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Abstract

We discuss the electroweak phase-transition in the early universe, using non-

perturbative ow equations for a computation of the free energy. For a scalar

mass above � 70 GeV, high-temperature perturbation theory cannot describe

this transition reliably. This is due to the dominance of three-dimensional

physics at high temperatures which implies that the e�ective gauge coupling

grows strong in the symmetric phase. We give an order of magnitude-estimate

of non-perturbative e�ects in reasonable agreement with recent results from

electroweak lattice simulations.
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1. High Temperature Phase-Transitions

There has been a lively interest in phase-transitions in gauge-theories over the last

decades since the original work by Kirzhnits and Linde [1], indicating that sponta-

neously broken symmetries are restored at high temperatures. The most promi-

nent examples are the electroweak phase-transition, i.e. the restauration of the

SU(2)L �U(1)Y -symmetry of the standard-model, and the transition in QCD where

(approximate) chiral symmetry is restored. These transitions are of interest for dif-

ferent reasons. In the case of the electroweak phase-transition the most prominent

question is whether the observed baryon-asymmetry could have been produced dur-

ing such a transition in the early universe [2]. For this scenario to work, one needs

besides CP-violation also a su�ciently large deviation of baryon-number-violating

processes from thermal equilibrium [3]. This translates into the requirement that

the transition be strong enough �rst order. On the other hand, if in the standard

model the transition is a second or only weakly �rst order one, or even an analytical

crossover instead of a true phase transition, an extension of the standard model is
needed. Then either a B � L asymmetry could be generated in the early universe
or the electroweak phase transition could become su�ciently strongly �rst order [2].
An answer to the question if the observed baryon-asymmetry originated in the elec-
troweak phase-transition requires a detailed understanding of the dynamics of the

transition.
The interest in the chiral transition in QCD is more directly related to speculations

about the possibility of experimental access to the high-temperature state of QCD at
heavy-ion colliders. At present, there is no convincing evidence that such a state has
already been detected. A better understanding of the high temperature phase would

certainly be helpful in answering the question of clean experimental signatures [4].
For QCD there was never any question about the need for non-perturbative meth-

ods in examining the details of the transition. Correspondingly there are a host of
studies with the help of lattice-simulations or e�ective models. In the case of the
electroweak transition the hope that a description by means of high-temperature per-

turbation theory might be su�cient prevailed for some time. For the most prominent

qualitative features this view seems justi�ed for a small mass of the Higgs scalar. For a
realistic scalar mass above the experimental bound it has been argued, however, that
a quantitative description of the high-temperature behavior and the phase-transition

is only possible by non-perturbative methods since strong e�ective couplings are

involved [5-8]. This holds despite the fact that the zero temperature electroweak

interactions are weak.

The deeper reason for the breakdown of perturbation theory lies in the e�ective
three-dimensional character of the high-temperature �eld theory [9]. Field theory

at nonvanishing temperature T can be formulated in terms of an Euclidean func-
tional integral where the \time dimension" is compacti�ed on a torus with radius

T�1. For phenomena at distances larger than T�1 the Euclidean time dimension



cannot be resolved. Integrating over modes with momenta p2 > (2�T )2 or, alterna-

tively, over the higher Fourier modes on the torus (the n 6= 0 Matsubara frequencies)

leads to \dimensional reduction" to an e�ective three-dimensional theory. This is

very similar to dimensional reduction in Kaluza-Klein theories [10] for gravity. The

change of the e�ective dimensionality for distances larger than T�1 is manifest in the

renormalization group approach [5] for a computation of the temperature-dependent

e�ective potential or free energy. Here one integrates over all uctuations with mo-

menta p2 > k2 and follows the dependence of the e�ective potential on the infrared

scale k, �nally letting k ! 0. The scale dependence of the e�ective renormalized

couplings is governed by the usual perturbative �-functions only for k2 > (2�T )2. In

contrast, for k2 < (2�T )2 the running of the couplings was found to be determined

by three-dimensional �-functions instead of the perturbative four-dimensional ones1.

As an alternative to integrating out all modes with p2 > (2�T )2 an e�ective three-

dimensional theory for the long distance electroweak physics is also obtained [12, 13]

by integrating out the higher Matsubara frequencies2.
If the three-dimensional running of the couplings becomes important, the physics

of the phase-transition is dominated by classical statistics even in case of a quantum
�eld theory. A second order phase-transition is characterized by an in�nite corre-

lation length. The critical exponents which describe the behavior near the critical
temperature are always those of the corresponding classical statistical system. Since
the �xpoints of the three-dimensional �-functions are very di�erent from the four-
dimensional (perturbative) �xpoints, we conclude that high-temperature perturba-
tion theory is completely misleading in the vicinity of a second order phase-transition.

