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Abstract

Due to a rapid change of the entropy density s(T ) across the critical

temperature Tc of the QCD phase transition, the pressure P (T ) and the energy

density e(T ) above Tc generally deviate from their Stefan-Boltzmann values.

We shall demonstrate this both analytically and numerically for a general class

of s(T ) consistent with thermodynamical constraints and make a qualitative

comparison of the result with the lattice QCD data. Quantities related to

ds(T )=dT such as the speci�c heat and sound velocity are also discussed.
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Revealing the precise nature of the quark-hadron phase transition is one of the central

issues in recent lattice and analytical studies of hot QCD (see the reviews [1].) Furthermore,

the behavior of the bulk quantities such as the entropy density s(T ), energy density e(T )

and pressure P (T ) as a function of temperature T is relevant to the formation and evolution

of the quark-gluon plasma in the ultrarelativistic heavy ion collisions planned at BNL and

CERN.

Lattice QCD calculations have been providing interesting data on the plasma properties

above the critical temperature Tc [1]. Among them are, however, some unexpected features:

(a) P=T 4 approaches the Stefan-Boltzmann limit very slowly as T increases, (b) e=T 4 has

a peak just above Tc and approaches an asymptotic value from above as T increase, and

(c) e � 3P 6= 0 above Tc i.e. a large deviation from the ideal gas behavior is seen. They

are sometimes identi�ed as indications of the non-perturbative nature of the quark-gluon

plasma.

In this letter, under generic assumptions on s(T ) consistent with the thermodynamic

inequality, we examine what is the expected behavior of e(T ), P (T ) and other quantities

such as the speci�c heat CV (T ) and the sound velocity cs(T ). We show that most of the

\unexpected" behaviors measured in the lattice QCD simulations [1{3] can be explained at

least qualitatively as a simple consequence of the rapid increase of s(T ) around Tc.

Our basic observation is that all the above quantities are simply parametrized by the

entropy density s(T ) which depends only on the active degrees of freedom and is free from the

complexities of the vacuum structure of QCD. This is seen by the thermodynamic relations

at zero chemical potential such as

P (T ) =
Z T

0

s(t)dt; (1)

e(T ) = Ts(T )� P (T ); (2)

and

CV = T
@s(T )

@T
; (3)

c2s =
@P

@e
=

"
@ ln s(T )

@ ln T

#
�1

: (4)

In eq.(1), P (T ) is normalized by P (T = 0) = 0, which also leads to e(T = 0) = 0 from

eq.(2). The same normalization is adopted also in lattice calculations.

Since we are interested only in the gross behavior of the thermodynamic quantities and

not in the precise order of the phase transition [4], we make a smooth interpolation of

s(T ) between the the hadronic gas at low T and the quark-gluon plasma at high T . Note,

however, that one cannot make arbitrary parametrization of s(T ) since it is constrained by

the thermodynamic inequality and the Nernst's theorem [5]

@s(T )

@T
> 0; s(0) = 0: (5)

A simplest possible parametrization satisfying eq.(5) reads
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s(T ) = sh(T )wh(T ) + sq(T )wq(T ); (6)

where wh(T ) = 1 � wq(T ) and wq(T ) is an increasing function. In this letter, we take the

following form for wq(T ), but our conclusion is not limited to this speci�c choice of wh;q(T ):

wq(T ) =
n
�
1 + tanh

�
T�Tc
�

��
m
�
1� tanh

�
T�Tc
�

��
+ n

�
1 + tanh

�
T�Tc
�

�� : (7)

Here sh(T ) � 12(�2=90)T 3 and sq(T ) � 148(�2=90)T 3 are the entropy densities of massless

free gas with two avors in the hadronic phase (pion gas) and the quark-gluon phase, re-

spectively. The interaction between particles and the quark masses are neglected just for

simplicity. 2� sets the width of the transition region. For T satisfying jT � Tcj � �, s(T )

approaches asymptotically to sh(T ) below Tc and to sq(T ) above Tc. m and n are introduced

to consider the asymmetric superposition of the two phases around Tc, but we shall take

m = n in the following.

The equation of state obtained from eq.(6) is more general than that of the bag model

[6] in the sense that (a) we need not refer to phenomenological parameters such as the bag

constant, and (b) we can treat not only the strong �rst order phase transition but also

the crossover by changing � in a thermodynamically consistent way. When � = 0, our

equation of state is equivalent to the bag model one with a bag constant 4B = (sq(T )=T
3
�

sh(T )=T
3)T 4

c .

In Fig.1, s(T ) with m = n = 1 is shown for �=Tc = 0; 0:05 and 0.25. Lattice measure-

ments show a rapid variation of s(T ) in a narrow region of T (with a width � 10 MeV)

[7], which is similar to Fig.1 with �=Tc = 0:05. Inclusion of the perturbative �s corrections

above Tc and the interactions of hadrons below Tc modi�es the absolute value of s(T ) as

well as its T dependence, but it does not change our conclusions qualitatively.

Once s(T ) is given, it is straightforward to calculate other quantities from eqs.(1,2,3,4).

In Fig.2, e=T 4, P=T 4 and (e�3P )=T 4 are shown as a function of temperature for �=Tc = 0:05.

They can be directly compared with the lattice results [1{3] at least qualitatively. In fact,

they look quite similar:

(i) P=T 4 increases rather slowly above Tc both on the lattice [2,3] and in Fig.2. Since

P (T ) is given as an integral of s(T ), it is quite natural to expect such a continuous and slow

rise. When � = 0, P (T > Tc) has an analytic form

P (T )=PSB(T ) � 1� (Tc=T )
4; (8)

where PSB(T ) denotes the Stefan-Boltzmann value. Eq.(8) tells us that P (T )=PSB(T ) =

50% (90%) for T=Tc = 1:2 (1:8) independent of the details of the dynamics. If � is increased,

P=T 4 has even weaker T dependence. Thus the major part of the deviation of P (T ) from

PSB(T ) can be accounted for without introducing non-perturbative interactions of quarks

and gluons above Tc.

