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1 Introduction

The cosmological equations (without cosmological constant) for a uniform universe
with the space-time metric

−ds2 = −dt2 +R2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(1.1)

are [1] (
dR

dt

)2

=
8πG

3
ρR2 − k, (1.2)

R3dp

dt
=

d

dt

[
R3(ρc2 + p)

]
, (1.3)

where R ≡ R(t) scales the comoving coordinates, ρ(t) is the energy density, p(t)
the pressure, k = 0,±1 the curvature constant and t is a universal cosmic time.
The Friedmann models [2] have the properties: p ' 0, k = 0,±1 (k = 0 is in fact
the Einstein-de Sitter model [3]), and were improved and made more realistic by
Lemâitre [4] who included non-interacting radiation. If one denotes by subscripts
m and r matter and radiation, respectively, one finds from (1.3), for non-interacting
matter and radiation: ρm ∝ R−3, ρr ∝ R−4, for pm << ρmc

2, pr = ρrc
2/3. Eq. (1.2)

becomes (
dR

dt

)2

= αrR
−2 + αmR

−1 − k, (1.4)

αr = 8πGρrR
4/3, αm = 8πGρmR

3/3. (1.5)

Eq. (1.4) is just the Lemâitre equation. Its solution for k = 1 was given by de Sitter
[5], Tolman [6] and Alpher and Herman [7], for k = 0,±1 by Chernin [8] and Cohen
[9], and for k = 0 by Jacobs [10]. Cosmological models containing both matter and
radiation were also discussed by McIntosh [11] and Harrison [12].

For non-interacting matter and radiation, ρr ∝ T 4 and hence T ∝ R−1; and ρm ∝
n ∝ T 3, where n is the mean matter number density. Therefore, the dimensionless
quantity

η = n

(
h̄c

kBT

)3

= n(0)

(
h̄c

kBT (0)

)3

(1.6)

is constant. Let us evaluate this quantity by assuming that we are dealing with
baryonic matter.

There are about 1057 nucleons in a typical star. There are about 1011 galaxies in
the universe, and each galaxy has about 1011 stars. Thus there are about 1079 baryons
in the universe (in comparison with 1089 photons, a number which is obtained by
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thermodynamic arguments). The present size of the observable universe is 1028 cm.
The baryon number density is therefore given by

nb ∼
1079

4π
3

(1028)3
∼ 10−6 cm−3,

which we take for n(0). Taking T (0) ' 2.7 K (the microwave background), one obtains
η ∼ 10−9. Let β = ρ(0)

r /ρ(0)
m (zero superscript denotes the present epoch); then because

ρrc
2 ∼ kBT (kBT/h̄c)3,

β ∼
kBT

(0)

ηmnc2
∼ 10−3, (1.7)

where mn is the nucleon mass. Let the superscript (1) denotes the epoch where
ρr ' ρm; then

αr

αm
= R(1) = βR(0), (1.8)

and ρ(1)
r = ρ(0)

m β−3 ∼ 109ρ(0)
m . Also, T (1) = T (0)/β ' 3000 K, and when T > T (1), the

energy density of radiation exceeds that of matter.
The numerical values of the energy densities are [13]

ρ(0)
m ∼ 2 · 10−31 g cm−3, ρ(0)

r ∼ 4 · 10−34 g cm−3, (1.9)

ρ(1)
r ∼ 10−22 g cm−3. (1.10)

It follows that the temperature dependence of the energy densities can consistently
have the form

ρm(T ) ' 10−31
(
T

3

)3

g cm−3, ρr(T ) ' 10−22
(

T

3 · 103

)4

g cm−3. (1.11)

As remarked by Harrison [12], when T > T (2) ∼ mec
2/kB ' 5 · 109 K (me is the

electron mass), the Lemâitre equation breaks down because of lepton and hadron pair

production. At temperatures T
>∼ T (2) the interaction of the hadrons is strong and

has mainly a resonant character, the masses of the resonances being comparable with
the temperature. Under these conditions hadronic matter is neither an ideal nor an
ultra-relativistic gas, and can be well characterized by a resonance spectrum [14]

τ (m) ∼ ma exp (m/T0), (1.12)

where a and T0 are parameters. The statistical sum diverges when T > T0, which
indicates that the theory involves a limiting temperature (the so-called “hadronic
boiling point” of Hagedorn [14]), whose numerical value is found to be