This argument extends to su�ciently weak �rst order transitions. A second related
example for the breakdown of perturbation theory is the symmetric phase of the
electroweak gauge theory. The gauge bosons are massless in perturbation theory and
the three-dimensional running always dominates at large distances [6].

In order to understand the high-temperature behavior of a theory we should un-

derstand the qualitative features of the �-functions in three dimensions. These �-
functions have nothing to do with the ultraviolet regularization of the �eld theory - in
this respect there is no di�erence between vanishing and nonvanishing temperature.
They are rather related to the infrared behavior of the theory or the dependence

of Green functions on some sort of infrared cuto�. According to Wilson's concept

of the renormalization group these �-functions describe the scale dependence of the

couplings if one looks at the system on larger and larger distances. For an under-

standing of systems with approximate scaling in a certain range it is useful to de�ne
dimensionless couplings. One divides out an appropriate power of the infrared cuto�

k which plays the role of the renormalization scale. For example, the gauge coupling
g in the e�ective three-dimensional theory is related to the four-dimensional coupling

1Related arguments in a di�erent context can be found in [11].
2For an earlier treatment of dimensional reduction in high-temperature QCD see [14]



g4 and the temperature by

g2 =
�g23
k

= g24
T

k
(1)

For the SU(2)-Higgs model in three dimensions relevant for the electroweak phase

transition, the dependence of g2 on the scale k is given3 by ��g2
3

=
@�g2

3

@t
= � 23

24�k
�g43� : : :

with t = ln k [6]. One concludes that a non-abelian gauge theory like the electroweak

theory is con�ning also in three dimensions. We have depicted the running of the
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Figure 1: The running of the four-dimensional couplings g24 (solid line) and �4
(dashed lines). The initial values of �4 correspond to scalar masses of 35 and
80 GeV respectively.

four-dimensional gauge coupling g24 and the four-dimensional quartic scalar coupling

�4 in �g. 1. The deviation of g24(k) from the zero temperature value g24 = 4=9 can
be interpreted as a measure for the validity of the one-loop approximation. For

su�ciently small initial �4 (small physical Higgs boson mass) �4(k) reaches zero for

3The coe�cients depend on the precise choice of the infrared cuto�.



k much larger than the three-dimensional con�nement scale. One then expects a

�rst-order transition which is analogous to the four-dimensional Coleman-Weinberg

scenario [15]. Typical mass scales are of the order kcw where �(kcw) = 0. In this case it

is expected that high-temperature perturbation theory gives reliable results. On the

other hand, if the three-dimensional con�nement scale �
(3)

conf (the value of k for which

the gauge coupling diverges or becomes very large) is reached with �(�
(3)

conf) > 0 the

behavior near the phase-transition is described by a strongly interacting electroweak

theory. Then strong e�ective coupling constants appear not only in the symmetric

phase, but also in the phase with spontaneous symmetry breaking.

In any case, for a calculation of interesting quantities of a �rst order transition

such as the critical temperature, the nucleation rate of critical bubbles, the surface

tension, the latent heat etc. information about the strongly interacting symmetric

phase is needed. In view of this fact, there have been di�erent approaches to the

electroweak phase-transition by means of lattice simulations [16, 17], gap-equations

[18], e�ective models and the application of renormalization group concepts [6, 8].
In the following we want to review this last approach and present some comparison
with results from 3-dimensional lattice simulations.

2. The Average Action

A useful tool for describing the running of couplings in arbitrary dimension is the
average action [19]. Consider a simple model with a real scalar �eld �. The average
scalar �eld is easily de�ned by

�k(x) =
Z
ddyfk(x� y)�(y) (2)

with fk decreasing rapidly for (x�y)2 > k�2 and properly normalized. The average is
taken over a volume of size� k�d. The average action �k['] obtains then by functional
integration of the \microscopic variables" � with a constraint forcing �k(x) to equal
the \macroscopic �eld" '(x) up to small uctuations. It is the e�ective action for

averages of �elds and therefore the analogue in continuous space of the block spin

action [20] on the lattice. All modes with momenta q2 > k2 are e�ectively integrated
out. Lowering k permits to explore the theory at longer and longer distances. The
average action has the same symmetries as the original action. As usual it may be

expanded in derivatives, with average potential Uk(�); � =
1

2
'2, kinetic term, etc.

