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ABSTRACT

Hamilton-Jacobi theory provides a natural starting point for a covariant de-
scription of the gravitational �eld. Using a spatial gradient expansion, one
may solve for the phase of the wavefunction by using a line-integral in su-
perspace. Each contour of integration corresponds to a particular choice of
time-hypersurface, and each yields the same answer. In this way, one can
describe all time choices simultaneously. In an interesting application to cos-
mology, I compute large-angle microwave background anisotropies and the
galaxy-galaxy correlation function associated with the scalar and tensor uc-
tuations of power-law ination.
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1. Introduction

Hamilton-Jacobi (HJ) theory is a cornerstone of modern theoretical physics. It may be
pro�tably applied to numerous problems in cosmology. Since a full quantum theory is
lacking, a semi-classical analysis provides our best understanding of the gravitational
�eld.

HJ theory provides an elegant formalism for computing density perturbations as
well as microwave background uctuations arising from the inationary scenario.1;2

It has also been successfully employed in deriving the Zel'dovich approximation3

(which describes the formation of sheet-like structures in the Universe) from general
relativity.4 Numerous researchers have employed HJ methods in an attempt to re-
cover the inaton potential from cosmological observations.5 Lastly, HJ techniques
can be used to construct inationary models that yield non-Gaussian primordial
uctuations;6 such models could possibly resolve the problems of large scale structure
in the Universe.7

I will focus on one particularly attractive feature of HJ theory: it provides a covari-
ant formulation of the gravitational �eld.8 In the semi-classical theory, the answer to
the question of time is clear: time is arbitrary. HJ theory enables one to consider all
such time choices simultaneously. I will now consider a simple analogy from potential
theory which illuminates the general technique.

2. Potential Theory

The fundamental problem in potential theory is: given a force �eld gi(uk) which
is a function of n variables uk, what is the potential � � �(uk) (if it exists) whose
gradient returns the force �eld,
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Not all force �elds are derivable from a potential. Provided that the force �eld satis�es
the integrability relation,
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(i.e., it is curl-free), one may �nd a solution which is conveniently expressed using a



line-integral

�(uk) =
Z
C

X
j

dvj g
j(vl) : (3)

If the two endpoints are �xed, all contours return the same answer. In practice, one
employs the simplest contour that one can imagine: a line connecting the origin to
the observation point uk. Using s, 0 � s � 1, to parameterize the contour, the
line-integral may be rewritten as

�(uk) =
nX

j=1

Z 1

0
ds uj g

j(suk) : (4)

Similarly, in solving for the phase of the wavefunctional, one utilizes a line-integral in
superspace.

3. Solving the Hamilton-Jacobi Equation for General Relativity

The Hamilton-Jacobi equation for general relativity is derived using a Hamiltonian
formulation of gravity. One �rst writes the line element using the ADM 3+1 split,

ds2 =
�
�N2 + ijNiNj

�
dt2 + 2Nidt dx

i + ij dxidxj ; (5)

where N and Ni are the lapse and shift functions, respectively, and ij is the 3-metric.
Hilbert's action for gravity interacting with a scalar �eld becomes

I =
Z
d4x

�
�� _�+ �ij _ij �NH�N iHi

�
: (6)

The lapse and shift functions are Lagrange multipliers that imply the energy con-
straint H(x) = 0 and the momentum constraint Hi(x) = 0.

The object of chief importance is the generating functional S � S[ij(x); �(x)].
For each universe with �eld con�guration [ij(x); �(x)] it assigns a number which can
be complex. The generating functional is the `phase' of the wavefunctional in the
semi-classical approximation: 	 � eiS . The probability functional, P � j	j2, is given
by the square of the wavefunctional.

Replacing the conjugate momenta by functional derivatives of S with respect to
the �elds,

�ij(x) =
�S

�ij(x)
; ��(x) =

�S

��(x)
; (7)

and substituting into the energy constraint, one obtains the Hamilton-Jacobi equa-
tion,

H(x) = �1=2 �S
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which describes how S evolves in superspace. R is the Ricci scalar associated with
the 3-metric, and V (�) is the scalar �eld potential. In addition, one must also satisfy
the momentum constraint

Hi(x) = �2
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which legislates gauge invariance: S is invariant under reparametrizations of the
spatial coordinates.9 (Units are chosen so that c = 8�G = �h = 1). Since neither the
lapse function nor the shift function appears in eqs.(8,9) the temporal and spatial
coordinates are arbitrary: HJ theory is covariant.

