on the

element, but does not give the position of the element. However, for many purposes one

cares more about the internal evolution of a mass element than about its position. For

example, simple models of galaxy formation are based on spherical infall. These can be

improved by inclusion of shear and tides (Bond & Myers 1993; Eisenstein & Loeb 1995).

Our approximations could lead to even more accurate models of this sort. Also, if one
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does need to know the positions of mass elements, then one can always supplement the

Lagrangian uid equations by the equation of motion for positions, perhaps using the

Zel'dovich approximation or higher-order Lagrangian equations of motion. In principle, by

following the velocity gradient for many mass elements, one can reconstruct the velocity

�eld (up to an irrelevant overall constant), and then integrate the positions with d~x=d� = ~v.

An equivalent procedure was suggested by Matarrese et al. (1993).

Perhaps the most important reason for seeking new approximations like the LTA is that

we still lack a good understanding of the behavior of collisionless systems under nonlinear

gravitational instability. Future work will tell whether local Lagrangian ow methods will

provide new insights.

We would like to thank Bhuvnesh Jain, Alan Guth, Rennan Bar-Kana, and Jim

Frederic for helpful discussions. This work was supported by NASA grant NAG5-2816.

Appendix: Second Order Calculation of Mij

We write the Eulerian density uctuation �eld Æ = Æ(1)+ Æ(2)+ : : : where Æ(n) is treated

as being of nth order in perturbation theory. Similar expansions are used for the velocity

�eld and the scaled gravitational potential

�̂ �
�

4�Ga2��
= �

1

4�

Z
d3x0

Æ(~x 0)

j~x� ~x 0j
: (44)

For simplicity we shall assume an Einstein-de Sitter universe as in the numerical examples

presented in this paper. In this case the perturbation series is a series in a(� ).

Peebles (1980) presents the result for Æ(2), which we rewrite using our variables as

Æ(2) =
5

7

h
Æ(1)

i2
+
h
~rÆ(1)

i
�
h
~r�̂(1)

i
+
2

7
F 2 ; (45)

where F 2 � F ijFij and

Fij � rirj�̂
(1) ; (46)

note that F i
i = Æ(1). From the Euler equation (2) we get the �rst and second order terms

of the peculiar velocity,

~v (1) = �
_a

a
~r�̂(1) ; ~v (2) = �

2

5

_a

a

h
~r�̂(1) � ~r

i
~r�̂(1) �

3

5

_a

a
~r�̂(2) ; (47)

where �̂(2) is obtained using equation (44) with Æ(2).
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We get Mij and �rk �
kl

(iHj)l from equation (23). They vanish in �rst order; the

second order results are

Mij = 4�G��a _a
�
Æ(1)Fij �

7

5
rirj�̂

(2) +
7

5

h
~r�̂(1) � ~r

i
Fij +

2

5
F k

(iFj)k

�
; (48)

�rk �
kl

(iHj)l =Mij + 4�G��a _a
�
3Æ(1)Fij � 3F k

(iFj)k + Æij

�
F 2 �

h
Æ(1)

i2��
: (49)

It can be veri�ed that these quantities are traceless as expected using equations (45) and

(46). In general, neither vanishes in second order perturbation theory.
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Fig. 5a.| Contours of constant collapse time computed using the ZA, expressed by the

cosmic expansion factor ac or its reciprocal, versus initial tidal �eld parameters. Left

panel: initial positive density perturbations. The light (heavy) contours are spaced by

0.1 (0.5) in ac, with the outermost contour ac = 0:4 and the central value (corresponding

to spherical collapse) ac = 3:0. The ZA signi�cantly overestimates the collapse time for

low-shear perturbations. Right panel: initial negative density perturbations. The light

(heavy) contours are spaced by 0.1 (0.5) in a�1c , with the innermost contour a�1c = 0 and

the outermost one a�1c = 2:3. Initial perturbations in the central region do not collapse.

Perturbations are oblate (prolate) for �0 cos�0 > 0 (�0 cos�0 < 0).



{ 27 {

Fig. 5b.| Same as Fig. 5a except that the NMA is used. In the left panel the innermost

contour is ac = 1:6. In the right panel the outermost contour is a�1c = 1:8. The smaller

extent of the contours for prolate con�gurations (�0 cos�0 < 0) reects the fact that the

NMA favors prolate collapse.
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Fig. 5c.| Same as Fig. 5a except that the LTA is used. In the left panel the innermost

contour is ac = 1:6. In the right panel the outermost contour is a�1c = 1:6. The LTA, like

the ZA, favors oblate (pancake) collapse over prolate (spindle) collapse.


