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be described by the filament equation in the local induction approximation [1, 2]. It is

formulated as
∂γ

∂t
=
∂γ

∂s
×
∂2γ

∂s2
, (1)

where γ = γ (t, s) denotes the position of the vortex filament in R3 with t and s being the time

and the arc-length parameter respectively.

Hasimoto [3] introduced a map h : γ 7→ ψ = κ exp[i
∫ s τ (u)du], in order to transform the

filament equation into the nonlinear Schrödinger (NLS) equation for ψ. Here κ and τ respec-

tively denote the curvature and the torsion along γ. Since the integrability of the NLS equation

was well known, the filament equation was naturally expected to be integrable. Mardson and

Weinstein [4] first described the filament equation as a Hamiltonian equation with the Hamil-

tonian simply being the length ` [γ] of the vortex filament. Later Langer and Perline [5] used

this Hamiltonian structure to prove the existence of an infinite sequence of constants of motion

in involution, and studied the evolution of the vortex filaments in connection with the solitons

in the NLS equation.

With this concern in mind, we have investigated the filament equation in a curved three-

manifold M . Although Langer and Perline have limited M to R3, we find an analogous in-

tegrable hierarchy in the case of constant curvature. We further study the classical partition

function for the vortex filaments

Z(β) =
∫

Γ
e−β ` [γ]Dγ. (2)

It is not clear if the Duistermaat-Heckman formula [6] applies to this case, because our phase

space Γ is neither finite dimensional nor compact, and furthermore because the Hamiltonian

flow may not be periodic. But the perturbative calculation in our mode reveals that the loop

corrections to the formula vanish up to the 3-loop.

2 Integrability

We begin this section by describing a symplectic structure for the vortex filament in a three-

manifold M equipped with a Riemann metric g. Everything is considered in the smooth

category for simplicity. Let Γ be the space of vortex filaments with fixed end points p and

q; Γ is the quotient space of {γ : [0, 1] → M | γ(0) = p, γ(1) = q} with the reparametrization

of γ. Hereafter γ denotes the representative for which the parameter x ∈ [0, 1] is a multiple of

the arc-length s, namely

ds

dx
=‖

dγ

dx
‖=

√
(
dγ

dx
,
dγ

dx
) (3)

is independent of x. Here ( , ) denotes the inner product on the tangent space Tγ (x)M . One

can identify the tangent space TγΓ with the subspace of Γ(γ∗TM), and expand X ∈ Γ(γ∗TM)
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where T is the unit tangent vector to γ, N is the unit normal vector and B is the unit binormal

vector. Let ` [γ] be the length of γ, so that s = ` [γ] x. The Frenet-Serret equations are

∇sT = κN, ∇sN = −κT + τ B, ∇sB = −τ N, (5)

with ∇ being the connection on γ∗TM induced by the Levi-Civita connection on TM . Let ℘

be the projection from Γ(γ∗TM) to TγΓ, then one can show that the tangent component of

v = ℘ (X) ∈ TγΓ satisfies
d

dx
vT = `−1(∇xv,

dγ

dx
) + ` κ vN, (6)

and (∇xv, dγ/dx) is a constant. Fixing this constant by the boundary conditions X(0) =

X(1) = 0, one obtains

℘ (X) = v = ` (
∫ x

0
κ vNdx− x

∫ 1

0
κ vNdx) T + vNN + vBB . (7)

Geometrical structures on Γ were first studied by Marsden and

Weinstein [4] for the vortex filament in R3, and generalized to the loop space for a three-

manifold M by Brylinski [7]. It is straightforward to find those for the vortex filament in

M .

i) Complex structure

For the tangent vector v ∈ TγΓ, J generates the 90-degree rotation

J(v) = −℘ (T× v) , J2 = −1. (8)

Choosing (vN, vB) as coordinates for TγΓ, we

find that J corresponds to the multiplication by i for the complex function vN(x) + i vB(x).