T0 = mπc
2/kB ∼ 1012 K (1.13)
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(mπ is the pion mass), and in the vicinity of T0 particle creation is so violent that it

is impossible to exceed this temperature. In the temperature range T (2) <
∼ T

<
∼ T0

the hadronic gas is thought of as being well described by the “realistic” equation of
state suggested by Shuryak [15], p, ρ ∝ T 6 (which gives the value of the velocity of
sound c2

s = dp/dρ = 0.20), in agreement with some of the relevant experimental data
[16, 17, 18]. There are indications that c2

s may, however, take the values both more
and less than 0.20, i.e., 0.25 [19, 20, 21] or 0.17 [18, 22, 23, 24].

The existence of the limiting temperature T0 suggests that there is some phase
transition. It also means that the Lemâitre equation, although reasonably realistic,
is a good approximation throughout the lifetime of the universe except for its earliest
moments.

It is clear that, in fact, the known resonances form an essentially discrete set
of states, and the well-known arguments applied above are based on an approxi-
mate idealization that considers the envelope of these resonances as a continuous
mass spectrum. There is, however, a consistent (proper time) formulation of a mani-
festly covariant statistical mechanics [25, 26, 27], based on the ideas of Fock [28] and
Stueckelberg [29], in which the four components of energy-momentum are considered
as independent degrees of freedom, permitting fluctuations from the mass shell.

In the present paper we shall use this manifestly-covariant framework (which
we review briefly in the next section) as a model for the description of phenomena
which take place in hot hadronic matter. We argue that the phase transition at
the Hagedorn limiting temperature can represent a phase transition from an off-
shell sector of the theory, in which the relativistic ensemble is described within the
framework of the manifestly covariant relativistic statistical mechanics mentioned
above, to an ultrarelativistic independent particle phase. Recently we have studied
thermodynamic properties of the off-shell phase [27, 30] and its possible consequences
in hadronic physics [31], astrophysics [32], and cosmology [33, 34].

As shown in ref. [31], the behavior of hadronic matter below the Hagedorn limiting
temperature coincides with that of a system which includes both particles and an-
tiparticles, with the additional mass potential [25] µK ' 0; such a system, within the
covariant framework, is described by the equation of state corresponding to Shuryak’s
“realistic” one. In the present paper we shall show that off-shell matter, if included
into the Friedmann-Lemâitre model on an equal footing with baryonic matter and
non-interacting radiation, has energy density comparable to that of non-interacting
radiation at temperatures of the order of the Hagedorn temperature, indicating the
possibility of a phase transition from strongly interacting (off-shell) phase to non-
interacting one.
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2 Relativistic N-body system

In the framework of a manifestly covariant relativistic statistical mechanics, the dy-
namical evolution of a system of N particles, for the classical case, is governed by
equations of motion that are of the form of Hamilton equations for the motion of N
events which generate the space-time trajectories (particle world lines) as functions
of a continuous Poincaré-invariant parameter τ, called the historical time [29, 35].
These events are characterized by their positions qµ = (t,q) and energy-momenta
pµ = (E,p) in an 8N-dimensional phase-space. For the quantum case, the system
is characterized by the wave function ψτ (q1, q2, . . . , qN ) ∈ L2(R4N ), with the measure
d4q1d

4q2 · · · d4qN ≡ d4Nq (qi ≡ qµi ; µ = 0, 1, 2, 3; i = 1, 2, . . . , N), describing the dis-
tribution of events, which evolves with a generalized Schrödinger equation [35]. The
collection of events (called “concatenation” [36]) along each world line corresponds
to a particle, and hence, the evolution of the state of the N-event system describes,
a posteriori, the history in space and time of an N-particle system.

For a system of N interacting events (and hence, particles) one takes [35] (we use
the metric gµν = (−,+,+,+))

K =
∑
i

pµi piµ
2M

+ V (q1, q2, . . . , qN), (2.1)

where M is a given fixed parameter (an intrinsic property of the particles), with the
dimension of mass, which we take to be the same for all the particles of the system.
The Hamilton equations are

dqµi
dτ

=
∂K

∂piµ
=
pµi
M
,

dpµi
dτ

= −
∂K

∂qiµ
= −

∂V

∂qiµ
. (2.2)

In the quantum theory, the generalized Schrödinger equation

i
∂

∂τ
ψτ(q1, q2, . . . , qN) = Kψτ(q1, q2, . . . , qN) (2.3)

describes the evolution of the N-body wave function ψτ(q1, q2, . . . , qN).

