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Abstract

A numerical study of static, spherically symmetric monopole solutions of a sponta-
neously broken SU(2) gauge theory coupled to a dilaton field is presented. Regular
solutions seem to exist only up a maximal value of the dilaton coupling. In addition
to the generalization of the 't Hooft-Polyakov monopole a discrete family of regular
solutions is found, corresponding to radial excitations absent in the theory without
dilaton.
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The aim of this paper is to present a detailed numerical study of classical solutions of an SU(2)
Yang-Mills-Higgs (YMH) theory coupled to a (massless) dilaton (DYMH), when the Higgs field
is in the adjoint representation. Dilaton fields appear naturally in low energy effective field
theories derived from superstring models [1, 2, 3]. As previous studies have already shown [4, 5]
the inclusion of a dilaton in a pure Yang-Mills (YM) theory has drastic consequences already
at the classical level. In particular the dilaton Yang-Mills (DYM) theory possesses finite energy
‘particle-like’ solutions which are absent in the pure YM case. The same phenomenon happens in
the Einstein-Yang-Mills system where non-singular finite energy solutions have been discovered
some time ago [6].

The above YMH model without a dilaton field is known to possess nonsingular, finite energy
solutions, describing magnetic monopoles [7]. In the present work we study static, spherically
symmetric solutions of the DYMH theory. Our results show a striking similarity to those ob-
tained in the corresponding YMH theory coupled to gravity (EYMH) [8]. In the DYMH theory
there is a finite energy abelian solution for all values of the dilaton coupling . Based on nu-
merical investigations there is a strong indication for the existence of a finite energy nonabelian
monopole up to only a maximal value of «, ;. The nonabelian monopole merges with the
abelian one at a critical value of «, .. In limit when the dilaton decouples the nonabelian
solution joins smoothly the 't Hooft-Polyakov monopole. If the Higgs self coupling, 3, is in the
interval [0,0.6] oy, (83) and a.(B) are different and with close analogy to the EYMH theory there
are two different solutions if a, < a < an.

In addition to the ‘fundamental’ monopole there is good numerical evidence that a countable
family of globally regular solutions exits for 0 < o < v/3/2 independently of 3. As their energy
is higher they can be interpreted as excitations of the fundamental monopole. In the limit
when the dilaton filed decouples their energy diverges. There is another limit when the DYMH
theory reduces to the DYM model and then these excitations tend to the solutions discovered
in refs. [4, 5].

The action of our model is given by
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where a = 1,2,3, and the Higgs potential is

V(®) = %(qﬂqﬂ —v?)2. (2)

The couplings of the scalar field ¢ has been chosen so that the action (1) possesses the following
dilatational symmetry
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which can be used to fix the value of ¢ arbitrarily at any point. With the
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rescaling of variables the only remaining dimensionless parameters are
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where My, = vg and My = vV/\ are the characteristic masses of the theory. Without further
restrictions one can assume « > 0. Let us mention here that the action of the DYMH theory

2



(1) can be obtained from the Einstein-Yang-Mills-Higgs action by restricting the metric to the
special conformstatic form ds? = e*?dt? — e 2%dz’da’.
We use the minimal static spherically symmetric ansatz with zero ‘electric’ field

Ajg=0, A= €aij 3 Wr)—1), (6a)
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After the rescaling (4) the action (1) reduces to
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using the ansatz (6). Varying (7) we obtain the equations of motion:
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Solutions regular at the origin must satisfy the following boundary conditions (b.c.):
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i.e. there is a three parameter (a, b, po) family of regular solutions at » = 0. The local existence
can be proved following the procedure discussed in [9]
For » — oo the corresponding ‘regular’ b.c. are

d 1
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parametrized by (¢eo, d, B, C'), where y = e~ %%, p =r + adlnr. For > 2 we cannot fully
parametrize the stable manifold at r = co. Exploiting the virial theorem and using Egs. (8), (9)
and (10) one obtains for the energy (7)

