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ABSTRACT

A relation between the MacDowell-Mansouri theory of gravity and the Pontrjagin toplogical invariant in
(3+1) dimensions is discussed. This relation may be of especial interest in the quest of finding a mechanism
to go from non-dynamical to dynamical gravity.
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Topology has been a fascinating subject in mathematics. The surprise for many mathematicians is that

in the last few years topology has become also a very fascinating subject in theoretical physics. The main

motivation to become theoretical physicist interested in topological aspects arises mainly from a number

of articles written by Witten [1]-[4]. In particular the search for higher symmetries in the string theory

[5]-[9] has lead Witten [10] into deeper topological aspects. One of the central ideas in Witten’s work is to

find a topological action from which the string theory may be derived. This means, roughy speaking, that

starting from of a theory (topological field theory) with non-dynamical metric a theory (string theory) with

dynamical metric may be derived. In spite of many attempts, however, it seems that this idea has not been

completely achieved [11]-[13].

Motivated by this idea we became intrigued that in the MacDowell-Mansouri theory of gravity [14]-[15]

the relation between dynamical and non-dynamical gravity depends on the choice of the metric associated

to the de Sitter (or anti-de Sitter) group. In fact, if such a metric corresponds to the Killing metric the

action of the MacDowell-Mansouri formalism gives the Pontrjagin topological invariant, while if the metric

is chosen to be proportional to the Levi-Civita tensor in four dimensions the action becomes Einstein-Hilbert

gravitational action with cosmological constant and Gauss-Bonnet term included. So, a natural question is

whether it is possible to find a mechanism to go from the Killing metric to the metric which is proportional

to the Levi-Civita tensor in the MacDowell-Mansouri approach. If the answer to this question is affirmative

we could in principle apply similar procedure to the case of the string theory.

In this article we analize a algebraic transformation which translates precisely the Killing metric of the

anti de Sitter group to the metric which is proportional to the Levi-Civita tensor. Such a transformation,

in fact, allows a relation between the MacDowell-Mansouri action for gravity and the Pontrjagin topological

invariant.

Let us first briefly review the MacDowell-Mansouri theory of gravity. Consider the Einstein-Hilbert

action written in the tetrad formalism:

S1 = −

∫
d4ξ εµναβeaµe

b
νR

cd
αβεabcd, (1)

where ξα are “spacetime” coordinates; εµναβ and εabcd are Levi-Civita tensors; the tetrad eaµ is related to

the metric gµν by the expression gµν = eaµe
b
νηab and

Rabµν = ∂µw
ab
ν − ∂νw

ab
µ +

1

2
Cabefghw

ef
µ w

gh
ν (2)

is the Riemann curvature tensor written in terms of the gauge connection wabµ . Here Cabefgh are the structure

constants of the Lorentz group SO(1, 3). Notice, that we are using appropiate unites in order to avoid

writting in (1) the usual constant factor 1
8πG , where G is the Newton gravitational constant.

It is well know that it is possible to add to S1 the cosmological constant term:

S2 =

∫
d4ξ εµναβeaµe

b
νe
c
αe
d
βεabcd. (3)

The cosmological constant factor in (3) may arise by writting the tetrad eaµ as λeaµ and by rescaling the total

action S1 + S2 as λ−2(S1 + S2) (see ref. [15]).
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The central idea behind the MacDowell-Mansouri formalism is to add to the action S1 + S2 the Gauss-

Bonnet topological invariant

S0 =
1

4

∫
d4ξ εµναβRabµνR

cd
αβεabcd. (4)

Properly combining the integrals S0, S1 and S2 it is not difficult to show that the action S = S0 +S1+S2

may be written as

S =
1

4

∫
d4ξ εµναβ<abµν<

cd
αβεabcd, (5)

where

<abµν = Rabµν − (eaµe
b
ν − e

a
νe
b
µ). (6)

Let us now make the identification

W 4a
µ = eaµ, W ab

µ = wabµ . (7)

Using these relations the curvature <abµν may be written as

<abµν = ∂µW
ab
ν − ∂νW

ab
µ +

1

2
CabWµWν , (8)

where the indices . . . etc run from 0 to 4, and the only nonvanishing structure constants Cab are

Cab =


Cabefgh -Lorentz structure constants,

Cab4f4h = – 1
2 (δaf δ

b
h − δ

a
hδ
b
f ).

