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Abstract

The low-energy theorem for the forward Compton scattering is generalized to the
case of an arbitrary target spin. The generalization is used to calculate the correspond-
ing contribution to the deuterium hyperfine structure. The nuclear-structure correc-
tions are quite essential in this case due to the deuteron large size. Corrections of this
type calculated here remove the discrepancy between the theoretical and experimental
values of the deuterium hyperfine splitting. Explicit analytical result is obtained also
for the deuteron polarizability contribution to the Lamb shift.
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1 Introduction

The hyperfine (hf) splitting in deuterium ground state has been measured with high accuracy.
The most precise experimental result for it was obtained with an atomic deuterium maser
and constitutes [1]

Verp = 327384.3525222(17) kHz. (1)

Meanwhile the theoretical calculation including higher order pure QED corrections gives
voep = 327339.27(7) kHz. (2)

The last number was obtained by using the theoretical result for the hydrogen hf splitting
from Ref. [2]
1420451.95(14) kHz

which does not include proton structure and recoil radiative correction, and combining it
with the theoretical ratio of the hf constants in hydrogen and deuterium from Ref. [3]

4.339 387 6(8)

based on the ratio of the nuclear magnetic moments and including the reduced mass effect

in [1(0)]*.

In the present article the discrepancy
Vezp — Vorp = 45kHz (3)

is removed by taking into account the effects due to the finite size of deuteron. Such effects
are obviously much larger in deuterium than in hydrogen. One nuclear-structure contribution
to the deuterium hf splitting was pointed out long ago [4] by some intuitive arguments, and
then discussed in more detail in Refs. [5, 6, 7]. Here we treat the deuteron finite-size effects
in a systematic way. Not only the old result is reproduced, but new corrections are obtained,
among them that generated by the deuteron electric and magnetic form-factors.

To calculate some contributions to the deuterium hf structure we generalize the low-energy
theorem for the Compton scattering to an arbitrary target spin.

One more subject considered in this paper is the contribution of the deuteron polarizability
to the deuterium Lamb shift. The fact that this contribution is close to the accuracy attained
in experiment was pointed out in Refs. [8, 9] where the effect was calculated in the square-well
approximation for the nuclear potential. This correction was calculated then with separable
nuclear potentials in Ref. [10]. Here we obtain in the zero-range approximation a closed
analytical result for the deuteron polarizability contribution to the Lamb shift.

2 Low-energy theorem for the forward Compton scat-
tering on an arbitrary target

According to the well-known low-energy theorem for the Compton scattering on a spin 1/2
hadron [11, 12], this amplitude is described by the pole Feynman diagrams. We are interested
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here not in the spin-independent Thomson amplitude which is of zeroth order in the photon
frequency w, but in the next, spin-dependent term of the w expansion. This contribution
as well can be easily obtained directly in the nonrelativistic approximation [13]. In this
approximation the electromagnetic vertex can be immediately written for an arbitrary spin
S

I o5+ k +—'§><k;}. 4

s 1207+ B+ LilsxE] @)
Here Z is the hadron charge, and its g-factor is related as follows to the magnetic moment p
measured in the nuclear magnetons e/2m,,:

g=u/s.

In the forward scattering case, when the hadron is at rest (5 = 0) and both photons have
physical, transverse polarizations ((k€) = (ke’) = 0), this vertex reduces to the pure spin
interaction. The nonrelativistic pole scattering amplitude generated by this interaction is

2
My, = Mimpe, e, = <i> wg®i(5-[e" x &]). (5)
2m,,

However, this expression is incomplete. Indeed, being applied to a proton, it does not repro-
duce the well-known result [11, 12] according to which the spin-dependent forward scattering
amplitude is proportional to (g — 2)?. The explanation was pointed out in Ref. [13]: the
nonrelativistic pole amplitude should be supplemented by a contact term generated by the

spin-orbit interaction, which restores the agreement with the classical result [11, 12].
This contact term can be easily derived for an arbitrary spin (as well as the nonrelativistic
pole contribution (5)) in the following way. The motion equation for spin in an external

electric field E can be written to lowest nonvanishing order in v/c as

=5 (1 %) [Fx1Bxa]. (6)

Here A is the target mass as measured in the units of m, (i.e., it is the atomic number in the
case of nuclei we are mainly interested in in the present work.) The interaction Hamiltonian
generating equation (6) is obviously

Hs:—i< —%) (516 x 7). (7)

Expressions (6), (7) are in fact only slightly rewritten formulae from book [14]. After substi-
tuting

—

7 p — ZeA
~ 24m,
into Hamiltonian (7), we arrive at the following contact interaction:
2
e 2Z A =
c==—] — (g — =) (§-[ExA4]).
K <2mp> A ( A> (518 > A) ®)



It produces one more piece in the scattering amlitude:

My = Mypne! e — ( ¢ >2w (-4%) ( —§> i(5-1¢ x e)). (9)

2m,,
Taken together, expressions (5) and (9) generate the forward scattering amplitude:

M = <%>2w <g _ 2%)2 (7.6 x &)). (10)

This is the generalization of the low-energy theorem we are looking for.
In the particular case of a proton (s = 1/2, Z = A = 1) this formula reduces to the result
of Refs. [11, 12].