�k =
Z
ddx

�
Uk(�) +

1

2
Zk(�)@�'@

�'+ :::

�
: (3)

In a suitable formulation [21] the e�ective average action corresponds to the gen-
erating functional for 1PI Green functions with an infrared cuto� set by the scale k.
It interpolates between the classical action for k ! 1 and the e�ective action for



k ! 0. In this version an exact nonperturbative evolution equation [21] describes the

dependence of �k on the infrared cuto� k (t = ln k)

@

@t
�k =

1

2

Z
ddq

(2�)d

�
�
(2)

k +Rk

�
�1 @

@t
Rk : (4)

Here Rk(q) is a suitable infrared cuto� which may depend on q2, as, for example,

Rk = q2 exp (�q2=k2) (1 � exp (�q2=k2))�1 or Rk = k2. The two-point function �
(2)

k

obtains by second functional variation of �k

�
(2)

k (q0; q) =
�2�k

�'(�q0)�'(q) : (5)

Therefore (�
(2)

k +Rk)
�1 is the exact propagator in presence of the infrared cuto� Rk

and the ow equation (4) takes the form of the scale variation of a renormalization
group-improved one-loop expression [22]. We emphasize that the evolution equation
is fully nonperturbative and no approximations are made. A simple proof can be
found in [21]. The exact ow equation (4) can be shown to be equivalent with earlier

versions of \exact renormalization group equations" [23] and it encodes the same
information as the Schwinger-Dyson equations [24].

An exact nonperturbative evolution equation is not yet su�cient for an investi-
gation of nonperturbative problems like high-temperature �eld theories. It is far too
complicated to be solved exactly. For practical use it is crucial to have a formula-

tion that allows to �nd reliable nonperturbative approximative solutions. Otherwise
speaking, one needs a description of �k in terms of only a few k-dependent couplings.
The ow equations for these couplings can then be solved numerically or by analyt-
ical techniques. It is on the level of such truncations of the e�ective average action
that suitable approximations have to be found. In this respect the formulation of the
e�ective average action o�ers important advantages: The average action has a simple

physical interpretation and eq. (4) is close to perturbation theory if the couplings are
small. The formulation is in continuous space and all symmetries - including chiral
symmetries or gauge symmetries [6] - can be respected. Since �k has a representa-
tion as a functional integral, alternative methods (di�erent from solutions of the ow

equations) can be used for an estimate of its form. Furthermore, the ow equation (4)

is directly sensitive to the relevant infrared physics since the contribution of particles
with mass larger than k is suppressed by the propagator on the r.h.s. of eq. (4). The

closed form of this equation does not restrict one a priori to given expansions like
in 1PI n-point functions. In addition the momentum integrals in eq. (4) are both

infrared and ultraviolet convergent if a suitable cuto� Rk is chosen. Only modes in

the vicinity of q2 = k2 contribute substantially. This feature is crucial for gauge the-
ories where the formulation of a gauge-invariant ultraviolet cuto� is di�cult without
dimensional regularization.



3. The Running Gauge Coupling

We are now ready to discuss the running of the three-dimensional gauge coupling.

We start from the e�ective average action for a pure SU(Nc) Yang-Mills theory. It

is a gauge-invariant functional of the gauge �eld A and obeys the exact evolution

equation [6] (with Tr including a momentum integration)

@

@t
�k[A] =

1

2
Tr

(
@Rk[A]

@t

�
�
(2)

k [A] + �
gauge(2)

k [A] +Rk[A]
�
�1
)
� �k[A] : (6)

Here �
gauge(2)

k [A] is the contribution from a generalized gauge-�xing term in a covariant

background gauge and �k[A] is the ghost contribution [6]. The infrared cuto� Rk is in

general formulated in terms of covariant derivatives. We make the simple truncation

�k[A] =
1

4

Z
ddxZF;kF��F

��

�gauge
k [A; �A] =

1

2�

Z
ddxZF;k(D�[ �A](A

� � �A�))2 (7)

with background �eld �A and �
gauge(2)

k [A] = �
gauge(2)

k [A; �A = A]. In d dimensions
the gauge coupling ĝ appearing in F�� and D� is a constant independent of k. The
e�ective k-dependent coupling can be associated with the dimensionless renormalized
gauge coupling

g2(k) = kd�4�g2d(k) = kd�4Z�1
F;k ĝ

2 : (8)

The running of g2 is related to the anomalous dimension �F

�F = � @

@t
lnZF;k

@g2

@t
= �g2 = (d� 4)g2 + �F g

2 : (9)

Evaluating (6) for con�gurations with constant magnetic �eld and � = 1 it was found
[6] to obey approximately4

@g2

@t
= (d� 4)g2 �

44

3
Ncvdadg

4

1� 20

3
Ncvdbdg2

(10)

with

v�1d = 2d+1�
d

2�

 
d

2

!

ad =
(26� d)(d � 2)

44
nd�41

bd =
(24� d)(d � 2)

40
ld�21 : (11)

4In lowest order in the �-expansion [25] the denominator in the last term is absent and v3a3 is
replaced by v4a4.



Only the momentum integrals (x � q2)

nd1 = �1

2
k�d

Z
1

0
dx x

d

2

@

@t

 
@P

@x
P�1

!

ld1 = �1

2
k2�d

Z
1

0
dx x

d

2
�1 @

@t
P�1 (12)

depend on the precise form of the infrared cuto� Rk appearing in

P (x) = x+ Z�1
k Rk(x) : (13)

In four dimensions one has a4 = 1; v4 = 1=32�2 and eq. (10) reproduces the one-loop

result for �g2 in lowest order g4. For the choice of Rk of [6] where b4 = 1 an expansion

of eq. (10) in powers of g2 also gives 93 % of the perturbative two-loop coe�cient.