(9)

This extension of the structure constants (Cabefgh −→ Cab) suggests an extension of the curvature

<abµν −→ <µν = ∂µWν − ∂νWµ +
1

2
CWµWν , (10)

with

<4a
µν = ∂µW

4a
ν − ∂νW

4a
µ +C4a

4fghW
4f
µ W gh

ν + C4a
ef4hW

ef
µ W 4h

ν , (11)

which in virtue of the relation W 4a
µ = eaµ may be identified as the torsion

T aµν ≡ <
4a
µν = ∂µe

a
ν − ∂νe

a
µ + waµbe

b
ν − w

a
νbe

b
µ. (12)

The quantities

C =
1

2
[δδη − δδη − δδη + δδη]−

1

2
[↔ ], (13)

may be identified, now, with the structure constants of the anti-de Sitter group S(2, 3) (a similar result may

be obtained in the case of the de Sitter group SO(1, 4)).

Finally, let us introduce the quantity

g =



gabcd = εabcd,

g4a4b = −ηab,

0 otherwise.

(14)
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Notice that g = −g = −g = +g.

Making the torsion T aµν = 0 we find that the action (4) may be written as

S =
1

4

∫
d4ξ εµναβ<µν<αβg. (15)

An important feature of this action is that it is independent of the metric gµν and the Christoffel simbols

Γµαβ and it depends only on the gauge field Wµ = −Wµ associated to the anti-de Sitter group SO(2, 3) (or

the de Sitter group SO(1, 4)).

The action (15) is so similar to the Pontrjagin topological invariant action

=
1

8

∫
d4ξ εµναβµναβG, (16)

where

µν = ∂µν − ∂νµ +
1

2
f µν (17)

and

G = (ηη − ηη) (18)

that we become intrigued if there is some kind of transformation

<µν ↔ µν (19)

and

g ↔ G (20)

such that

S ↔ . (21)

In the expression (17) the quantities f are the structure constants related, of course, to the anti-de Sitter

group (or the de Sitter group).

In order to find such a transformation we first expand (15) and (16) as follows:

S =
1

4

∫
d4ξ εµναβ<abµν<

cd
αβεabcd −

∫
d4ξ εµναβT aµνT

b
αβηab (22)

and

=
1

8

∫
d4ξ εµναβabµν

cd
αβ(ηacηbd − ηadηbc) −

1

2

∫
d4ξ εµναβ4a

µν
4b
αβηab. (23)

Of course, in the MacDowell-Mansouri approach T aµν = 0, but for the moment let us consider that T aµν 6= 0. At

this respect we should mention important aspects. Since we are considering here pure gravity the necessity to

impose the constraint T aµν = 0 arises if we want the action (22) to be consistent with Einstein‘s gravitational

therory. A remarkable feature of the action (22) is that by eliminating the second integral, the first integral

precisely reproduce the constraint T aµν = 0 under variation. We note, however, that this compatibility holds

at the classical level. This is an important observation which should be carefully considered at the quantum

level (see ref. [14] for more details).
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From the two expressions (22) and (23) we see that in principle T aµν may be identified with 4a and the

first term in S may be identified with the first term in . So, let us first concentrate our attention in the

integrals:

Ŝ =
1

4

∫
d4ξ εµναβ<abµν<

cd
αβεabcd (24)

and

ˆ=
1

8

∫
d4ξ εµναβabµν

cd
αβ(ηacηbd − ηadηbc). (25)

In order to find a relation between these two integrals it is convenient to introduce the quantity

±Nab
cd =

1

2
(δabcd ± ε

ab
cd), (26)

where

δabcd = δac δ
b
d − δ

a
dδ
b
c . (27)

We can check that this quantity satisfies the relations

1

2
±Nab

ef
±N cd

gh(ηacηbd − ηadηbc) = ±εefgh, (28)

+Nab
cd
−N cd

ef = δabef . (29)

Thus, using (28) we find that Ŝ becomes

Ŝ =
1

8

∫
d4ξ εµναβ<abµν<

cd
αβ

+Nef
ab

+Ngh
cd (ηegηfh − ηehηfg). (30)

Terefore, the problem to obtainˆfrom Ŝ may be accomplished if we consider the transformation

ab
µν = +Nab

cd<
cd
µν , (31)

because then

Ŝ = .̂ (32)