2.1 Covariant thermodynamics and cosmology

Thermodynamic functions for a many-body system can be derived from the grand
partition function, which, for an ensemble of off-shell events at temperature T is
defined by the following expression, modified, in comparison with the standard one,
by the presence of the term µKK (henceforth we use the system of units in which
h̄ = c = kB = 1, unless the other specified):

Z = Tr
[
exp

{
−(Ê(N) − µN̂ − µKK̂

(N))/T
}]
, (2.4)
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where µ is the chemical potential and µK is the additional mass potential of the
ensemble [25]. Here Ê(N) is the operator of the total energy of the N-body system,
Ê(N) =

∑N
i=1 p

0
i , K̂

(N) is the generalized N-body Hamiltonian defined by Eq. (2.1),
and N̂ is the operator of the number of events (and therefore, particles). As shown
in ref. [33] (we shall review this point briefly below), the quantity −µKκ, where κ
is the generalized Hamiltonian density, κ = 〈K̂(N)〉/V, represents a (55)-component
of a generalized energy-momentum tensor, which in the local rest frame takes on
the form Tαβ = diag(−ρ, p, p, p,−σµKκ), α, β = 0, 1, 2, 3, 5. Here the sign of σ
corresponds to the invariance group of the extended (xµ, τ ) manifold which could be
O(4, 1) (σ = 1) or O(3, 2) (σ = −1.) In the present paper we shall restrict ourselves
to the case σ = 1, i.e., the O(4, 1) invariance of the (xµ, τ ) manifold having the metric
gαβ = (−,+,+,+,+).

Expressions for p and ρ, using the grand canonical ensemble obtained by Horwitz,
Schieve and Piron [25] in their study of manifestly covariant statistical mechanics,
were found in [30] in terms of confluent hypergeometric functions as

p =
T4V

4π3

M2

µ3
K

T 3
∞∑
s=1

(±1)s+1

s3
esµ/TΨ(3, 3;

sM

2µKT
), (2.5)

p + ρ =
3T4V
4π3

M3

µ4
K

T 2
∞∑
s=1

(±1)s+1

s2
esµ/TΨ(4, 4;

sM

2µKT
), (2.6)

where T4V is a characteristic interval of τ for a trajectory to pass through a small
representative four-volume. For T small, one finds from (2.5),(2.6) [30, 33] that
p, ρ ∝ T 6, ρ ' 5p, and, in fact, that µKκ ∝ T 7 is negligible in comparison with ρ.
On the other hand, for T large, it follows from these expressions that p, ρ, µKκ ∝ T 5,
p ' 1/4ρ ' −µKκ. Now, we remark that the energy-momentum tensor

T µν = (p+ ρ)uµuν − pgµν (2.7)

can be extended to a five-dimensional form

(5)Tαβ =
(

(5)Tµν,
(5)T55

)
; (2.8)

the requirement that the limiting case of the corresponding gravitational theory (for
zero curvature in the τ direction) coincide with the Einstein equations results in the
identification (5)Tµν = (4)Tµν and (5)T55 = −µKκ. For high temperature, it therefore
follows that (as discussed in [33])

T αβ = (p+ ρ)uαuβ − pgαβ , uλuλ = −1, (2.9)

so that, in the local rest frame, Tαβ = diag (−ρ, p, p, p, p).
The first law of thermodynamics reads

dE = TdS − pdV + µidNi, (2.10)
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where S is the entropy, V = V (t) (the universal cosmic time t corresponds to the τ of
(2.2) and (2.3)) is a comoving volume element of an ideally uniform universe, andNi is
the number of the ith kind of particles having the chemical potential µi, which implies
that the energy E is a thermodynamic function of S, V, and Ni : E = E(S, V,Ni).
In the case of varying Ni it is convenient to consider the set of variables (T, V, µi)
instead of (S, V,Ni). The change of variables is obtained with the help of a Legendre
transformation