[e.o]
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We discuss first an exact two parameter family of solutions of Egs. (8) which is going to
play an important role in our further analysis, since it descibes the asymptotic behaviour of
nonabelian solutions. Consider the singular abelian monopole, W = 0, H = 1 then the general
solution of (8) takes the form

1 1 . 1 o
Pa = —aln |Z smh(A(M + ;))| (12)
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Figure 1: The o dependence of the fundamental monopole solution for § = 0

with A2, M € R. For M > 0 and A real it is regular for all 7 > 0. Its energy, E Eq. (7), is
infinite unless A = 0. For A = 0 the total energy of the solution (12) is finite, E = M/a. When
M < 0 and A is real the solution is singular at » = —aM and the energy diverges. If A is
imaginary for any value of M the solution becomes singular at some r > 0.

Using the dilatational symmetry (3) from now on we set ¢ = 0. Note that then the energy
scales as E' — exp(—aws ) E. The finite energy abelian solution for ¢, = 0 reads

1 Q
p=——In(l+),
o r

and its energy is simply F = 1/a. It satisfies the following first order differential Eq.
r2¢ = +e2¥ (13)

which is derivable from a Bogomolny type bound [5] in the background W =0, H = 1.

The asymptotic behaviour of finite energy nonabelian solutions is described by (12). With
the help of Eq. (11) we arrive at the following useful formula for the total energy of globally
regular nonabelian solutions:

Jop écosh(A/M) , (14)

where A, M are parameters of ¢, describing their asymptotic behaviour. For globally regular
solutions of (8) satisfying the b.c. (9), (10) the energy (7) is a monotonically increasing function
of the Higgs coupling # and monotonically decreases with the dilaton coupling «. (We remark
here that the condition ¢, = 0 is essential to prove these facts.)

We have numerically integrated a suitably desingularized version of Egs. (8) from r = 0 using
the b.c. (9). We set g to zero in order to have to vary only two parameters. By adjusting the
parameters a, b we suppressed the divergent modes in the asymptotic region according to (17).
The resulting solutions can then be transformed to satisfy ¢, = 0 by the dilatational symmetry
(3).

We found that there exist a fundamental nonabelian monopole solution for all § below a
maximal value of a, oy, which smoothly joins the 't Hooft-Polyakov monopole in the o« — 0
limit. Some solution curves for g = 0 are shown in Fig. 1. For the parameters see Table 1.

There is a critical a value, «., where the dilaton field becomes logarithmically divergent
while W and H tend to some nontrivial functions as can be seen on Fig. 1. After shifting ¢ to
0 the fundamental monopole tends to the finite energy abelian one as a — ae. For 32 < 0.06 a.
is seen to differ from ay, (see Table 2). It means that for a given « in the interval [a, oy ] there



Table 1: Table 2:

Parameters for the fundamental monopole solutions in Fig. 1 | 32 | Qe | O |

a a | b | b | @ E 0 1.39938 | 1.4083
0.0 0.33333333 | 0.16666666 | 0 0 0.02 | 1.37874 | 1.3803
0.1 0.33324422 | 0.16674419 | 0.050094 0.099853 0.03 | 1.36950 | 1.3702
0.2 0.33297626 | 0.16697893 | 0.100758 0.198827 0.04 | 1.36088 | 1.3612
0.5 0.33107418 | 0.16872021 | 0.262673 0.481732 0.043 | 1.35839 | 1.3586
0.7 0.32884174 | 0.17095758 | 0.387902 0.650049 0.05 | 1.35279 | 1.3529
0.8 0.32741363 | 0.17252229 | 0.460048 0.725582 0.06 QO 1.3452
1.0 0.32388447 | 0.17699856 | 0.638684 0.855180 0.07 QO 1.338
1.1 0.32176986 | 0.18029088 | 0.758343 0.907479 0.08 Q' 1.33
1.2 0.31944319 | 0.18485325 | 0.919110 0.950109 0.1 Q' 1.32
1.3 0.31705890 | 0.19195967 | 1.172960 0.981707 0.15 Q' 1.29
14 0.31657705 | 0.20987214 | 1.950448 0.999523 0.2 Qm 1.27
1.4088 | 0.31898696 | 0.21924215 | 2.582925 1.000092 1 Q' 1.11
14 0.32380520 | 0.22987901 | 5.289654 1.000000 4 O'm 0.98
1.39939 | 0.32402298 | 0.23025275 | 8.461582 1.000000 00 O'm 0.89