We observe that the approximations leading to (10) are valid only for j�F j < 1. For

larger values of j�F j we use a rougher estimate where bd is set to zero.
Concerning the high-temperature �eld theory we should use the three-dimensional

�-function for k < kT , where kT = 2�T is the scale where the three-dimensional

running sets in. The \initial value" of the gauge coupling reads g2(kT ) = 2�w(kT )
with �w � 1

30
the four-dimensional weak �ne structure constant. For k < kT the

three-dimensional gauge coupling increases with a power behavior instead of the four-
dimensional logarithmic behavior. The three-dimensional con�nement scale �

(3)

conf -
where g2 diverges - is proportional to the temperature. Similarly, we may de�ne

(somewhat arbitrarily) the scale knp where nonperturbative e�ects become important
by j�F (knp)j = 1. For the electroweak theory and the choices (13) P (x) = x + k2

(P (x) = x=(1� exp� x
k2
)) one �nds [6]

�
(3)

conf = 0:14T (0:12T )

knp = 0:35T (0:31T ) : (14)

For the symmetric phase of the electroweak theory one therefore has to deal with
a strongly interacting gauge theory with typical nonperturbative mass scales only
somewhat below the temperature scale! Similar to QCD one expects that conden-

sates like <FijF
ij > play an important role [6-8]. More generally, the physics of

the symmetric phase corresponds to a strongly coupled SU(2) Yang-Mills theory in

three dimensions: The relevant excitations are \W -balls" (similar to glue balls or

strongly interacting W -bosons) and scalar bound states. All \particles" are massive

(except the \photon") and the relevant mass scale is set by �
(3)

conf � T . For the W -

boson masses we expect typical masses between knp and �
(3)

conf (cf. (14)). Also the
values of all condensates are given by appropriate powers of the temperature. Since

the temperature is the only scale available the energy density must have the same

T -dependence as for an ideal gas

� = cT 4 (15)



Only the coe�cient c should be di�erent from the value obtained by counting the

perturbative degrees of freedom5. We expect that quarks and leptons form SU(2)

singlet bound states similar to the mesons in QCD6. A chiral condensate seems,

however, unlikely in the high-temperature regime and we do not think that fermions

play any important role for the dynamics of the electroweak phase-transition. The

\photon" (or rather the gauge boson associated to weak hypercharge) decouples from

the W -balls. Its e�ective high temperature coupling to fermion and scalar bound

states is renormalized to a very small value. As for the phase with spontaneous

symmetry breaking, the fermions and \photon" can be neglected for the symmetric

phase. We conclude that the high-temperature phase-transition of the electroweak

theory can be described by an e�ective three-dimensional Yang-Mills-Higgs system.

It is strongly interacting in the symmetric phase. Depending on the value of the mass

of the Higgs boson it may also be strongly interacting in the phase with spontaneous

symmetry breaking if the temperature is near the critical temperature. A more

detailed investigation of this issue will be given in the next section.

4. Renormalization Group improved E�ective Potential for
the Electroweak Phase-Transition

For an approximate study of the electroweak phase-transition we will now investigate

a three-dimensional SU(2)-Higgs model [8]. It is related to the full electroweak theory
at high temperatures by setting the U(1)Y -coupling to zero and integrating out the
non-static modes of all �elds as well as all modes of the 0-component of the gauge-
�eld. For an extensive discussion of this procedure, see [13]. We will work with the
truncation

�k
h
';A�; �A�

i
=

Z
ddx

�
Uk(�) + Z';kjD�'j2 +

1

4
ZF;kF��F

��

+
1

2�
ZF;k

�
D�[ �A](A

� � �A�)
�2�

(16)

and a simple truncation in the ghost sector [6]. Here � = 'y' and group indices
are omitted. The form of the average potential Uk(�) is left arbitrary and has to be
determined by solving the ow equation. For the Abelian Higgs model the evolution
equation for the average potential was computed in the approximation (16) in ref-

erence [6]. Inserting the appropriate SU(2) group factors we obtain in the Landau

gauge (� = 0), with t = ln k

@

@t
Uk(�) =

1

2

Z
d3q

(2�)3
@

@t

�
6 ln

�
q2 + k2 +m2

B

�
+

+ ln
�
q2 + k2 +m2

1

�
+ 3 ln

�
q2 + k2 +m2

2

��
(17)

5A similar remark also applies to high temperature QCD. We expect quantitative modi�cations
of early cosmology due to the di�erence between c and the ideal gas value.