Ω(T, V, µi) = E − TS − µiNi, (2.11)

which introduces the thermodynamic potential Ω. The use of (2.10) in the differential
of (2.11) leads to

dΩ = −SdT − pdV −Nidµi. (2.12)

The coefficients S, p and Ni are given by the partial derivatives

S = −

(
∂Ω

∂T

)
V,µi

; p = −

(
∂Ω

∂V

)
T,µi

; Ni = −

(
∂Ω

∂µi

)
T,V

. (2.13)

A fundamental result of statistical mechanics relates the thermodynamic potential to
the grand partition function:

Ω(T, V, µi) = −T lnZ. (2.14)

By combining (2.13) with (2.14), the entropy and the pressure become

S =
∂(T lnZ)

∂T
, (2.15)

p =
∂(T lnZ)

∂V
. (2.16)

In the case of no interactions the latter relation reduces to

p =
T

V
lnZ = −

Ω

V
, (2.17)

which is the equation of state of a free relativistic ensemble [25]

pV

T
= lnZ. (2.18)

Substitution of Ω = −pV into Eq. (2.11) yields the thermodynamic relation

E = −pV + TS + µiNi, (2.19)

which represents the formula for the entropy [37]

S =
E + pV − µiNi

T
=

(ρ+ p− µiN0i)V

T
, (2.20)
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where ρ ≡ E/V, N0i ≡ Ni/V are the corresponding energy and particle number
densities.

Since the lepton and baryon numbers are relatively small and therefore negligible
in the early universe, equilibrium conditions correspond to

µi = 0. (2.21)

Then the first law reads
d(ρV ) = TdS − pdV, (2.22)

and Eq. (2.20) takes on the form

S =
(ρ + p)V

T
. (2.23)

Since V ∼ R3, it follows from (1.3) and (2.22) that

dS

dt
= 0, (2.24)

and the entropy is conserved. Note that Eq. (1.3) represents the local energy conser-
vation. Indeed, for the energy-momentum tensor of an ideal cosmological fluid,

T µν = (p+ ρ)uµuν − pgµν , uρuρ = −1,

the local energy conservation, ∇µT
µν = 0, takes on the form

R
dρ

dt
+ 3(ρ + p)

dR

dt
= 0, (2.25)

which reduces to (1.3).
By rewriting (2.22) in the form

TdS = d [(ρ + p)V ]− V dp (2.26)

and using the integrability condition [37]

∂2S

∂T∂V
=

∂2S

∂V ∂T
, (2.27)

the energy density and pressure are related as follows,

ρ+ p = T
dp

dT
. (2.28)

Given an equation of state, the temperature dependence of p and ρ can be derived with
the help of (2.28). Assuming that in the early universe the pressure is proportional
to the energy density and using Zeldovich’s equation [38]

p = (Γ− 1)ρ, (2.29)
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we find
p, ρ ∝ T Γ/(Γ−1). (2.30)

In the standard framework one can obtain from (2.25),(2.29),

p, ρ ∝ R−3Γ. (2.31)

For the radiation-dominated universe Γ = 4/3, so that

p, ρ ∝ T 4 ∝ R−4. (2.32)

In the covariant framework Eq. (2.28), and therefore (2.30), hold, while Eq. (2.25)
should be modified. For the generalized energy-momentum tensor (2.8) the local
energy conservation, ∇αT

αβ = 0, yields

R
dρ

dt
+ 4(ρ + p)

dR

dt
= 0, (2.33)

resulting, via (2.29), in
p, ρ ∝ R−4Γ. (2.34)

Since in this case [33] Γ = 5/4, we obtain from (2.30),(2.34)

p, ρ ∝ T 5 ∝ R−5. (2.35)

3 “Realistic” Friedmann model

Let us modify the Friedmann-Lemâitre model by inclusion of off-shell matter with
the equation of state1 ρm′ ∝ T 5 ∝ R−5, pm′ = ρm′c

2/4. The modified equation reads(
dR

dt

)2

= αm′R
−3 + αrR

−2 + αmR
−1 − k, (3.1)

αm′ = 8πGρm′R
5/3, (3.2)

αr, αm being defined in (1.5).