are two different nonabelian solutions with different energies. The function oy, () decreases
with increasing (3 from ay, (0) &~ 1.4088 to am,(00) = 0.89.

There also seems to exist a countable family of globally regular monopole solutions indexed
by the number zeros of W (r) for all # and 0 < o < v/3/2. They can be interpreted as radial
excitations of the fundamental monopole. In the o — 0 limit after a suitable rescaling they
can be identified with the previously discovered DYM solutions [4],[5]. We illustrate some of
these excited solutions with one and two zeros for a various values on Figs. 2 and 3, while the
corresponding parameters are listed in Table 3 and Table 4.

Table 3:

Parameters for the first excited monopole solution in Fig. 2
Q ‘ a ‘ a’b ‘ APoo ‘ a-F
DYM — 0.26083015 | 1.711412 | 0.8038078
0.05 0.66718265 | 0.26286356 | 1.731264 | 0.8507008
0.1 0.77749002 | 0.27004539 | 1.803886 | 0.8904364
0.2 0.99147112 | 0.30099818 | 2.170909 | 0.9448188
0.3 1.00351436 | 0.33435729 | 2.730953 | 0.9720677
0.5 0.77902186 | 0.37296818 | 3.994232 | 0.9932192
0.7 0.59081576 | 0.39281185 | 5.919563 | 0.9992733
0.8 0.51698205 | 0.39916099 | 8.207917 | 0.9999547
0.866 | 0.47164657 | 0.40215328 | 26.31413 1.0000000

When o — /3/2 for the excited solutions the dilaton diverges logarithmically again while
the zeros of W go rapidly to infinity, except for the innermost one. For v/3/2 < a < 1 there is
a surviving solution with a single zero of W and with divergent ¢ existing up to a = 1, where
W develops an extra divergent mode, so for a > 1 this solution is not expected to exist. There
also exists another type of limiting solution when the number of zeros of W goes to infinity for
all 0 < o < v/3/2 and the dilaton field diverges logarithmically.

If one shifts, however ¢ to 0 then all of the excited monopoles merge with the finite energy
abelian solution for v — 1/3/2. The fundamental and the excited monopoles up to six zeros are
plotted on Fig. 4. In order to better display the higher zeros of W we plotted /rWW. Notice
that the newer zeros appear nearer and nearer to the origin.
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Figure 3: The « dependence of the second excited monopole solution for 3 =0
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Figure 4: The fundamental and the first six excited monopole solutions for a = 0.2 and 3 =0



Table 4:

Parameters for the second excited monopole solution in Fig. 3
o a ‘ a’b ‘ QAP ‘ a-FE
DYM — 0.35351801 | 3.373903 0.96559852
0.05 | 6.0251373 | 0.36759603 | 4.169777 0.99251583
0.1 3.9102367 | 0.37450939 | 4.996143 0.99673418
0.2 2.0946637 | 0.37885368 | 5.999793 0.99882187
0.3 1.4148625 | 0.38161925 | 6.815222 0.99949621
0.5 0.85071037 | 0.38762800 | 8.666195 0.99993064
0.7 0.60036405 | 0.39522735 | 12.25580 0.99999862
0.8 0.51818563 | 0.39944391 | 17.77525 1.00000000
0.84 | 0.48948129 | 0.40111050 | 25.77133 1.00000000