6We use here a language appropriate for the excitations of the three-dimensional Euclidean
theory. Interpretation in terms of relativistic particles has to be used with care!



where the mass terms read

m2
B =

1

2
Z';k�g

2
3� ; m

2
1 = (U 0

k(�) + 2�U 00

k (�)) =Z';k ; m
2
2 = U 0

k(�)=Z';k: (18)

We have used here a masslike infrared cuto� Rk = Zkk
2. The partial derivative @

@t

on the right hand side of (17) is meant to act only on Rk and we omit contributions

arising from the wave function renormalization Zk in Rk. Primes denote derivatives

with respect to �.

This ow equation7 constitutes a nonlinear partial di�erential equation for the

dependence of U on the two variables k and �. In our case it holds for the three

dimensional potential U3 and a correspondingly normalized scalar �eld �3. They are

related to the usual four dimensional quantities by U3 = U4=T , �3 = �4=T . Equation

(17) is the basic equation of this section and has to be supplemented by corresponding

equations for the k-dependence of �g23 and Z'. For given initial conditions at kT we aim

for a solution for k ! 0 in order to compute the free energy U0. The gauge coupling
in (18) stands for the three dimensional running renormalized gauge coupling �g23(k).
Its value at the scale kT is given by

�g23(kT ) = g24(kT )T

 
1� g24(kT )T

24�mD

!
(19)

where

m2
D =

5

6
g24(kT )T

2 (20)

accounts for the e�ects of integrating out the A0 mode in lowest order [13]. The
evolution equation for the running gauge coupling in the pure Yang-Mills theory has
been given above (eq. (10)), and reads in lowest order

@

@t
�g23 = �g2 = �

23�

24�
�g43(k)k

�1 : (21)

The deviation of � from one accounts for the small contributions of scalar uctuations

which are not included here8. Equation (21) is easily solved,

1

�g23(k)
=

1

�g23(kT )
+

23�

24�

�
1

kT
� 1

k

�
(22)

7The ultraviolet divergence on the right hand side of equation (17) is particular to the use of a
masslike infrared cuto�. For d = 3 it concerns only an irrelevant constant in U and is absent for
@U 0=@t.

8For a suitable choice of wave function renormalization constants in the infrared cuto� for the
gauge bosons the lowest order result becomes independent of the gauge parameter � and can there-
fore be used for the Landau gauge employed here.



and yields the con�nement scale (cf. eq.(14)) in lowest order

�
(3)

conf =

 
1

kT
+

24�

23��g23(kT )

!
�1

: (23)

Furthermore, we will need the anomalous dimension of the scalar �eld. For our

purpose it can be approximated by [6]

�' = �
@ lnZ'

@t
= � 1

4�
�g23(k)k

�1 (24)

and we set Z' = 1 for k = kT .

A convenient quantity for an investigation of the e�ective potential is the �-

dependent quartic coupling

��3;k(�) = U 00

k (�) =
@2U3;k

@�32
: (25)

Knowing for k = 0 the function ��3(�) = ��3;0(�), the high temperature e�ective
potential U(�) = U0(�) can be reconstructed by integration and translation to a four
dimensional normalization. One of the two integration constants is irrelevant and the

other (the mass term linear in �) can be found by adapting U(�) to the perturbative
result for large � where the three-dimensional running of the couplings is irrelevant.

The evolution equation for the k-dependence of ��3(�3) can be inferred from (17)
by di�erentiating twice with respect to �3 and reads

@��3;k(�3)

@t
=

3

32�

 
Z2
';k�g

4
3;kk

2

(k2 +m2
B)

3=2
+
6Z�2

';k
��23;k(�3)k

2

(k2 +m2
1)

3=2
+
2Z�2

';k
��23;k(�3)k

2

(k2 +m2
2)

3=2

!
(26)

where we have neglected terms / U
(3)

k (�3) and U
(4)

k (�3). We report here on an ap-
proximate solution of the ow equation for ��3(�3) for k = 0 [8]. It is based on the

observation that the �3-dependent mass termsm2
B,m

2
1, and m

2
2 act in equation (17) as

independent infrared cuto�s in just the same way as k2. A variation of m2 for k2 = 0
is roughly equivalent to a variation of k2 at m2 = 0. We use this observation to trans-
late the ow equation (26) into a renormalization group equation for ��3(�3) at k = 0:

In equation (26) we replace @
@t

by @
@t0

= mB
@

@mB

and the factors k2 (k2 +m2)
�3=2

by

m�1. We can then work with a new e�ective infrared cuto� k0 = mB which is a

function of �3 (we omit the prime on k in the following),

k2 = m2
B =

1

2
Z'(k)�g

2
3(k)�3: (27)

This procedure transforms equation (26) into a simple di�erential equation for ��3(�3) =
��3(k(�3)). In terms of the renormalized coupling

��R(k) = Z�2
' (k)��3(k) (28)



it reads9

@

@t
��R(k) =

3

32�k

�
�g43(k) +

�p
6 +

p
2
�
��
3=2
R (k)�g3(k)

�
� 1

2�k
�g23(k)

��R(k): (29)

For the terms / 1

m1

and / 1

m2

from equation (26) we have approximated in (18)

U 0(�3) ' �3��R(�3) which amounts to neglecting the mass term. For negative ��R(k)

our approximation does not describe properly the e�ect of the scalar uctuations.