Hence J induces a complex structure on Γ.

ii) Riemann structure

The Riemann structure on Γ is simply defined by

〈u, v〉Γ = `
∫ 1

0
(uNvN + uBvB) dx

(9)

for u, v ∈ TγΓ, and satisfies the hermitian condition

〈u, v〉Γ = 〈J(u), J(v)〉Γ. (10)

Note that even though 〈 , 〉Γ ignores the T-components, it is non-degenerate.
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, y

ω(u, v) =
∫ 1

0
ν(
dγ

dx
, u, v) dx. (11)

Using the Frenet-Serret frame, one can rewrite this as

ω(u, v) = `
∫ 1

0
(uNvB − uBvN) dx, (12)

which is equivalent to the one constructed from the above two structures

ω(u, v) = 〈u, J(v)〉Γ. (13)

Having set out the basic structures, we now turn to the Hamiltonian flows for the vortex

filament. Let ` : Γ 7→ R be a smooth Hamiltonian function, then the Hamiltonian vector field

X` has the form

X` = J(grad `). (14)

Choosing iX` ω = d ` and putting v = dγt/dt |t=0, we get

v ` [γ] =
d

dt

∫ 1

0

√√√√(∂γt
∂x

,
∂γt

∂x

)
dx

∣∣∣∣∣∣
t=0

,

=
1

` [γ]

∫ 1

0

(
∇xv,

dγ

dx

)
dx, (15)

= −` [γ]
∫ 1

0
(v, κN) dx.

grad ` = −℘(κN) follows, and therefore

X` = κB. (16)

This yields a natural generalization of the filament equation in M [8]

∂γ

∂t
= κB = `−3 ∂γ

∂x
×∇x

∂γ

∂x
. (17)

The evolution equations for κ and τ are the followings

∂κ

∂t
= κRic (B,N)− `−1(2τ

∂κ

∂x
+ κ

∂τ

∂x
), (18)

∂τ

∂t
= τ Ric (T,N) + `−1 ∂

∂x
(
1

2
κ2 + `−2κ−1∂

2κ

∂x2
− τ 2 + ρ(T,B)), (19)

where Ric and ρ denote the Ricci tensor and the sectional curvature on M respectively. In the

case of constant curvature, these equations take simpler forms

∂κ

∂t
= −`−1(2τ

∂κ

∂x
+ κ

∂τ

∂x
), (20)

∂τ

∂t
= `−1 ∂

∂x
(
1

2
κ2 + `−2κ−1∂

2κ

∂x2
− τ 2), (21)
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Proposition

(a) The filament equation is transformed into the NLS equation by the Hasimoto map.

(b) There is an infinite sequence of constants of motion.

(c) These constants are in involution.

Proof

We assume that κ, τ and their derivatives of arbitrary order vanish at the boundaries.

Then it is straightforward to prove (a) and (b) due to the evolution

equations (20) and (21). Using the explicit form of the Hamiltonian vector fields Xn (see

Remark (2)), we can confirm the commutativity ω(Xn, Xm) = 0 for any n and m with the help

of [5], and consequently prove (c).

Remarks

(1) The constants of motion are as follows [5]:

I−2[γ] = ` [γ], I−1[γ] = `
∫ 1

0
τ dx, (22)

In[γ] = Ĩn ◦ h[γ] (n = 0, 1, 2, . . .),

where h is the Hasimoto map h[γ] = κ exp[i` [γ]
∫ x
0 τ dx], and Ĩn’s are the constants of

motion in the NLS equation [10] given by

Ĩn[ψ] = `
∫ 1

0

1

2
ψ̄ J̃n(ψ, ψ̄) dx, (23)

and

J̃0 = ψ, J̃n+1 = −i
d

ds
J̃n −

1

4
ψ̄

n∑
k=1

J̃k−1 J̃n−k. (24)

(2) We find mutually commuting Hamiltonian vector fields Xn for In[γ]:

X−2 = κB, X−1 = RX−2, (25)

Xn = Rn+2X−2 − cR
nX−2 (n = 0, 1, 2, . . .),

where c denotes the constant curvature and R the “recursion operator” defined by

R(v) = −`−1 ℘(T×∇xv) (26)

for v ∈ TγΓ. R coincides with the one appeared in [5] when we restrict v to the Hamilto-

nian vector fields.
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p p ,

deformation of the vortex filament also changes its length `. In the case of [5], however,

the vortex filament extends boundlessly, so that the arc-length parameter is simply a

parameter and does not change under the deformation. A different approach to the

integrability of the vortex filaments has been investigated in [9] recently.