3 Low-energy theorem and deuterium hyperfine struc-
ture

Being dependent on nuclear spin, the low-energy amplitude obtained contributes to the
atomic hyperfine structure. However, to apply it to this problem, the amplitude should
be modified. Indeed, both photons exchanged between the nucleus and electron are off-mass-
shell. So, here w # |E| Then, virtual photons have extra polarizations. We will use the
gauge Ay = 0 where the photon propagator is

> dzm - kzkm X - -
D’im(w7 k) - m7 dzm — 5’Lm - 7) DOO — DOm = 0. (11)
Now, first of all, the magnetic moment contribution Mji,,, to the pole diagram changes
to ) N\ .
Mlmn = <—> g2 i emnkkk(k . §) - (12)
2m,, w

Second, the convection current, which is proportional to 4k for a nucleus at rest, is operative
now and induces the following nuclear-spin-dependent contribution to the forward scattering

amplitude:

2 7 1
M3mn - - <i> 2Zgi(km€m"skrss - knemrskTSS);' (13)

2m

We are ready now to write down the electron-nucleus nuclear-spin-dependent scattering
amplitude generated by the two-photon exchange with the deuteron intermediate state:
d4k3 dzmd]n ’}/,L(ZA— ]2? + me)vj
(2m)* k4 k? — 2k

Tel = 4o / (Mlmn + M2mn + M3mn)- (14)

Here [, = (m,,0,0,0) is the electron momentum. The structure (I — k + m,)y; reduces
to —tw €07 where & is the electron spin. We will calculate this Feynman integral with
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logarithmic accuracy. Two subtle points should be mentioned here. The singularity at
w = 0, originating from 1/w? in the projection operator (11), should be understood in the
sense of the principal value. Then, one comes across a term containing integral

/%i
0 [F|2

which diverges in a power-like way at |E| — 0. To regularize it one should introduce non-
vanishing electron velocity v; in this way one obtains the well-known Coulomb wave-function
correction wa /v which should be neglected to our purpose. In our logarithmic approximation
one should neglect as well possible constant terms originating from this integral.

The final result of calculation can be conveniently presented in the following form. Let
us write down the spin-dependent Born term in the electron-nucleus scattering amplitude:

2o

Ty = — g(a-3). (15)

3memy,

It is in fact minus Fourier-transform of the lowest order contact hyperfine interaction. There-

fore, the ratio A, = T /T, is nothing else but the relative magnitude of the discussed
correction to the hf structure. The result for integral (14) can be written as
3am A1l Z 72
Ag=——"log——[g* — 49> — 12— 16
T 8 myp © Me (g 9°A A2> (16)

At s =1/2, A = Z =1 it agrees with the corresponding results [15, 16] for muonium
(where the effective cut-off A is provided by the muon mass) and hydrogen (where the integral
is cut off at the typical hadronic scale m,).

In the case of deuterium (s =1, g = pg = 0.857, A =2, Z = 1), we are mainly interested
in, the integration over the momentum transfer k£ is cut off at the inverse deuteron size

k = 45.7 MeV. In this way we obtain the following result for the relative correction in
deuterium:
3 e 3
Aelz—o‘ﬂlogi@d—z——). (17)
8T my, me Hd

At larger momentum transfers, k& > x, the amplitude of the Compton scattering on a
deuteron is just the coherent sum of those amplitudes on free proton and neutron. This
contribution to the hf structure can be also easily obtained with the above formulae. Since
both nucleons are in the triplet state, one can substitute §/2 both for 5, and for §,. With
the logarithmic integral cut off here at the usual hadronic scale m, = 770 MeV, we get in
this way

3am m, 1
Nip= — " log—2 — (12— 2p, — 3 29, 18
T m, %8 Md(up fp — 3+ pn) (18)
Here p, = 2.79 and p,, = —1.91 are the proton and neutron magnetic moments.