Let β
′

= ρ
(1)

m′
/ρ(1)

r , where, as previously, the superscript (1) denotes the epoch of

T (1) ' 3000 K. Because ρm′ c
2 ∼ kBT (kBT/h̄c)4,

β
′
∼
kBT

(1)

ρ
(1)
r c2

=
kBT

(0)/β

ρ
(0)
m c2/β3

= β2kBT
(0)

ρ
(0)
m c2

= β3 ∼ 10−9. (3.3)

1The equation of state of relativistic off-shell matter p = 1/4ρ was obtained also by Hakim [39]
within a different framework.
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If superscript (3) denotes the epoch where ρm′ ' ρr (implying that the pressure of
radiation and off-shell matter are equal; from (1.11) one sees that the contribution of
baryonic matter is negligible at high temperature), then

αm′

αr
= R(3) = β

′
R(1), (3.4)

and
ρ

(3)

m
′ = ρ(1)

r (β
′
)−4 ∼ 1036ρ(1)

r ∼ 1014 g cm−3. (3.5)

Also

T (3) =
T (1)

β ′
' 3 · 1012 K. (3.6)

We see that this temperature is just of the order of the Hagedorn one. At T ' T (3), off-
shell matter and radiation have comparable energy densities, indicating the possibility
of a phase transition. In general,

ρm′ (T ) ' 1014
(

T

3 · 1012

)5

g cm−3. (3.7)

Since the cosmological phase transition at Tc ∼ 1012 K is normally associated with
the transition from a strongly interacting hadronic phase to a weakly interacting
quark-gluon plasma phase [24, 40], we associate the T 4-phase above the transition
temperature with a phase of of weakly interacting quarks and gluons, and T 5-phase
below the transition temperature with a phase of strongly interacting hadrons (as we
show in [41], T 4 behavior indeed results from the very high temperature asymptotic
behavior of the distribution function, for small µK .) In this phase, particles undergo
continual mutual interaction and are necessarily off-shell. Therefore, the effect of
strong interaction in such a system may be represented by the off-shellness of its
particles, justifying the use of the off-shell framework for the description of this phase.

If the phase transition at temperature ∼ T (3) is not sufficiently sharp, there exists
some region of the “mixed” phase, in which both (or the three, including baryonic
matter) phases coexist (a similar situation may occur for both hadronic and the
quark-gluon plasma phases, according to the “realistic” scenario suggested by Shuryak
[15]). If the off-shell phase extended well below T (3), it would have energy density
comparable with that of baryonic matter at T ∼ 108 K, as follows from (1.11) and

(3.7), so that the temperature range of the mixed phase would be 108 K
<
∼ T

<
∼ 1012 K,

where ρm
<
∼ ρm′

<
∼ ρr. In fact, the mixed phase, as we explain below, may exist in

the temperature range
1010 K

<
∼ T

<
∼ 1012 K, (3.8)

where 1010 K is the electron-positron threshold for hadron production in the e+e−

annihilation process, and at temperatures well below 1010 K the off-shell phase is
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exponentially suppressed. For T from the range (3.8), we obtain, with the help of the
relations

c2 =
dp

dρ
=
dp/dT

dρ/dT
,

p = pm + pr + pm′ , ρ = ρm + ρr + ρm′ ,

the following expression for the velocity of sound:

c2 =
nmpm + nrpr + nm′pm′

nmρm + nrρr + nm′ρm′

=
nmc

2
m + nrc

2
rρr/ρm + nm′ c

2
m′
ρm′/ρm

nm + nrρr/ρm + nm′ρm′/ρm
, (3.9)

where nm, nr, nm′ are the powers of temperature in the corresponding formulas for
the pressure and the energy densities, and c2

m = dpm/dρm = pm/ρm, etc. are the
sound velocities in the corresponding phases. Using the relations

c2
m << 1, c2

r =
1

3
, c2

m
′ =

1

4
,

we finally obtain

c2 '
4/3 ρr/ρm + 5/4 ρm′/ρm
3 + 4ρr/ρm + 5ρm′/ρm

. (3.10)

If the energy densities of the corresponding phases were of the same order, ρm ∼ ρr ∼
ρm′ , one would obtain

c2 '
31

144
≈ 0.21. (3.11)

In fact, the use of Eqs. (1.11),(3.7) in the formula (3.10) provides for the sound
velocity a numerical value which is practically 1/3, up to temperature ∼ 2 · 1012

K. At T = T (3) (' 3 · 1012 K), Eq. (3.10) yields c2 ≈ 0.28. One sees that for the
model of the mixed phase, a dip in the sound velocity as a function of temperature
in the vicinity of the transition temperature is predicted, in agreement with both the
phenomenological models [15, 42] and the recent data on QCD lattice simulations
[43]. Let us also note that the value of the sound velocity c2 = 0.28 at T ∼ 1012 K
was reported in ref. [44].