Since their contribution is small in this region we simply omit the terms / ��
3=2
R once

��R(k) becomes negative.

In order to solve the ow equation (29) we need an initial value ��3(kT ), in addition

to (19). This will depend on the (zero temperature) scalar mass MH . Furthermore,

the �-integration of (25) leads to a term ��2(T )�3 with the temperature dependent

mass term �2(T ) as an integration constant. The values of ��3(kT ) and �
2(T ) describe

how a given four-dimensional model at T > 0 translates into an equivalent three-

dimensional one. They can be �xed by the observation that for large �, such that
m2

B(�) > k2T , the one-loop expression for the e�ective potential [26]

~U3(�3) = ��2(T )�3+
1

2

�
��3 +���3

�
�3

2� 1

12�

�
6m3

B+3m3
E+ �m3

1+3 �m3
2

�
(30)

should be a good approximation. Here the masses are given by �m2
1 = 3��3�3 � �2(T ),

and �m2
2 =

��3�3 � �2(T ), and we set Z' = 1. Also the correction

���3 =
3�g43

64�2T

 
1 +

p
6 +

p
2

8

M3
H

M3
H

!
(31)

is chosen such that ��3 = ~U 00

3 (8�
2T 2=�g23(kT )). High temperature perturbation theory

to one loop with the A0 integrated out leads then to the initial value

��3(kT ) =
1

4
g24(kT )T

M2
H

M2
W

� 3g44(kT )T
2

64�mD

����3 : (32)

We observe that the inclusion of two-loop e�ects or fermions will change the relation
between ��3(kT ) and MH . This leads to a rescaling between the scalar mass quoted
in this work and the true physical mass. The mass term �2(T ) has in two-loop

perturbation theory the genuine temperature dependence

�2(T ) = �M2
H � T 2 + �T 2 ln

T

MW

: (33)

Here � and  are independent of T 10. They depend, however, on the regularization

scheme and this is particularly important for  as indicated already by a possible

9A more formal justi�cation for eq. (29) can be found in [8].
10To one loop order one has (Ao integrated out, no quarks, �w =

g2
4
(kT )

4�
)

� =
1

2
;  =

�

4
�w

�
3�

3mD

�T
+

M2
H

M2
W

�

and no T 2 ln T term.



change of scale in the ln T -term. Some care is needed for the proper comparison

between three- and four-dimensional lattice regularizations, high temperature per-

turbation theory in various versions and our renormalization group approach. The

most reliable way of comparison seems to us to equate renormalized quantities in the

various approaches. A good candidate for �xing � and  seems to be the expectation

value �0(T ) at two di�erent temperatures T1 and T2
11.

Combining equations (25), (27), (28) and (29) with ow equations for �g23 and

�', we can compute the �3-dependence of the high temperature e�ective potential

as a solution of the ow equation. It is interesting to note that except for the last

term arising from the anomalous dimension, eq. (29) can also be directly obtained

by taking appropriate derivatives of the one loop formula (30), treating mass ratios

such as mB=m1 as k-independent and replacing at the end the couplings �g23 and ��3
by running couplings evaluated at the scale k. For Z' = 1 and �g23,

��3 independent of

k equation (29) reproduces exactly the one loop result. Our renormalization group

improvement enables us to include the e�ects of running couplings and the anomalous
dimension. This should reproduce a large part of the two-loop corrections and also
higher contributions. The main changes as compared to the 1-loop calculations can be
understood from the corresponding di�erential equations: The inclusion of �' lowers

the scale at which U 00 changes sign, whereas the running of the gauge coupling acts
the opposite way. Thus at a given k, corresponding to a given �3, the running of �g23
makes the potential bend up less than the 1-loop calculation predicts. The inclusion
of the term / ��

3=2
R �g3 will have the same e�ect but is quantitatively important only

for a large scalar mass.

Translated to the e�ective potential the running of �g23 should strengthen the phase-
transition and lower the critical temperature as compared to the one-loop result. This
is what one would naively expect, since the �rst order character of the transition is due
to the gauge-boson loops. Thus, enhancing the coupling should give a transition more
strongly �rst order. On the other hand, non-perturbative condensation phenomena

may have the opposite e�ect. Also the inclusion of the anomalous dimension �'
weakens the transition. To estimate the precise e�ects of the running of the couplings
on the shape of the potential we proceed to a numerical investigation of equations

(10), (24), and (29). (For all numerical work we use g4 = 2=3, Mw = 80:6 GeV,
and � = 1.) Additional e�ects from condensation phenomena will be qualitatively
discussed and added later. In �g.s 2, 3 and 4 we show the e�ective potential as

obtained with our method for di�erent temperatures and masses of the Higgs scalar.