As a �rst step in solving eqs.(8,9), I will expand the generating functional

S = S(0) + S(2) + S(4) + : : : ; (10)

in a series of terms according to the number of spatial gradients that they contain.
The invariance of the generating functional under spatial coordinate transformations
suggests a solution of the form,

S(0)[ij(x); �(x)] = �2
Z
d3x1=2H [�(x)] ; (11)

for the zeroth order term S(0). The function H � H(�) satis�es the separated HJ
equation of order zero,6
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which is an ordinary di�erential equation. Note that S(0) contains no spatial gradients.

In order to compute the higher order terms, one introduces a change of variables,
(ij ; �)! (fij; u):

u =
Z
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; fij = 
�2(u) ij ; (13)

where the conformal factor 
 � 
(u) is de�ned through
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in which case the equation for S(2m) becomes

�S(2m)

�u(x)

�����
fij

+R(2m)[u(x); fij(x)] = 0 : (15)



The remainder term R(2m) depends on some quadratic combination of the previous
order terms (i.e., it may be written explicitly8). For example, for m = 1, it is

R(2) =
1

2
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1=2R : (16)

Eq.(15) has the form of an in�nite dimensional gradient. It may integrated using a
line integral analogous to eq.(4):

S(2m) = �

Z
d3x

Z 1

0
ds u(x) R(2m)[su(x); fij(x)] : (17)

Typically, S(2m) is an integral of terms which contain the Ricci tensor and derivatives
of the scalar �eld.8

The integrability condition for the HJ equation10 follows from the Poisson bracket
of the energy constraints evaluated at spatial points x and x0,
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In fact, alternative contours replacing the line-integral eq.(17) will correspond to
di�erent time-hypersurface choices. Provided that the generating functional is in-
variant under reparametrizations of the spatial coordinates, (e.g., Hi vanishes in the
right-hand-side of eq.(18)), di�erent time-hypersurface choices will lead to the same
generating functional. Hypersurface invariance is closely related to gauge invariance.

4. Computing Large-Angle Microwave Background Fluctuations and Galaxy

Correlations

In order to describe the uctuations arising during the inationary epoch, it is nec-
essary to sum an in�nite subset1 of the terms S(2m). In this case, one considers all
terms which are quadratic in the Ricci tensor ~Rij of the conformal 3-metric fij(x)
de�ned in eq.(13). Once again, no explicit choice of time hypersurface is made.

However, when one compares theory with observations, there are indeed preferred
gauges. The phase transition of photon-decoupling occurs essentially on a uniform
temperature slice, T � 4000K, when protons combine with electrons to form neutral
hydrogen. For adiabatic perturbations at large wavelengths, this slice is the same
as a comoving, synchronous time hypersurface which Sachs and Wolfe11 used in the
computation of large-angle microwave background anisotropies.

The power-law inationary model12 provides an excellent example of HJ tech-
niques. For this model, the scalar factor of the Universe evolves as a � tp which



describes an inationary epoch provided p > 1. The scalar �eld potential has an
exponential form

V (�) = V0 exp
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s
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p
�

!
: (19)

Power-law ination is of high interest for observational cosmology because it may
produce copious amounts of primordial gravitational radiation,13 ;14 which is in essence
a quantum gravitational e�ect.
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Fig. 1. For the present epoch, the power spectra for the linear density perturbation

��=� is shown. The data points are the observed power spectrum derived from

galaxy surveys. The curves are theoretical predictions of the power-law inationary

model for several values of p: p = 1 is the standard cold-dark-matter model;

p = 21 provides the best �t.

Fig.(1) illustrates the observed power spectrum,
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for the linear density perturbation at the present epoch; here k is the comoving
wavenumber. The data points were compiled using eight galaxy surveys.15 Also shown
are the power spectra arising from power-law ination for various values of p. Af-
ter the inationary epoch, I have assumed that the evolution of the uctuations is
described by the cold-dark-matter transfer function16 where the present Hubble pa-
rameter is taken to be H0 = 50 km s�1Mpc�1. With a correction for gravitational



waves, the theoretical power spectra for density perturbations have been normal-
ized using the 2-year DMR data set17 of the Cosmic Background Explorer (COBE)
satellite: �sky(10

0) = 30:5 � 2:7�K (68% con�dence level).

The discrepancy between the galaxy surveys and the standard cold-dark-matter
model (p = 1) is quite severe at short length scales, k > 10�1:4 Mpc�1. The bold
line, p = 21, provides the best �t to the observed data. The agreement is excellent
at short scales. At longer scales, the theoretical model under-predicts the observed
power but the de�cit is not very severe. For p = 21, gravitational waves contribute
35% to �2

sky, the square of COBE's microwave anisotropy.

5. Summary

The question of time choice in general relativity is a di�cult one, particularly for the
quantum theory.18 For semi-classical problems of interest to observational cosmology,
one may construct a covariant formalism which treats all time choices on an equal
footing. Power-law ination with p = 21 yields a better �t to cosmological data than
the standard cold-dark-matter model.
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