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Abstract

We present generalized Rogers-Ramanujan identities which relate the fermi and bose

forms of all the characters of the superconformal model SM(2, 4ν). In particular we show

that to each bosonic form of the character there is an infinite family of distinct fermionic

q− series representations.

1. Introduction

Generalized Rogers-Ramanujan identities are identities between q−series which are

part of a very rich area of mathematics that includes:

1. q−series; 2. Partition identities;

3. Path space counting problems; 4. Modular functions;

5. Polynomial identities; 6. Conformal field theory;

7. Basic Hypergeometric Series; 8. Continued Fractions;

9. Dilogarithm identities;

10. Characters and branching functions of Kac-Moody algebras;

11. Solvable models of statistical mechanics;

12. Thermodynamic Bethe’s Ansatz;

13. Holonomic Differential equations.

It is almost a “folk theorem” that there is a 1−1 isomorphism between these concepts.

This multiplicity of connections is both a blessing in the number of insights provided to

mathematics and physics in the last 30 years and a curse in that the explanation of any

new result needs to be made in many different forms if it is to be intelligible to all those

interested in the subject. This general dilemma of presentation is well illustrated by the

historical background of the subject of this talk.

The history begins with the generalized Rogers-Ramanujan identities that relate sums

to products which are items 34 and 36 in the justly famous 1952 list of Lucy Slater [1]

∞
∑

k=0

(−q
1
2 )kq

k(k+2)
2

(q)k
=

(−q
1
2 )∞

(q)∞

∞
∏

k=1

(1 − q4k− 1
2 )(1 − q4k− 7

2 )(1 − q4k) (1.1)

and
∞
∑

k=0

(−q
1
2 )kq

k2

2

(q)k
=

(−q
1
2 )∞

(q)∞

∞
∏

k=1

(1 − q4k− 3
2 )(1 − q4k− 5

2 )(1 − q4k) (1.2)
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where we use the notation

(A)k =

{

∏k−1
j=0 (1 − Aqj) if k = 1, 2, · · ·

1 k = 0.
(1.3)

These identities were given a partition theoretic interpretation by Göllnitz [2] and Gor-

don [3] and this interpretation was soon thereafter generalized by Andrews [4] as the

following theorem:

Let ν and a be integers with 0 < a ≤ ν. Let Cν,a(n) be the number of partitions of n

into parts which are neither ≡ 2 (mod 4) nor ≡ 0,±(2a− 1)(mod 4ν). Let Dν,a(n) denote

the number of partitions of N of the form n =
∑∞

i=1 ifi with f1 + f2 ≤ a − 1 and for all

1 ≤ i

f2i−1 ≤ 1 and f2i + f2i+1 + f2i+2 ≤ ν − 1. (1.4)

Then Cν,a = Dν,a(n).

The corresponding generalization of the analytic result of Slater (1.2) was only given

by Andrews in 1975 [5]- [6] and the full generalization of Slater’s results was finally given

by Bressoud [7]–[8] who proved that for s = 1, 3, 5, · · · , 2ν − 1

∞
∑

n2,···,nν=0

(−q
1
2 )N2

q
1
2N2

2 +N2
3+···+N2

ν+ N(s+3)/2+N(s+5)/2+···Nν

(q)n2
(q)n3

· · · (q)nν

=
(−q

1
2 )∞

(q)∞

∞
∏

k=1

(1 − q2νk)(1 − q2νk− s
2 )(1 − q2νk− 4ν−s

2 )

(1.5)

where

Nk =
ν

∑

j=k

nj (1.6)

The passage from (1.1)–(1.2) to (1.5) goes through partition identities, path identities,

continued fractions, basic hypergeometric series and modular functions.

However many more extensions of these results are possible and the key to these

extensions is the identification of the identities (1.5) with the N = 1 superconformal field

theory SM(2, 4ν). This connection is made by using Jacobi’s triple product identity

∞
∑

j=0

zjqj2

=

∞
∏

j=0

(1 − q2j+2)(1 + zq2j+1)(1 + z−1q2j+1), (1.7)

to rewrite the product side of (1.5) as

(−q
1
2 )∞

(q)∞

∞
∑

j=−∞

(qj(8νj+4ν−2s)/2 − q(2j+1)(4νj+s)/2) (1.8)
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and using the identity