The structure of the solutions can be understood from the linearization of the field equations
(8) around the abelian monopole (12). Using the

W =w(r), " (15)

o =a(r) + v,

variables, from the linearized field equations one finds for 1/M < a/r < 1/|A| (where @, =~

In(r/a)/a) that the solutions are well approximated by: 9 ~ eM7, h ~ M7 w ~ ele7
wherer = Inr and the ‘frequencies’ are
1 1
(1 _ 232 — 2
A= (=2 =51\ 1+4028%), A, = —5 £ /a? - 3/4. (16)

So we see that in this ‘middle’ region W oscillates with an amplitude decaying like 1/4/r. If
M — oo (i.e. «E — 1) this region streches out to infinity, while W has more and more zeros when
« < +/3/2. This behaviour is a similar to the one found in the DYM case in the interval where ¢
grows logarithmically. If & > 1 W we do not expect the corresponding solution to exist. In the
asymptotic region defined by r > |aAcoth(A/M)|, r > u~! (where p = |sinh(A/M)/A| and
Pa —é In 1) the linear corrections 3 # 0 are characterized by @) ~ eM7, w ~ e*w" h ~ ",
with
)\w = (07 _1)7

while h ~ e and \j, = (0;+1) for 8 = 0.

The energy of the solutions goes rapidly to 1 if the number of oscillations of W increases
(see Table 5). We have determined the energy of the solution by fitting the parameters A,

)\h = :l::u’ﬁ‘a )‘w = :I:,u, (17)

Table 5:

Parameters of the solutions for « = 0.2 and § = 0 in Fig. 4
n ‘ a ‘ b ‘ Voo ‘ a-FE

0 | 0.33297626 | 0.16697893 0.1007578 0.1988268

1 10.99147112 | 7.52495447 | 10.854544 0.9448188

2 | 2.09466373 | 9.47134195 | 29.998964 0.9988219

3 | 2.14396020 | 9.51995711 | 48.727339 0.9999720

4| 2.14545164 | 9.52111922 | 67.372640 0.9999993

5 | 2.14549487 | 9.52114737 | 86.014682 1.0000000

6 | 2.14549609 | 9.52114805 | 104.6566 1.0000000

M in Eq. (12) in the asymptotic region using formula (14). The energy determined this way
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Figure 5: « dependence of the energy of the fundamental, the first, and the second excited
monopole solutions, and its detailed view for the fundamental monopole near oy, for § =0
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Figure 6: Detailed view of the a dependence of the energy of the fundamental monopole solution
near oy, for 4% = 0.02 and for 3% = 0.043

contains only exponentially small corrections. We have also plotted the a dependence of the
energy, E(a), (rescaled to poo = 0) on Fig. 5 for § = 0. The similarity of Fig. 5 to Fig 3 in
Ref. [8] where the masses of gravitating monopoles are plotted as a function of the ‘gravitational
coupling strength’, Myy /Mpianck, is indeed striking. On Fig. 6 E(a) for 32 = 0.02 and 0.043 is
shown.

For not too large (3 values (5 < 3) aF of the fundamental monopole becomes larger than 1
unlike for the excited ones. For 3 = co this maximum is 1.

We make finally some remarks on the stability of the solutions. The ’t Hooft-Polyakov
monopoles are stable since they are solutions with minimal energy [10]. It is natural to expect
the fundamental monopoles to remain stable in the DYMH case for o > 0. For sufficiently small
0, however, where the mass of the fundamental monopole is larger than that of the abelian one,
the nonabelian solution is expected to become unstable against large perturbations. If o, # apy
there is a bifurcation point where the linear stability of the solutions can change. In the EYMH
case this change of stability has been shown in [11]. The excited monopoles are expected to be
unstable for all « since their energy is significantly larger than that of the fundamental ones.
This heuristic argument is strengthened by the fact that in the o — 0 limit their counterparts
are known to be unstable [5, 4].
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