The value of the sound velocity c2 ≈ 0.25, in agreement with the relevant exper-
imental data [19, 20, 21], is obtained only in the assumption of a sufficiently sharp
transition, when the phase below the transition temperature is that of strongly inter-
acting (off-shell) matter alone, with temperature dependence T 5.

Thus, the “realistic” Friedmann model studied here describes qualitatively the
decrease of the sound velocity in relativistic gas at values of T in the vicinity of 1012

K, which reaches the numerical value c2 ≈ 0.25, consistent with at least some of
the experimental results [19, 20, 21], and significantly less than the ultra-relativistic
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Stefan-Boltzmann gas value 0.33. It may be thought that the progressive population
of states of higher mass creates an admixture of heavy particles, thus decreasing the
factor relating pressure to energy density.

The above estimates have been made in a classical framework. Now we shall
show how similar results can be obtained within the framework of the conventional
(on-shell) quantum theory. As mentioned above, at T (2) ∼ me ' 5 · 109 K, lepton

and hadron pair production starts; in the temperature range T (2) <∼ T
<∼ T 0, where

T0 is the temperature of the Hagedorn phase transition, T0 ∼ T (3), the system is
characterized by a resonance spectrum of the Hagedorn form (1.12), for which there
is some experimental basis [14, 15]. At T ∼ 1010− 1011 K << T0, one can neglect the
exponential in (1.12) and use, as done by Shuryak [15, 45], a resonance spectrum of
the form

τ (m) ∼ ma, (3.12)

where one chooses on phenomenological grounds a = 1 [15].
The expressions for the pressure and energy density are then written as [15, 45] (we

neglect the difference in properties of Bose and Fermi particles at high temperature)

p =
g

3

∫ ∞
4
dm τ(m)

∫ d3k

(2π)3

k2

√
k2 +m2

e−
√
k2+m2/T = g

∫ ∞
4
dm τ(m)pm, (3.13)

ρ = g
∫ ∞
4
dm τ(m)

∫
d3k

(2π)3

√
k2 +m2e−

√
k2+m2/T = g

∫ ∞
4
dm τ(m)ρm, (3.14)

where g is the number of hadronic degrees of freedom, pm and ρm are expressions
for the pressure and energy density of relativistic gas of particles with given mass m,
and we may choose, sufficient for our present purposes, 4 ∼= 2me ' 1010 K. Since
at temperatures T

>
∼ 4 one should take into account electron-positron annihilation,

leading, via quark loops, to the formation of hadronic jets [46],

e+e− → qq̄ → hadrons, (3.15)

which can be thought of as resonances on the excitation background of virtual leptonic
pair states, the e+e− threshold should be taken as the lowest possible mass for the
resonance spectrum τ (m), justifying the introduction of the corresponding cut-off in
the formulas (3.13),(3.14).

The use of the standard expression [47]

pm =
m2T 2

2π2
K2

(
m

T

)
(3.16)

in Eq. (3.13), in which we take τ (m) = Cm, C = const, yields [48]

p =
gCT 2

2π2

∫ ∞
4

dm m3K2

(
m

T

)
=
gCT 3

2π2
43K3

(
4

T

)
. (3.17)
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At temperatures T ∼ 1011 K where T >> 4 (but still T << T0, so that the use of
(3.12) instead of (1.12) is justified), one uses the asymptotic formula [49]

Kν(z) ∼
1

2
Γ(ν)

(
z

2

)−ν
, z << 1 (3.18)

and obtains

p =
4gC

π2
T 6. (3.19)

Similarly, one can obtain for such temperatures [15],

ρ =
20gC

π2
T 6 = 5p, (3.20)

so that

c2 =
dp

dρ
= 0.20. (3.21)

Equations (3.19)-(3.21) represents the “realistic” equation of state suggested by Shuryak
for hot hadronic matter [15].