(z)N =
N

∑

j=0

[

N

j

]

q

zjqj(j−1)/2, (1.9)

where (for latter use) we use the slightly unconventional definition of the q-binomial coef-

ficient
[

l

m

]

=







(q)l

(q)m(q)l−m
if 0 ≤ m ≤ l

1 if m = 0, l ≤ −1
0 otherwise,

(1.10)

to rewrite the sum side of (1.5) as

∞
∑

m1,n2,···,nν≥0

q

m2
1

2 −m1N2+
∑ν

j=2
N2

j +
∑ν

j=
s+3
2

Nj

(q)n2
· · · (q)nν

[

N2

m1

]

q

. (1.11)

These expressions are to be compared with the bosonic form of the characters of the general

N = 1 superconformal model SM(p, p′) [10]

χ̂(p,p′)
r,s (q) = χ̂

(p,p′)
p−r,p′−s(q) =

(−qǫr−s)∞
(q)∞

∞
∑

j=−∞

(

q
j(jpp′+rp′

−sp)
2 − q

(jp+r)(jp′+s)
2

)

(1.12)

where

ǫa =

{

1
2

if a is even (Neveu-Schwarz (NS) sector)
1 if a is odd (Ramond (R) sector)

(1.13)

Here r = 1, 2, · · · , p− 1 and s = 1, 2, · · · , p′ − 1 and p and (p′−p)
2 are coprime. Thus we see

that (1.5) are the characters of the Neveu-Schwarz sector of the N = 1 superconformal

field theory SM(2, 4ν). The sum expression (1.11) is seen to be in the canonical form of a

fermionic representation of conformal field theory characters [11].

The question now naturally arises of what corresponds to the Andrews-Bressoud iden-

tities (1.5) in Ramond sector of the field theory and a partial answer to this was given by

Melzer [12] who found generalizations of (1.11) for Ramond characters with s = 2 and 2ν.

Recently the authors, in collaboration with W. Orrick, have used the methods which

were developed to prove polynomial and character identities for the minimal models

M(p, p+1) [13] to extend these results to all values of s in the Ramond sector [14]. Indeed,

it was found that there was not one but two generalizations of (1.11). But even more can

be done and subsequent investigation has revealed that in both the Neveu-Schwarz and

Ramond sectors there are an infinite number of fermionic forms for the characters. The

goal of this note is to present these results and to indicate their proof. In fact, we will go
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further and extend the character identities to the families of polynomial identities. Some

of these polynomial identities were presented for the first time in [14] and some of them

are new.

The plan of this note is as follows. In sec. 2 we will present both the recent results

of [14] and our subsequent generalizations. The character identities are given in (2.33)-

(2.35) and (2.37), (2.40). The most general polynomial identities are given in (2.42), (2.43).

In sec. 3 we will indicate how the new results can be obtained from the formalism of [14].

In sec. 4 we conclude with a few comments about the future direction of this research.

2. Polynomial and Character Identities

In this section we will separately define the polynomials which generalize the fermionic

and bosonic forms of the characters introduced in sec. 1. We will then present the relations

between these two forms which generalize the Andrews-Bressoud identities (1.5).

2.1. Fermionic Polynomials

In [14] the set of variables (~m,~n) were introduced which satisfy the relations

n1 + m1 =
1

2
(L + m1 − m2) − a1

n2 + m2 =
1

2
(L + m1 + m3) − a2

ni + mi =
1

2
(mi−1 + mi+1) − ai, for 3 ≤ i ≤ ν − 1

nν + mν =
1

2
(mν−1 + mν) − aν

(2.1)

where ni and mi are integers and the components ai of the vector ~a are either integers

or half integers. This system is closely related to the TBA equations for the XXZ-model

((3.9) of [15]) with anisotropy

γ = π
(2ν − 1)

4ν
. (2.2)

In terms of these variables we then introduce the following polynomials to generalize

the Fermi form of the characters (1.11)

F
(ν,n)
r′,s′ (L, q) =

∑

Dr′,s′

qQf+Lfn,s′

ν
∏

i=1

[

ni + mi

ni

]

q

(2.3)
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where the quadratic form Qf and linear form Lfn,s′ are

Qf =
m2

1

2
− m1N2 +

ν
∑

j=2

N2
j and Lfn,s′ = n

m1

2
+

ν
∑

l=ν−s′+1

Nl, (2.4)

the ranges of r′ and s′ are

r′ = 0, 1, 2, · · · , ν − 2 and s′ = 0, 1, 2, · · · , ν − 1, (2.5)

the relation between s′ and s is

s =

{

2ν − 2s′ if n is odd
2ν − 2s′ − 1 if n is even,

(2.6)

and the vector ~a is defined by

~a = ~a(r′) + ~a(s′)

a
(k)
i =

{

1
2
(δi,ν − δi,ν−k) for 0 ≤ k ≤ ν − 2

1
2 (δi,ν + δi,1) for k = ν − 1.