The filament equation belongs to an infinite hierarchy of Hamiltonian systems {∂γ/∂tn = Xn |

n = −2,−1, 0, . . .}, and all Hamiltonian flows in this hierarchy are transformed into those in

the NLS hierarchy. In fact, the differential of h yields

dh : Xn 7−→ X̃n+4 − 2c X̃n+2 + c2 X̃n (mod iψ), (27)

where X̃−2 = X̃−1 = 0, and X̃n (n = 0, 1, 2, . . .) are the Hamiltonian vector fields associated

with Ĩn[ψ], i.e., X̃n = −i grad Ĩn; first two are

dh(X−2) = i (
d2ψ

ds2
+

1

2
| ψ |2 ψ), (28)

dh(X−1) =
d3ψ

ds3
+

3

2
| ψ |2

dψ

ds
+ 2c

dψ

ds
. (29)

3 Classical partition function

In this section we evaluate the classical partition function (2) with Dγ being the symplectic

volume form on Γ. The stationary phase method provides an asymptotic expansion for Z(β)

as β 7→ ∞, such that

Z(β) =
∑

grad ` [γ] =0

ZWKB [γ, β] (1 +
a1[γ]

β
+
a2[γ]

β2
+ · · ·). (30)

The exactness of the stationary phase (WKB) approximation has been of interest due to the

Duistermaat-Heckman formula [6], where they have shown that if Γ is a compact symplectic

manifold and ` is a periodic Hamiltonian with isolated critical points, WKB approximation

becomes exact for (2), i.e., the asymptotic expansion terminates at ZWKB . In more general

arguments presented in [11], the fixed points are not necessarily isolated, and it is not manda-

tory to consider the circle action alone according to the analogous results obtained for higher

dimensional tori. For the infinite dimensional symplectic manifolds, the WKB exactness

has not been proved rigorously, but a “proper” version of WKB approximation should

yield a reliable result for a large class of integrable models [12, 13, 14, 15]. With this notion in

mind, we present the explicit calculation of the

asymptotic expansion (30). For simplicity, we will assume the followings:

(1) M is a three-manifold with a constant curvature c, so that the filament equation is

integrable in the sense of Proposition.
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p γ g γ g p

Hγ = −∇x∇x − c `[γ]2. (31)

Let us first expand the Hamiltonian ` around a geodesic γ. As we can see in (5), the cur-

vature along the geodesic vanishes identically, and ξ(x) ∈ Tγ(x)M thus satisfies the condi-

tion (ξ,T) = 0. Using an infinitesimal deformation of γ generated by the exponential map

γs(x) = expγ(x)[s ` ξ(x)], we can find the expansion

` [γs] =
∞∑
n=0

sn

n!

dn

dsn
` [γs]

∣∣∣∣∣
s=0

, (32)

= ` [γ]
∞∑
n=0

s2n

(2n)!

∫ 1

0
W2n(ξ)dx. (33)

Here the integrand W2n is given by the Bell Polynomial Ym [16], namely

W2n(ξ) = Y2n(f1, . . . , f2n; g1(ξ), . . . , g2n(ξ)),

(34)

with

fm = (−)m−1 (2m− 3)!!

2m
,

g2(ξ) = 2 (∇xξ,∇xξ) − 2c `2(ξ, ξ),

g2m(ξ) = (−)m22m−1 {(c `2)m(ξ, ξ)m (35)

+ (c `2)m−1(ξ, ξ)m−2 [(∇xξ, ξ)
2 − (ξ, ξ)(∇xξ,∇xξ)]} (m ≥ 2),

g2m+1(ξ) = 0.

First few are given by

W0 = 1, W2 = f1 g2,

W4 = f1 g4 + 3 f2 g
2
2 , W6 = f1 g6 + 15 f2 g4 g2 + 15 f3 g

3
2.

(36)

Now let us evaluate the WKB partition function

ZWKB [γ, β] = e−β`[γ]
∫
D ξ exp

[
−
β`[γ]

2

∫ 1

0
W2(ξ)dx

]
, (37)∫ 1

0
W2(ξ)dx = 〈ξ,Hγ (ξ)〉Γ. (38)

Using the zeta-function reguralization technique, we can perform the
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with ηH(z) and ζH(z) (z ∈ C) being eta and zeta functions associated with the Hessian operator

Hγ respectively. Evaluating these functions for γ with the Morse index µ(γ), we find

ηH(0) = −1− 2µ(γ), ζH(0) = −1, ζ ′H(0) = 2 ln

∣∣∣∣∣
√
c `[γ]

2 sin(
√
c `[γ])

∣∣∣∣∣ , (40)

and eventually this gives us an explicit expression

ZWKB [γ, β] =
1

2
e−β `[γ]

√
β `[γ]

∣∣∣∣∣
√
c `[γ]

sin(
√
c `[γ])

∣∣∣∣∣ e∓π2 i µ(γ). (41)

Since µ(γ) is an even integer, the last factor contains no ambiguities.