For T <<4, one uses another asymptotic formula [49]:

Kν(z) ∼
√
π

2z
e−z, z >> 1 (3.22)

and obtains

p =
gCT 7/245/2

25/2π3/2
e−4/T , (3.23)

and similar expression for ρ. Thus, at temperatures well below 4 ' 1010 K, the
off-shell phase is suppressed by the exponential.

The use of τ (m) ∼ ma in the formulas (3.13),(3.14) will analogously lead to the
equation of state at T ∼ 1011 K [15, 45]

p, ρ ∼ T a+5, p = ρ/(a+ 4), (3.24)

which coincides with (3.19)-(3.21) for a = 1. The values for the sound velocity in the
hadronic phase 0.25 and 0.17, in agreement with some of the experimental results
[18]-[24], is achieved, in view of (3.24), for a = 0 and a = 2, respectively.
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4 Solutions to cosmological equation

The solutions of Eq. (3.1) for t > t(3), R > R(3) are well known [12],

k = 0 :

R =
√
αrτ +

1

4
αmτ

2,

t =
1

2

√
αrτ

2 +
1

12
αmτ

3;

k = 1 :

R =
√
αr sin τ + αm sin2 τ

2
,

t = 2
√
αr sin2 τ

2
+

1

2
αm(τ − sin τ );

k = −1 :

R =
√
αr sinh τ + αm sinh2 τ

2
,

t = 2
√
αr sinh2 τ

2
+

1

2
αm(sinh τ − τ ).

For 0 < t < t(3), 0 < R < R(3), since the curvature term is negligible in the early
universe, we have the equation of the general form(

dR

dt

)2

= αnR
2−n, αn = 8πGρRn/3, (4.1)

with n = 5. Eq. (4.1) has the solution

R = α1/(n−2)
n

(
n − 2

2
τ

)2/(n−2)

, (4.2)

t =
2

n
α1/(n−2)
n

(
n− 2

2
τ
)n/(n−2)

; (4.3)

so that

R =
(
n

2

)2/n

α1/n
n t2/n, (4.4)

and

t =
2

n

(
8πG

3
ρ

)−1/2

. (4.5)

For the energy density at T = T (3), ρ
(3)

m′
∼ 1014 g cm−3, we obtain from (4.5), with

n = 5,
t(3) ∼ 10−5c. (4.6)

Equation (4.1) corresponds to that of Zeldovich and Novikov [50] for the early charged
symmetric universe, whereas the Lemâitre equation (1.4) is for the subsequent charge
asymmetric universe in which the asymmetry is either local or global.
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5 Concluding remarks

We have studied the cosmological Friedmann model modified by introduction of off-
shell matter with the equation of state ρ ∝ T 5 ∝ R−5, p = ρ/4. The energy density of
such a matter is comparable with that of the non-interacting radiation at temperature
of the order of the Hagedorn limiting temperature, ∼ 1012 K, indicating the possibility
of a phase transition.

A cosmological phase transition at Tc ∼ 1012 K is normally associated with the
transition from a strongly interacting hadronic phase to a weakly interacting quark-
gluon plasma phase [24, 40]. The simplest classical model considered in the present
paper implies the possibility of a first order phase transition from the T 5-phase of
strongly interacting (off-shell) matter to the T 4-phase of non-interacting radiation-
like matter. Cosmological consequences of such a phase transition are discussed in
ref. [34], where it is suggested that the transition may be sufficiently smooth (second
order) to preserve the expansion rate. Although a first order phase transition might
be preferable for some cosmological implications, due to the fluctuations which are
generated at the transition and could produce planetary mass black holes [51] which,
in turn, could provide a possible explanation for the dark matter of the universe and
even be seeds in galaxy formation [52, 53], experimental indications on the order of this
phase transition are still absent. Indeed, presently available lattice data on SU(N)
pure gauge theory lattice simulations indicate that a phase transition to a weakly
interacting phase is of apparently first order for SU(3) and second order for SU(2)
theory [54]. In ref. [55], however, the apparent first order nature of the transition
in the case of SU(3) pure gauge theory has been called in question. Moreover, there
are indications from lattice QCD calculations that when fermions are included, the
phase transition may be of second or higher order [56]. In this case, as remarked by
Ornik and Weiner [24], the phase transition would be hardly distinguishable from a
situation in which no phase transition would have taken place (radiation-dominated
universe alone).
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