(2.7)

The domain of summation, Dr′,s′ is best described in terms of ~n and mν which are

subject to the constraint derived from (2.1)

L = (n1 + a1) + mν +

ν
∑

i=2

(2i − 3)(ni + ai). (2.8)

All other variables are given by

m1 = N2 − n1 (2.9)

mi = mν + 2
ν

∑

j=i+1

(j − i)(nj + aj), i = 2, 3, · · · , ν − 1. (2.10)

Keeping in mind that (from the definition (1.10))
[

neg. int.

0

]

q

= 1, (2.11)

we define Dr′,s′ for s′ ≥ r′ as the union of the sets of solutions to (2.8) satisfying

0 : ni, mν ≥ 0,

1 : nν = 0, mν = −2, n1, · · · , nν−1 ≥ 0,

2 : nν = nν−1 = 0, mν = −4, n1, · · ·nν−2 ≥ 0,

· · ·

r′ : nν = nν−1 = · · · = nν−r′+1 = 0, mν = −2r′, n1, · · · , nν−r′ ≥ 0;

(2.12)
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and for s′ < r′ the definition is the same as above with r′ → s′.

Using the asymptotic formula

lim
A→∞

[

A

B

]

q

=
1

(q)B
(2.13)

and the simple consequence of (2.1)

ni + mi = L + m1 + ni − 2
i

∑

j=2

(j − 1)(nj + aj) − 2
ν

∑

j=i+1

(i − 1)(nj + aj); i ≥ 2 (2.14)

along with (2.9), we find

lim
L→∞

F
(ν,n)
r′,s′ (L, q) = F

(ν,n)
s′ (q) (2.15)

which holds for all r′ where

F
(ν,n)
s′ (q) =

∑

m1,n2,···,nν≥0

qQf+Lfn,s′

(q)n2
(q)n3

· · · (q)nν

[

N2

m1

]

q

. (2.16)

2.2. Bosonic Polynomials

To generalize the bosonic character formula to a polynomial expression we introduce

the q−trinomial coefficients Tn(L, A; q
1
2 ) of Andrews and Baxter [16] defined in terms of

(

L, A − n; q

A

)

2

=
∑

j≥0

tn(L, A; j), n ∈ Z (2.17)

with

tn(L, A; j) =
qj(j+A−n)(q)L

(q)j(q)j+A(q)L−2j−A
(2.18)

as

Tn(L, A; q
1
2 ) = q

L(L−n)−A(A−n)
2

(

L, A − n; q−1

A

)

2

. (2.19)

These trinomial coefficients satisfy the recursion relations proven in [22] and [14]

Tn(L, A; q
1
2 ) = Tn(L − 1, A + 1; q

1
2 ) + Tn(L − 1, A − 1; q

1
2 )

+ qL−
n+1

2 Tn(L − 1, A; q
1
2 ) + (qL−1 − 1)Tn(L − 2, A; q

1
2 ).

(2.20)

We note the elementary property

Tn(L, A; q
1
2 ) = Tn(L,−A; q

1
2 ) (2.21)
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and remark that

Tn(L, A;−q
1
2 ) =

{

(−1)L+ATn(L, A; q
1
2 ) for n even

Tn(L, A; q
1
2 ) for n odd.

(2.22)

Consequently, Tn(L, A; q
1
2 ) is actually a polynomial in q for n odd or for n even and L+A

even, while for n even and L + A odd Tn(L, A, q
1
2 ) contains only odd powers of q

1
2 .