In all plots we use four dimensional quantities and plot �U = U4(�) � U4(0) versus

11Here T1;2 should be su�ciently below the critical temperature such that the potential minimum
occurs in a region of � where two-loop perturbation theory is reliable. For purposes of comparison
with three-dimensional lattice results we have chosen � and  such as to obtain the same �0(T1;2)
as in two-loop perturbation theory, with T1 and T2 in a region where lattice data and perturbation
theory are in good agreement for the prediction of the location of the potential minimum.
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Figure 2: The e�ective potential for MH = 80 GeV with possible contributions
from condensation phenomena. All curves are at their respective critical tem-
perature. The curve denoted by (1) is the potential without nonperturbative
e�ects (a = 0, Tc = 172:8 GeV). The other curves correspond to the critical
temperature obtained by lattice simulations [16], Tc = 167:7 GeV, and the fol-
lowing values of the parameters for the nonperturbative e�ects:
(2) - a = 0:2928, b = 3, c = 1:1, � = 1 (solid line);
(3) - a = 0:2885, b = 3, c = 1, � = 2 (long dashed line);
(4) - a = 0:305, b = 1, c = 1, � = 1 (short dashed line);
(5) - a = 0:3005, b = 1, c = 1, � = 2 (dotted line).
The lower dashed-dotted line gives the perturbative potential at the lattice-

critical temperature.

� =
p
�4. The �rst dashed-dotted curve in �gure 2 (denoted by (1)) corresponds to

the critical temperature which would be obtained from our renormalization group-

improved approach, neglecting condensation e�ects. The second dashed-dotted curve

in �gure 2 gives the analogous result for a temperature corresponding to the critical
temperature inferred from lattice simulations [16]. We will now discuss possible

alterations due to nonperturbative condensates and demonstrate how they could lead
to agreement between our method and lattice results.

The e�ective potential shown in �gures 2 through 4 is expected to be rather

reliable for large enough values of � where the e�ective gauge coupling is not yet too



strong. On the other hand, the truncation (16) becomes insu�cient for large g and

we expect important modi�cations for � < �np, where (eq.s (14) and (27))

�np =

 
2k2npT

Z'(knp)�g
2
3(knp)

! 1

2

j�F (knp)j = 1 : (34)

In fact, the ow equations (10), (26) do not account for e�ects like theW -condensation

mentioned in the preceding section. An easy way to visualize the relevance of such ef-

fects is the introduction of a composite SU(2)-singlet �eld � for the description of con-

densation phenomena in the gauge sector. For example, one may choose � / FijF
ij

or some other (properly regularized) operator. Condensation phenomena are then

described by the vacuum expectation value �0. With an appropriate normalization

of � they give a contribution to the free energy

�U3 = �3
0 ; �U = �3

0T : (35)

For � = 0 the only available scale is knp / T , and therefore �0 = aknp. The
dimensionless coe�cient a is expected of order one since the gauge coupling grows

very rapidly for k < knp and there is not much di�erence between knp and �
(3)

conf

(c.f. eq. (14)). It is also clear that the value of �0 must depend on �: For large
� condensation phenomena should be essentially absent since the gauge coupling
remains small. We will parameterize the �-dependent condensation e�ects by an
additional contribution to the free energy

�U = �
"
aknpf

 
g2(k)

g2np

!#3
T (36)

where f describes how �0 depends on the e�ective gauge-coupling, with f(z !1) =
1 and f(z) vanishing rapidly for z � 1. As an example we take

f(z) =
2

�
arctan

�
�

2
b(z � c)�

�
(37)

for z > c and f = 0 otherwise. Here c indicates for which g2 the condensation sets in,

and b is a measure how fast the condensation phenomena build up. The �-dependence
of �U arises indirectly through the �-dependence of g via the identi�cation (27).

Condensation phenomena lower the free energy around the origin (� = 0) and
therefore lead to a lower critical temperature [7, 8]. This is consistent with the fact

that the critical temperature computed without �U comes out systematically higher

than found in lattice simulations. One may even use the lattice results for Tc to

give a rough estimate of the coe�cient a. Employing (36),(37) with b = c = 1 we

have adapted a such that the critical temperature coincides with the central values



from lattice simulations. This yields a � 0:3 for the simulation of [16] at MH = 80