We now proceed to the higher-order calculation. It is convenient to choose an orthogonal

frame {e1, e2} along γ such that

∇x ei = 0, (T, ei) = 0 for i = 1, 2. (42)

In this frame, the kernel of the Jacobi operator Hγ becomes diagonal, and both of the diagonal

elements are identical to the Dirichlet Green function

G(x, x′) = 2
∞∑
n=1

sin(nπx) sin(nπx′)

(nπ)2 − λ
, (43)

with λ = c `2. The 2-loop amplitude a1 = −β2 〈W4/4!〉 consists of four diagrams depicted in

Fig. 1, and those are respectively

(a) λ2
∫ 1

0
G(x)2 =

λ

8
−

3

8

√
λX +

3

8
λX2,

(b) λ
∫ 1

0
G′(x)2 =

λ

8
−

1

8

√
λX +

1

8
λX2,

(c) λ
∫ 1

0
G(x)G′′(x) = −

λ

8
−

1

8

√
λX +

1

8
λX2,

(d)
∫ 1

0
G′′(x)2 = λ2

∫ 1

0
G(x)2,

where X = cot
√
λ, G(x) = G(x, x′) |x=x′, G′(x) = (∂/∂x)G(x, x′) |x=x′ and G′′(x) =

(∂2/∂x ∂x′)G(x, x′) |x=x′ . While G(x) and G′(x) are convergent, G′′(x) diverges at the bound-

aries, thus we have found (c) and (d) by executing the x-integration first and then by regularizing

the infinite n-summation in terms of the following analytic continuations:

∞∑
n=1

1

(n2 + a2)s
= −

1

2
a−2s +

π
1
2

2

Γ(s − 1
2
)

Γ(s)
a−2s+1

+ 2
π

1
2

Γ(s)

∞∑
n=1

(
πn

a

)s−1
2

Ks−1
2
(2πna), (44)

∞∑
n=1

n2

(n2 + a2)s
=

π
1
2

4

Γ(s− 3
2
)

Γ(s)
a−2s+3
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− 2
Γ(s)

∑
n=1

n2
(
a

)
Ks−5

2
(2πna),

∞∑
n=1

n4

(n2 + a2)s
= −

3

8
π

1
2

Γ(s − 5
2
)

Γ(s)
a−s+

5
2

+
3

2

π
1
2

Γ(s)

∞∑
n=1

(
πn

a

)s−5
2

Ks−5
2
(2πna)

− 6
π

5
2

Γ(s)

∞∑
n=1

n2
(
πn

a

)s−7
2

Ks−7
2
(2πna) (46)

+ 2
π

9
2

Γ(s)

∞∑
n=1

n4
(
πn

a

)s−9
2

Ks−9
2
(2πna),

where Kν(z) is the modified Bessel function. Multiplying (a) through (d) with the weights of

the diagrams, we conclude that the 2-loop amplitude vanishes. Beyond the 2-loop, however,

we ought to generalize the analytic continuation for a multiple infinite summation. One might

think that applying the analytic continuation method directly to the Green function, we could

regularize the Green function, and thereby making all loop amplitude finite. This is certainly

true, but regularizing the Green function in this way, we also eliminate the necessarily singu-

larity at x = x′, and obtain non-vanishing 2-loop amplitude as a result. We may avoid this

difficulty by treating G(x, x′) as a distribution w.r.t. x. Let us first examine this on the 2-loop

and check if the amplitude vanishes. Since G(x, x′) may naturally be extended periodically

(period 2) to R as a function of x, one can redefine it as a distribution G̃(x, x′) such that

G̃(x, x′) = −
1

√
λ sin

√
λ

∑
n∈Z

{
sin[
√
λ (x− 2n)] sin[

√
λ (x′ − 1)]H(x; 2n, x′ + 2n)

+ sin[
√
λx′] sin[

√
λ (x− 2n− 1)]H(x; x′ + 2n, 2n + 1)

}
(47)

+
1

√
λ sin

√
λ

∑
n∈Z

{ x→ −x } ,

where H(x; a, b) denotes the characteristic function for the interval [a, b] ⊂ R. Similarly G̃(x)

may also be extended periodically (period 1)

to R

G̃(x) = −
1

√
λ sin

√
λ

∑
n∈Z

{
sin[
√
λ (x− n)] sin[

√
λ (x− n− 1)]H(x;n, n+ 1)