We then have the following definition of bosonic polynomials:

1) For the Neveu-Schwarz sector with n = 0

B
(ν,0)
r′,s′ (L, q) =

∞
∑

j=−∞

(−1)jqνj2+(s′+ 1
2 )j

(

T0(L, 2νj + s′ − r′; q
1
2 )

+ T0(L, 2νj + s′ + 1 + r′; q
1
2 )

)

;

(2.23)

2) For the Ramond sector with n = −1

B
(ν,−1)
r′,s′ (L, q) =

∞
∑

j=−∞

(−1)jqνj2+s′j
r′

∑

i=−r′

(−1)r′+iT1(L, 2νj + s′ + i; q
1
2 ). (2.24)

For other n ≥ 1 we define B
(ν,n)
r′,s′ from the recursion relation

B
(ν,n+2)
r′,s′ (L, q) = B

(ν,n)
r′,s′ (L + 1, q) + q−(n+1)/2B

(ν,n)
r′,s′ (L, q). (2.25)

Then using the relation ,which is derivable from (2.20),

T−n(L + 1, A; q
1
2 ) + q−(n+1)/2T−n(L, A; q

1
2 )

= T−(n+2)(L, A + 1; q
1
2 ) + T−(n+2)(L, A − 1; q

1
2 )

+ (q(n+1)/2 + q−(n+1)/2)T−(n+2)(L, A; q
1
2 )

(2.26)

we find, for example, for n = 1 in the Ramond sector

B
(ν,1)
r′,s′ (L, q) =

∞
∑

j=−∞

(−1)jqνj2+s′j

(

T−1(L, 2νj + s′ − r′; q
1
2 ) + T−1(L, 2νj + s′ + 1 + r′; q

1
2 )

+ T−1(L, 2νj + s′ − r′ − 1; q
1
2 ) + T−1(L, 2νj + s′ + r′; q

1
2 )

)

;

(2.27)

7



and for n = 2 in the Neveu-Schwarz sector

B
(ν,2)
r′,s′ (L, q) =

∞
∑

j=−∞

(−1)jqνj2+(s′+ 1
2 )j

(

T−2(L, 2νj + s′ − r′ − 1; q
1
2 ) + T−2(L, 2νj + s′ − r′ + 1; q

1
2 )

T−2(L, 2νj + s′ + r′ + 2; q
1
2 ) + T−2(l, 2νj + s′ + r′; q

1
2 )

(q
1
2 + q−

1
2 )[T−2(L, 2νj + s′ − r′; q

1
2 ) + T−2(L, 2νj + s′ + r′ + 1; q

1
2 )]

)

.

(2.28)

In general, B
(ν,n)
r′,s′ (L, q) polynomials are given in terms of T−n−trinomials.

Using the limiting formula

lim
L→∞

Tn(L, A; q
1
2 ) =











(−q
(1−n)

2 )∞+(q
(1−n)

2 )∞
2(q)∞

if L − A is even

(−q
(1−n)

2 )∞−(q
(1−n)

2 )∞
2(q)∞

if L − A is odd.

(2.29)

and noting the special case

lim
L→∞

T1(L, A; q
1
2 ) =

(−q)∞
(q)∞

(2.30)

we find the relation between the limit

B
(ν,n)
s′ (q) = lim

L→∞
B

(ν,n)
r′,s′ (L, q) (2.31)

and the characters (1.12)

B
(ν,0)
s′ (q) = χ̂

(2,4ν)
1,2ν−2s′−1(q)

B
(ν,1)
s′ (q) = B

(ν,−1)
s′ (q) = χ̂

(2,4ν)
1,2ν−2s′(q)

(2.32)

which holds for all r′.

2.3. Bose/Fermi Identities

In [14] we found the following relation between the fermi and bose forms of the char-

acters for n = 0,±1 :

1) For the Neveu-Schwarz sector with n = 0 we have (the original Andrews-Bressoud

identities (1.5))

B
(ν,0)
s′ (q) = F

(ν,0)
s′ (q); (2.33)

8



2) For the Ramond sector with n = 1

B
(ν,1)
s′ (q) =

{

F
(ν,1)
s′ (q) + F

(ν,1)
s′−1 (q) for s′ 6= 0

2F
(ν,1)
0 (q) for s′ = 0;

(2.34)

3) For the Ramond sector with n = −1

F
(ν,−1)
s′ (q) =

{

B
(ν,−1)
ν−1 (q) for s′ = ν − 1

B
(ν,−1)
s′ (q) + B

(ν,−1)
s′+1 (q) for s′ 6= ν − 1

(2.35)

or, equivalently

B
(ν,−1)
s′ (q) =

ν−1
∑

l=s′

(−1)l+s′

F
(ν,−1)
l (q). (2.36)

These results can be extended to all integers n as follows:

Neveu-Schwarz:

~F (ν,−2n)(q) =
1

(−q
1
2 )n

n
∏

j=1

K(ν,−2j) ~B(ν,0)(q) for n ≥ 1

~F (ν,2n)(q) = q−n2/2(−q
1
2 )n

n−1
∏

j=0

K−1(ν, 2j) ~B(ν,0)(q) for n ≥ 1

(2.37)

where we use the vector notation

~F
(ν,n)
r′ (L, q)|s′ = F

(ν,n)
r′,s′ (L, q) ~B

(ν,n)
r′ (L, q)|s′ = B

(ν,n)
r′,s′ (L, s) and

~F (ν,n)(q)|s′ = F
(ν,n)
s′ (q) ~B(ν,n)(q)|s′ = B

(ν,n)
s′ (q)

(2.38)

and the matrix K(ν, n) is defined for 0 ≤ i, j ≤ ν − 1 by

[K(ν, n)]i,j = δi,j(δi,0 + δi,ν−1 + q(n+1)/2 + q−(n+1)/2) + δi,j+1 + δi,j−1 (2.39)

Ramond:

~F (ν,−1−2n)(q) =
1

(−q)n

n
∏

j=1

K(ν,−1 − 2j)C ~B(ν,−1)(q) for n ≥ 1

~F (ν,2n+1)(q) = (−1)n+1q
−n(n+1)/2

n
∏

j=0

K−1(ν, 2j − 1)C ~B(ν,−1)(q) for n ≥ 0

(2.40)
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where for 0 ≤ i, j ≤ ν − 1

[C]i,j = δi,j + δi+1,j . (2.41)

For n ≥ −1 these character identities can be extended to polynomial identities. Defin-

ing B
(ν,n)
r′,s′ (L, q) through (2.25) we have

~F
(ν,2n)
r′ (L, q) =

n−1
∏

j=0

K−1(ν, 2j) ~B
(ν,2n)
r′ (L, q), n ≥ 1

~F
(ν,2n+1)
r′ (L, q) =

n
∏

i=0

K−1(ν, 2j − 1)C ~B
(ν,2n+1)
r′ (L, q), n ≥ 0.

(2.42)

along with the two identities proven in [14]

~F
(ν,0)
r′ (L, q) = ~B

(ν,0)
r′ (L, q)

~F
(ν,−1)
r′ (L, q) = C ~B

(ν,−1)
r′ (L, q).

(2.43)

3. Sketch of Proof

The proof of the results of the previous section starts with the recursion relations

established in [14] for the fermionic polynomials (2.3) which holds for all allowed values

of s′

h
(n)
0 (L) = h

(n)
1 (L − 1) + (qL+ n−1

2 + 1)h
(n)
0 (L − 1) + (qL−1 − 1)h

(n)
0 (L − 2),

h
(n)
r′ (L) = h

(n)
r′−1(L − 1) + h

(n)
r′+1(L − 1) + qL+ n−1

2 h
(n)
r′ (L − 1) + (qL−1 − 1)h

(n)
r′ (L − 2)

for 1 ≤ r′ ≤ ν − 3,

h
(n)
ν−2(L) = h

(n)
ν−3(L − 1) + qL+ n−1

2 h
(n)
ν−2(L − 1) + qL−1h

(n)
ν−2(L − 2);

(3.1)

where we note that the first and the last equations follow from the middle equation if one

introduces h
(n)
−1 (L) and h

(n)
ν−1(L) satisfying

h
(n)
−1 (L) = h

(n)
0 (L) (3.2)

and

h
(n)
ν−1(L) = h

(n)
ν−2(L − 1). (3.3)

For ν = 2 there is only the single equation

h
(n)
0 (L) = (1 + qL+ n−1

2 )h
(n)
0 (L − 1) + qL−1h

(n)
0 (L − 2). (3.4)
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These equations specify the fermionic polynomials (2.3) uniquely if in addition we impose

the boundary conditions

F
(ν,n)
r′,s′ (0, q) = δr′,s′

F
(ν,n)
r′,s′ (1, q) = δs′,r′+1 + δs′,r′−1 + δs′,0δr′,0 + q

n+1
2 δr′,s′

(3.5)

It is important to observe that any set of functions h
(n)
r′ (L) defined by (3.1) are not

independent but satisfy the relation

h(n+2)
r (L) = h

(n)
r′ (L + 1) + q−

n+1
2 h

(n)
r′ (L). (3.6)