However, the solution is not so simple because in order to have (31) we need to find the relations;

wabµ 7→
ab
µ ,

(33)

w4a
µ 7→

4a
µ ,

and

Cab 7→ fab. (34)

From the definitions of abµν and Rabµν we find that (31) follows if the relations

ab
µ = +Nab

cdw
cd
µ , (35)
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fabefgh =
1

4
+Nab

cdC
cd
mnij

−Nmn
ef
−N ij

gh, (36)

fab4f4h =
1

2
+Nab

cdC
cd
4f4h, (37)

and

4a
µ =

√
2 w4a

µ (38)

are satisfied. The relation (35) follows directly from (31). The expressions (36), (37), and (38) , however,

are more difficult to obtain and require special attention to numerical factors. We note that in order to

obtain (36) we used (29). It is interesting to observe the important role played by the quantity (26) and

the relations (28) and (29); without these relations to find the expressions (35)-(36) would be very much

difficult.

It remains to clarify the meaning of the structure constants f . What we know is that C are the structure

constant of the anti-de Sitter group SO(3, 2) whose generators S satisfy the algebra:

[S, S] = CS. (39)

This algebra can be broken as follows

[Sef , Sgh] = CabefghSab, (40)

[S4f , Sgh] = 2C4b
4fghS4b, (41)

[S4f , S4h] = Cab4f4hSab. (42)

The first bracket (40) may be multiplied by 1
4
−Nef

ij
−Ngh

kl in order to obtain

[−Sij,
−Skl] =

1

4
+Nab

rsC
rs
efgh

−Nef
ij
−Ngh

kl
−Sab, (43)

where we used (29) and the definition −Sij = 1
2
−Nkl

ij Skl. From this expression we see that the structure

constants fabefgh given in (36) precisely corresponds to the factor in front of −Sab in (43). In fact, using (36)

we get

[−Sij,
−Skl] = frsijkl

−Srs. (44)

Similarly, multiplying (41) by 1
2
√

2
−Ngh

ij and defining −S4a = 1√
2
S4a we find

[−S4f ,
−Sij ] = 2(

1

2
−Ngh

ij C
4b
4fgh

−S4b) (45)

which suggests to write

f4b
4fij =

1

2
−Ngh

ij C
4b
4fgh. (46)

Further, the bracket (42) can be written as

[−S4f ,
−S4h] =

1

2
Cab4f4h

+N ij
ab
−Sij , (47)

with

f ij4f4h =
1

2
+N ij

abC
ab
4f4h. (48)
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Therefore, the anti-de Sitter algebra (39) may be rewritten as

[−S,−S] = f−S, (49)

where −Sab = 1
2
−Nef

ab Sef and −S4a = 1√
2
S4a. Consequently (49) implies that the structure constants f also

correspond to the anti-de Sitter group.

With all these results we can see that, the connection between the integrals

ŜT = −

∫
d4ξ εµναβT aµνT

b
αβηab (50)

and

T̂ = −
1

2

∫
d4ξ εµναβ4a

µν
4b
αβηab (51)

is straightforward. In fact, we find T aµν = 1√
2
4a
µν .

To conclude let us make the following comments. The message given by this work may be expressed as

follows: Start with Einstein-Hilbert action, add a cosmological constant term and Gauss-Bonnet topological

invariant form, transform each term according to (31) and finally add a torsion term breaking reflexion

what we get it is the Pontrjagin topological invariant. Or inversely, starting with Pontrjagin topological

invariant make the torsion vanishes then make the transformation (31) and eliminate the Gauss-Bonnet

topological invariant and the cosmological constant what we get it is the Eistein-Hilbert action. In other

words, the transition from a non-dynamical to dynamical gravity depends of making the torsion zero and

making appropriate transformation using +Nab
cd . Finally, it is interesting that all this mechanism has been

derived classically. Of course, It will be very interesting to find a similar dynamical mechanism and to

exploite such a dynamical mechanism at the quantum level. But at the present time we do not see how to

achieve this goal. Nevertheless, we think that the present work may be very useful in that direction. Further,

since the Pontrjagin topological invariant may be related to Chern-Simons of gauge group SO(2, 3) which

at the same time is related to (1 + 1)-conformal field theory [16]-[19] we think our work may be thought

as bridge between gravity in (3 + 1)-dimensions and (1 + 1)-conformal field theory. Since (1 + 1)-conformal

theory is closely related to string theory it seems that our work suggests that string theory may be obtained

from gravity!
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