}
. (48)

Using the periodic delta function δ(x;n) (n is the period),

we may evaluate the second derivative

∂2

∂x ∂x′
G̃(x, x′) = −

√
λ

sin
√
λ

∑
n∈Z

{
cos[
√
λ (x− 2n)] cos[

√
λ (x′ − 1)]H(x; 2n, x′ + 2n)

+ cos[
√
λx′] cos[

√
λ (x− 2n − 1)]H(x; x′ + 2n, 2n + 1)

}
(49)

−

√
λ

sin
√
λ

∑
n∈Z

{x→ −x }+ δ(x− x′; 2) + δ(x+ x′; 2),
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The delta function appears only inG′′(x), and we confirm the vanishing of the 2-loop amplitude

by using ∫ 1

0
dx δ(x; 1)2 = δ(0; 1) = 0, (51)

which is consistent with the ζ-function regularization because of δ(0; 1) = 1 + 2 ζ(−1).

The 3-loop amplitude a2 = β3 〈β(W4/4!)2/2 − W6/6!〉 consists of 30 diagrams depicted

in Fig. 2. Evaluating them by means of (47), (48) and δ(0; 1) = 0, we find that 29 diagrams

contain no ambiguities due to the the integration formulae∫ 1

0
dx
∫ x

0
dy δ(x; 1) δ(y; 1)F (x, y) =

1

8
F (0, 0) +

1

4
F (1, 0) +

1

8
F (1, 1), (52)∫ 1

0
dx
∫ x

0
dy [δ(x− y; 2) + δ(x+ y; 2)] [δ(x; 1) + δ(y; 1)]F (x, y)

=
1

2
F (0, 0) +

1

2
F (1, 1), (53)∫ 1

0
dx
∫ x

0
dy [δ(x− y; 2) + δ(x+ y; 2)]2 F (x, y) =

1

8
F (0, 0) +

1

8
F (1, 1). (54)

Here the last equality follows from δ(0; 2) = 0. Yet, in the diagram whose weight is −480, we

encounter an ambiguous integral∫ 1

0
dx
∫ x

0
dy [δ(x− y; 2) + δ(x+ y; 2)]δ(x; 1)F (x, y) = pF (0, 0) + q F (1, 1), (55)

where p+ q = 1/2 as is shown in (53), but p or q alone cannot be determined unless we specify

the regularization of the delta function. If we were able to define the analytic continuation of

the infinite double sum, this ambiguity would not appear, but we have no choice at our hand

other than putting q = 1/16, and obtain the vanishing 3-loop amplitude as a result.

Ambiguities appearing in higher loops are inevitable, because they relate to the regular-

ization ambiguity of the integration measure Dγ, which has never been defined rigorously in

the first place. Both methods we have presented here reveal that the degree of ambiguity gets

larger as the order of loops increases. In the analytic continuation method, ambiguity arises

from the variety of the analytic continuation applicable to the multiple infinite summation,

whereas in the distribution method, the delta-function integration, particularly the finite part

of the boundary contribution, is the source of the ambiguity. Nevertheless our lower order

calculations suggest that by regularizing Dγ order by order, one can eliminate all higher loop

corrections, and thereby preserving the Duistermaat-Heckman formula.

The symplectic structure has been studied thoroughly in compact finite dimensional man-

ifolds, but little is known for the infinite dimensional ones, which include most of the integrable

hierarchies. This is exactly the place where the physical interests are, and the Duistermaat-

Heckman formula would throw a new light over the integrable hierarchies as we have caught a

glimpse of it here.

The authors would like to thank Dr. N. Sasaki for helpful discussions.
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the propagator with one dot represents G′(x), and the one with two dots G′′(x). The attached

numbers are the weights of the diagrams.

Figure 2. 3-loop diagrams. Since there appear no second derivatives in (35) and the number of

derivatives is always even, double dots on a single propagator must go to the separate vertices

and the number of the derivatives at each vertex must be even. One must interpret dots

accordingly for the diagrams with two vertices. Note that for a couple of diagrams in the top

group and for a couple

in the middle, though the resulting diagrams are inequivalent, this simple rule does not tell to

which vertex dots are supposed to go. In those diagrams, dots are placed closer to the vertices

to which they are supposed to go.
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