To prove this for the generic equation of (3.1) we add (3.1) with L → L+1 to (3.1) mul-

tiplied by q−
n+1
2 and define X

(n)
r′ (L) = h

(n)
r′ (L + 1) + q−

n+1
2 h

(n)
r′ (L) to find

X
(n)
r′ (L) = X

(n)
r′−1(L − 1) + X

(n)
r′+1(L − 1) + qL+ n−1

2 X
(n)
r′ (L − 1) + (qL−1 − 1)X

(n)
r′ (L − 2)

for 1 ≤ r′ ≤ ν − 3

(3.7)

which is the generic equation of (3.1) with n → n+2. The remaining equations of (3.1) are

treated similarly. Thus the relation (3.6) follows. In [14] we have demonstrated that the

bosonic polynomials B
(ν,n)
r′,s′ (L, q) with n = 0,±1 satisfy (3.1). The relation (3.6) shows

that it is true for all n ≥ −1.

We now proceed to establish the recursion relation

~F
(ν,n)
r′ (L + 1, q) + q

−(n+1)
2 ~F

(ν,n)
r′ (L, q) = K(ν, n) ~F

(ν,n+2)
r′ (L, q) (3.8)

with K(ν, n) given by (2.39). This is proven by first using (3.6) as applied to the fermionic

polynomials (2.3) to show that the left hand side of (3.8) is expressed as a linear com-

bination of F
(ν,n+2)
r′,s′ (L, q) for 0 ≤ s′ ≤ ν − 1. The matrix K which specifies this linear

combination is then determined by demanding that (3.8) hold for L = 0 and 1 using the

boundary conditions (3.5) along with (3.1).

We will now prove the results of sec. 2. First consider the character identi-

ties (2.37) and (2.40). Let L → ∞ in (3.8) to obtain the recursion relation on the fermionic

sums (2.16)

(1 + q−(n+1)/2) ~F (ν,n)(q) = K(ν, n) ~F (ν,n+2)(q). (3.9)
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If n is even this may be solved in terms of ~F (ν,0) as

~F (ν,−2m)(q) =
1

(−q
1
2 )m

m
∏

j=1

K(ν,−2j) ~F (ν,0)(q) for m ≥ 1

~F (ν,2m)(q) = q−m2/2(−q
1
2 )m

m−1
∏

j=0

K−1(ν, 2j) ~F (ν,0)(q) for m ≥ 1

(3.10)

from which (2.37) follows by using the bose/fermi identity (2.33).

Similarly if n is odd we solve (3.9) in terms of ~F (ν,−1)(q) and use the iden-

tity (2.35) which was proven in [14] to obtain (2.40).

The corresponding results for polynomials given by (2.42) is a simple consequence

of the fermionic identity (3.8), the recursive definition (2.25) of the bosonic polynomials

B
(ν,n)
r′,s′ (L, q) and identities (2.43).

4. Discussion

There are several features of the general theory of Rogers-Ramanujan type identities

which are very clearly seen in the results summarized in sec. 2 and because of their

importance deserve to be discussed in further detail.

The first of these features is the occurrence in the range of summation Dr′,s′ (2.12) of

the fermionic sum (2.3) of solutions of the constraint (2.1) where some of the variable

are negative. This is an entirely new aspect of fermionic sums which has first been seen

in this problem. It is, however, a very general feature, which, once recognized, is seen to

occur in many of the fermionic character formulae of nonunitary models M(p, p′). This was

explicitly seen in [14] for the minimal model M(2ν − 1, 4ν) whose character polynomials

are obtained from the polynomials of SM(2, 4ν) by the duality transformation q → 1
q .

These extra terms are needed to extend the fermionic polynomials of the minimal model

M(p, p′) from the special subset of characters considered in our previous study [19] to the

general case.

The second feature of our results which deserves prominent discussion is the fact that

we have developed a rather complete study of the phenomenon of linear combinations.

Indeed, with exceptions such as the n = 0 Neveu-Schwarz and the n = 1, s = 2ν and

the n = −1, s = 2 Ramond characters all of our formulae for the bosonic characters

χ̂
(2,4ν)
r,s (q) involve linear combinations of two or more fermionic series of the canonical

form (2.3). Such linear combinations of the canonical fermionic series have been seen
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before [11], [17], [9] and [18] in several special cases, but in this present study of the

SM(2, 4ν) model it is clear that these linear combinations are a mandatory integral part

of the theory and that, indeed, it was the failure to consider linear combinations which

prevented previous authors from finding a complete set of character formulae.