GeV. An attempt for an estimate of the size of condensation e�ects for MH = 35

GeV yields a � 0:38 [17]. Since the condensation e�ects are mainly related to the

gauge �eld degrees of freedom and also the scalar contribution to the running of g2

is small one expects a to be independent of MH in a �rst approximation [8]. This

conjecture seems to be consistent within the large uncertainties of the quoted values.
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Figure 3: As �gure 2, but with MH = 35 GeV.
(1) - a = 0, T = 94:61 GeV (dashed-dotted line);
(2) - a = 0:2928, b = 3, c = 1:1, � = 1, T = 94:13 GeV (solid line);

(3) - a = 0:2885, b = 3, c = 1, � = 2, T = 94:16 GeV (long dashed line);
(4) - a = 0:305, b = 1, c = 1, � = 1, T = 94:08 GeV (short dashed line).
(5) - a = 0:3005, b = 1, c = 1, � = 2, T = 94:10 GeV (dotted line).
The curve denoted by (6) corresponds to the value of a as obtained from lattice
simulations for MH = 35 GeV [17]:
(6) - a = 0:381, b = 1, c = 1, � = 1, T = 93:62 GeV (solid line).

For � = 0 we note that �0 roughly equals the three-dimensional con�nement scale

for a � 0:3 � 0:4. Comparison with the curves for a = 0 (dashed line in �gure 2)
demonstrates the importance of the nonperturbative phenomena for MH = 80 GeV.

Our lack of quantitative knowledge of the condensation phenomena is reected by

the di�erence of the curves for � = 1 and 2 and b = 1 and 3. For � = 2 (curves (3)



and (5) in �gure 2), �U gives no contribution to the massterm at the origin and we

observe the minimum at � > 0 even for the \symmetric" phase. This would lead to

an e�ective magnetic mass as described earlier in the context of gap-equations [18].

For MH = 80 GeV we observe that condensation phenomena may weaken or

strengthen the phase transition, depending on the values of � and b. As a general

tendency we observe that for a fast onset of the condensation (large b) the phase

transition becomes weaker than one would expect from perturbation theory (compare

curves (1) and (2)). In �g. 3 we give for comparison the potential at the critical

temperature for MH = 35 GeV, with the same parameters a, b, c, and � as in �gure

2. In addition, we also present a curve for a = 0:381 (denoted as (6) in the �gure) [17].

For such a low value of the scalar mass one expects perturbation theory to be rather
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Figure 4: As �gure 2, but for MH = 140 GeV. Here only the curves corre-
sponding to the critical temperatures with nonvanishing condensation e�ects
are given. The dashed-dotted lines give the potential at the respective temper-
atures neglecting condensation phenomena. The parameters are:
(1) - a = 0:2928, b = 3, c = 1:1, � = 1, T = 228:5 GeV (solid line);
(2) - a = 0:2885, b = 3, c = 1, � = 2, T = 228:5 GeV (long dashed line);
(3) - a = 0:305, b = 1, c = 1, � = 1, T = 234:3 GeV (short dashed line).
(4) - a = 0:3005, b = 1, c = 1, � = 2, T = 231:5 GeV (dotted line).
For the choices of parameters corresponding to (1) and (2), the transition has
changed to an analytical crossover.



reliable. This is con�rmed by the fact that the critical temperature Tc and the

location of the minimum �0(Tc) depend only very moderately on the condensation

e�ects. Only the barrier height, related to the surface tension, depends substantially

on a, being nevertheless almost independent of the precise form of f as encoded in

b, c, and �. For a �xed temperature the condensation e�ects inuence the shape of

the potential only for ��< 40 GeV, far away from the location of the minimum. The

strength of the transition increases with a, independent of the shape of f .

Finally, we also try an extrapolation to larger values of the scalar mass, as shown

in �gure 4 for MH = 140 GeV. At the critical temperature the shape of the potential

now depends very strongly on the shape of f and an understanding of the conden-

sation phenomena becomes crucial even for the qualitative picture. We observe that

all curves for a � 0:3 have for the symmetric phase a minimum at �0 > 0. As b is

increased, this minimum moves toward the minimum corresponding to the phase with

spontaneous symmetry breaking. For the curve with � = 1, b = 3 the two minima

have already melted and there remains no true phase transition (solid line). For this
form of f one would predict an analytical crossover for MH = 140 GeV. This illus-
trates the speculation [6] that, as a function of MH , the critical line corresponding to
the �rst order transition ends at some value MH;c. For this critical value of the scalar

mass the phase transition would have to be of second order12, with vanishing scalar
mass at the critical temperature. By accident, this situation is realized approximately
for � = 2, b = 3 (i.e. MH;c � 140 GeV in this case). It would be very interesting to
know the true value of the critical Higgs-mass!

Comparing �gures 2, 3, and 4 we have learned that the importance of non-

perturbative condensation e�ects strongly increases with MH . We conclude that
perturbation theory can only give a realistic description of the phase transition for a
small scalar mass, whereas the nonperturbative e�ects are of crucial importance for
the understanding of the electroweak phase transition for realistic values of the scalar
mass.
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