(ii) e=T 4 has a peak just above Tc in Fig. 2 (note that e(T ) itself is a monotonically

increasing function of T ), which is also seen in lattice simulations [2]. In our case, this peak

is a simple consequence of the rapid increase of s(T ) and the slow rise of P (T ) above Tc
(see the de�nition eq.(2)). The width of the peak is correlated with the slow rise of P=T 4.
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One can even prove analytically that there must exist a peak around Tc from the following

relation satis�ed by arbitrary weight functions wh;q(T ),

T 5

�
e

T 4

�
0

= T 2(sh(T )w
0

h(T ) + sq(T )w
0

q(T ))

�

Z T

0

t (sh(t)w
0

h(t) + sq(t)w
0

q(t))dt; (9)

where the prime denotes a derivative with respect to T and we have used a fact

sh;q(T )=(constant)�T
3. Under the conditions that wh(t) + wq(t) = 1, 0 � wq(0) < 1,

w0

q(t) > 0 and w0

q(t ! 1) = o(1=t4), (e=T 4)0 is positive (negative) for low (high) T and

has a zero near Tc. These conditions are all satis�ed in our case, and as a result e=T 4

has a peak. One should also note that, for high enough T , (e=T 4)0 � ��(T )=T < 0 with

� � (e� 3P )=T 4.

(iii) �(T ) = (e� 3P )=T 4 is so called the \interaction measure" and has a peak near Tc
both on the lattice [2,3] and in Fig.2. Again, the rapid increase of s(T ) (i.e. the liberation

of quarks and gluons) is the reason for this peak, which is also seen from the general formula

�(T ) =
1

T 4

Z T

0

t (sh(t)w
0

h(t) + sq(t)w
0

q(t))dt: (10)

� vanishes for T = 0 and 1 and has a peak around Tc independent of the details of the

dynamics. Also the peak becomes sharper and its height becomes higher as � decreases.

When � = 0, one can rewrite � as �(T > Tc) = (sq=T
3
� sh=T

3)(Tc=T )
4 which is equivalent

to the bag model formula without �s corrections �(T > Tc) = 4B=T 4 [6]. Note here that,

if we normalize the pressure by P (1) = PSB instead of P (0) = 0, the peak of �(T ) does

not arise and the naive Stefan-Boltzmann law is realized above Tc. In this sense, the 1=T 4

tail of � at high T in Fig.2 can be interpreted as an artifact of the normalization and has

nothing to do with non-perturbative interactions of quarks and gluons in the quark-gluon

plasma.

In Fig.3, c2s is shown for �=Tc = 0:05. Since the equation of state becomes soft near the

critical region, the sound velocity slows down. This is the reason why c2s has a sudden drop

in the narrow region Tc � � < T < Tc + �. This sudden change is in contrast to the broad

peak or slow rise of the quantities in Fig.2. The di�erence comes from the fact that c2s is

related to the derivative of s(T ) while e(T ) and P (T ) are related to the integral of s(T ). To

see the e�ect of the �nite pion mass on c2s below Tc, c
2

s using sh(T ) with m� = 140MeV (and

Tc = 180MeV) is shown in Fig.3 by the dashed line. The e�ect of �nite m� on the other

quantities is small since they are small in any way at low T . The heat capacity CV has also

a sharp peak at Tc, since one needs to supply a large amount of heat to increase T across

Tc to liberate quark-gluon degrees of freedom.

Although we need not refer to the vacuum parameters such as the bag constant in our

approach, it might be instructive to introduce an e�ective bag constant above Tc de�ned as

a deviation of the pressure from its Stefan-Boltzmann value,

B(T > Tc) = �(P (T )� PSB(T ))=T
4; (11)

where we have neglected all the �s corrections. B(T )=T
4

c is shown in Fig.4. The asymptotic

value B(1) is the one usually used in the bag model. In our case, B(1) depends on how

one parametrizes s(T ): as � is increased, B(1) also increases.
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The main conclusion of this letter is that, whenever the entropy density has a rapid

change near Tc, e=T
4, P=T 4 and � behave as we know from the lattice simulations. Fur-

thermore, we need not refer to the vacuum condensate or the bag constant to see this fact.

We believe that our approach based on the parametrization of s(T ) provides a transparent

and thermodynamically consistent way to study the qualitative feature of the bulk plasma

quantities. Although we have taken a simplest possible form of s(T ), inclusion of the quark

masses, hadronic interactions, �s corrections and chemical potentials is straightforward.

Possible non-perturbative e�ects at Tc < T < 3Tc [3,8] appear as a deviation from the basic

curves in Fig.2 and could be included by adjusting the functional form of s(T ). However,

it is not an easy task to identify true non-perturbative e�ects from the lattice data, since

Fig.2 has already similar behavior with the lattice data, and furthermore the �nite volume

e�ect and perturbative corrections are still large in the current lattice simulations [1].
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Figure Captions

Fig.1: s=T 4 as a function of T for three di�erent values of the width parameter �.

Fig.2: The solid line, the dashed line and the dash-dotted line correspond to e=T 4, P=T 4

and �, respectively. �=Tc = 0:05 is chosen.

Fig.3: Squared sound velocity c2s as a function of T . Solid (dashed) line corresponds to

m� = 0 (140) MeV.

Fig.4: \E�ective" bag constant B(T )=T 4

c for T > Tc. Solid, dashed and dash-dotted lines

correspond to �=Tc = 0; 0:05 and 0.25, respectively.
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