In our study [19] of the models M(p, p′) we explicitly restricted ourselves to cases

where these linear combinations did not occur and the generalization of these results will

certainly involve linear combinations. As an example of the sort of new phenomena which

takes place we consider the dual transformation q → 1
q

which sends SM(2, 4ν) into M(2ν−

1, 4ν) [14]. For this transformation we define

~f
(ν,n)
r′ (q) = lim

L→∞
q

L(L+n)
2 ~F

(ν,n)
r′ (L,

1

q
)

~b
(ν,n)
r′ (q) = lim

L→∞
q

L(L+n)
2 ~B

(ν,n)
r′ (L,

1

q
)

(4.1)

and find from [14]

~b
(ν,0)
r′ (q)|s′ = q

(s′−r′)2

2 χ
(2ν−1,4ν)
ν−r′−1,2ν−2s′−1(q) + q

(s′+r′+1)2

2 χ
(2ν−1,4ν)
ν+r′,2ν−2s′−1(q)

~b
(ν,−1)
r′ (q)|s′ = q

(s′−r′)(s′−r′−1)
2 χ

(2ν−1,4ν)
ν−r′−1,2ν−2s′(q) + q

(s′+r′)(s′+r′+1)
2 χ

(2ν−1,4ν)
ν+r′,2ν−2s′(q)

(4.2)

where

χ(p,p′)
r,s (q) = χ

(p,p′)
p−r,p′−s(q) =

1

(q)∞

∞
∑

j=−∞

(qj(jpp′+rp′
−sp) − q(jp+r)(jp′+s)). (4.3)

We also find the fermionic forms

lim
L→∞

q
L(L+n)

2 F
(ν,n)
r′,s′ (L, q−1) =

∑

m̃−restrictions

qΦn(m̃,r′,s′)

(q)m̃1
(q)m̃2

×
ν

∏

i=3

[

((1 − B)m̃)i − a
(r′)
i − a

(s′)
i

m̃i

]

q

(4.4)

where

m̃t = (n1, m2, m3, · · · , mν) (4.5)

Φn(m̃, r′, s′) =
1

2
m̃Bm̃ + Ln(m̃, s′) + Cn(r′, s′) (4.6)

2Ln(m̃, s′) = m̃ν − m̃ν−s′ + m̃1δs′,ν−1 + (2m̃1 + m̃2)(n + δs′,ν−1) (4.7)

4Cn(r′, s′) = s′ − r′ + (1 + 2n)δs′,ν−1 (4.8)
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the matrix B defined by its matrix elements

(B)j,k =











2 for j = k = 1
δk,2 for j = 1, 2 ≤ k ≤ ν

δj,2 for k = 1, 2 ≤ j ≤ ν
1
2δj,2δk,2 + δj,k − 1

2δj,k+1 −
1
2δj,k−1 −

1
2δj,νδk,ν otherwise,

(4.9)

the inhomogeneous vectors a
(s′)
i and a

(r′)
i are given by (2.7) and the restrictions on the

summation variables m̃ are

m̃i − m̃ν =
(

~v(s′) + ~v(r′)
)

i−1
(mod 2); i = 2, 3, · · · , ν (4.10)

with

(~v(k))i = kθ(1 ≤ i ≤ ν − k − 1) + (ν − 1 − i)θ(k > 0)θ(ν − k − 1 < i ≤ ν − 1) (4.11)

where k = 0, 1, · · · , ν − 1.

Then we find from (3.8) the dual analogue of (3.9)

~f
(ν,n)
r′ (q) = q

n+1
2 K(ν, n)~f

(ν,n+2)
r′ (q) (4.12)

and thus find for M(2ν − 1, 4ν) the results

~f
(ν,−2n)
r′ (q) = q−n2/2

n
∏

j=1

K(ν,−2j)~b
(ν,0)
r′ , for n ≥ 1

~f
(ν,2n)
r′ (q) = q−n2/2

n−1
∏

j=0

K−1(ν, 2j)~b
(ν,0)
r′ for n ≥ 1

(4.13)

and

~f
(ν.2n+1)
r′ (q) = q−

n(n+1)
2

n
∏

j=0

K−1(ν, 2j − 1)C~b
(ν,−1)
r′ (q) for n ≥ 0

~f
(ν,−1−2n)
r′ (q) = q−

n(n+1)
2

n
∏

j=1

K(ν,−1 − 2j)C~b
(ν,−1)
r′ for n ≥ 1

(4.14)

where we have used (6.23)-(6.25) of [14] rewritten in the form

~f
(ν,0)
r′ (q) = ~b

(ν,0)
r′ (q) and ~f

(ν,−1)
r′ (q) = C~b

(ν,−1)
r′ (q). (4.15)

We thus find that for the minimal model M(2ν−1, 4ν) there are an infinite number of ways

in which the characters χ
(2ν−1,4ν)
r,s (q) are given in term of linear combinations of fermionic
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q−series. It is to be expected that this is a general feature of the theory of all of the models

M(p, p′) and thus there is a great deal of generalization of the results of [19] which can

be carried out.

The expression for the characters (4.2) of the M(2ν − 1, 4ν) in terms of the bosonic

polynomials B
(ν,0)
r′,s′ (L, 1

q ) and B
(ν,−1)
r′,s′ (L, 1

q ) (2.23)-(2.24) reveals yet another important fea-

ture of Rogers-Ramanujan type identities; namely the characters of M(2ν − 1, 4ν) which

have a well known polynomial representations in terms of q−binomials [20] also have a

(different) representation in terms of q−trinomials. Further examples of trinomial repre-

sentations of characters of minimal models are given by Andrews and Baxter [16] for the

M(2, 7) model and by Warnaar [21] for the unitary model M(p, p+1). Just as q− binomi-

als are a natural basis of functions for a spin 1
2 XXZ system so are the q−trinomials the

natural basis for a spin 1 XXZ system. Moreover there are extensions of the q−trinomials

to q−multinomials [22] which are related to higher spins. It is expected, but not yet

presented in the literature, that each order of multinomial will lead to a separate polyno-

mial representation of the characters (4.3) of M(p, p′). Moreover, it is likely that spin-1

SM(2, 4ν) polynomials presented here also have higher spin analogs.

As our final comment of this discussion we return from the technical extensions of

Rogers-Ramanujan identities which have been suggested by the details of the computations

on the SM(2, 4ν) model to the “folk theorem” stated in the introduction.

The assertion of the “folk theorem” is that the 13 items on the list are not independent

subjects but all originate in a more basic mathematical concept such that if properly

formulated the intrinsic relations of the items on the list would be manifest in a general

fashion which would obviate the need for detailed proofs of individual connections. It

is our belief that this principle is counting as seen mathematically in combinatorics and

physically in the notion of the statistics of excitations.

This fundamental importance of counting is embodied in the choice of variables (2.1) and

has been made very explicit both the fermionic counting computations presented in

[13] and [14]. This variable choice originates in the treatment of the thermodynamic

Bethe’s Ansatz equations of the spin 1
2 XXZ chain of ref. [15]. It is this counting problem

for a system with a finite number of fermionic excitations parameterized by L that unifies

the first 12 items on the list of sec. 1.

But the constraint equations (2.1) are obtained as a very special case of the equations

of [15] where the temperature T is set precisely to zero and L is kept finite. The q−counting

problems of [13] and [14] are obtained from [15] in the limit T → 0, L → ∞ with TL fixed
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and in this limit all energy momentum relations of the excitations are linearized. But in

the complete treatment of the thermodynamic Bethe’s Ansatz the limit L → ∞ at a fixed

temperature is taken and the energy momentum relations are not linearized. The result is

a set of nonlinear integral equations which explicitly involve the temperature T. It would

thus appear as if item 12 on the list is much more general that the previous 11 items. The

conclusion we draw from this is that the full significance of the combinatorial basis of the

thermodynamic Bethe’s Ansatz remains to be explored and that new Rogers-Ramanujan

type identities which would incorporate the physical concept of the nonlinear dispersion

relations are to be discovered.

Exactly what types of relations amongst TBA solutions should be implied by the

counting problem cannot of course be speculated on in any detail. But surely it is of great

importance that for the TBA equations of a particular N = 2 supersymmetric model it

has been shown that TBA equations can be solved in terms of the Painlevé III differential

equation [23]-[24]. It is our belief that there is a counting basis not only to the Painlevé

equations but to all holonomic systems of equations which are obtained by a deformation

procedure. It is this speculation which is implied by the inclusion of the last item on the

list of sec. 1.
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