In the conclusion of this section let us mention strong numerical cancellation between A

and A,m



4 Contribution of deuteron virtual excitations

The low-energy Compton amplitude discussed above is just linear term of the full amplitude
expansion in w (and in |k[2/w for virtual photons). One may expect, however, that for the
deuteron with its small binding energy this approximation is insufficient even in the atomic
problem considered here. And indeed, we will see below that the deuteron virtual excitations
are far from being inessential to our problem, they strongly dominate the effect discussed.
Since the contribution of large momentum transfers k£ > x has been calculated already (see
formula (18), we confine now to the region k& < k. All calculations below are performed in
the zero-range approximation (zra) for the deuteron which allows to obtain all the results in
a closed analytical form.

Let us start with the transitions induced by the spin interaction only. The corresponding
scattering amplitude is

=,

My = — ( € )22{<O|ng Slmn >< n|[Ex§T]n|0>

2m, | 4 w—FE, =1

(19)

< 0[[k x S1aln >< n|[k x S]m|0 >
w+ E, +1 '

Here I = k?/m,, is the deuteron binding energy, E,, = p?/m,, is the energy of the intermediate
state |[n > (all intermediate states belong to the continuous spectrum), and
g eiEF/2 —ikF/2

S = ppoy, + pnGne

where G)y(,) is the proton (neutron) spin operator.

When calculating this contribution, we will retain only terms logarithmic in the parameter
e = I/k = k/m, < 1. The log is generated by the integration over k, and to obtain it it
is sufficient to put the exponents in S equal to unity. Then the operator S can induce only
M1 transitions. In the zra the deuteron ground state is pure 3S; from which M1 transition
is possible also to S-states only. But due to the orthogonality of the radial wave functions of
different triplet states, the intermediate states confine to 1Sj.

Since the total spin operator § = (1/2)(d}, + &,) does not induce triplet-singlet transi-

tions, the operator S reduces here to

= 1

S = (tp — ) ) (Gp — Tn)-

In our problem of hf structure we need the antisymmetric part of tensor (19) which is linear
in the deuteron spin s. It looks now as follows:

2
e ) - dﬁ | < 150 p|351 > |2
VAN — )2 Exmmiki (B - / : 20
mn <2mp> (:up 1 ) L €mnk k( 5»)("} (27’(’)3 w2 — (p2 —|—/<a2)2/m12, ( )
where < 1Sg, p|3S; > is the overlap integral of the ground state zra wave function
K e*ﬁ)""
Yo = \/5= (21)
2T r
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with the singlet one of the momentum p.
This contribution to the electron-deuteron scattering amplitude

k. dimdin vl — k4 me)y;
in = ST | oy T g k2 — 2k mn (22)

is easily calculated with the logarithmic accuracy. Indeed, to this accuracy the energy de-
nominator in formula (20) can be simplified to

1

2 _ /{4/m12,'

w
Then the integration over p reduces to the completeness relation. The resulting relative
correction to the deuterium hf structure is

1 3a me log@(ﬂp_un)2.

mn

871 m, K Id

(23)

Let us consider at last the inelastic contribution induced by the combined action of the
convection and spin currents. Since the convection current is spin-independent, all the in-
termediate states are triplet ones as well as the ground state. Therefore, here operator S
simplifies to
ik7/2 _i_’unefikf'ﬂ)' (24)
According to the common selection rules, neither 3S; can be excited by the convection current
from the ground state. But in the zra all the states with [ # 0 are free ones. It means that
here we can use as the intermediate states just plane waves, eigenstates of the momentum
operator. Then the only matrix element entering the amplitude is

S — §(ppe

81k

< 0|eiiEF/2|ﬁ>: Y ]
(P+k/2)? + K2

(25)

In this way the amplitude itself simplifies to

2—i/<aw£ P -
o= (50) 20 |\ G a s G ol T )

'(Qp — k/2)mienpskrss — (2p — k/Q)niemmk:Tss' (26)

P = (T R m2

Integrals we come across when calculating the corresponding part of the electron-deuteron
scattering amplitude

dk dindin il = k +me)y; P
2m)t kA k2 — 21k mn

T2 = 4rai / (27)



are rather tedious even when we confine to terms singular in the parameter € = k/m, < 1 :
1/e and loge. This relative correction to the hf structure is to this approximation

e - n 3 e - n
A2 = ety — 1 A e og e Hp — Fn. (28)

b 26 g T my K 7%
One of the terms in this correction,

Me fin
26 pa’

was obtained and discussed in Refs. [4, 5, 6, 7]. However, another term

o e b
26 g’

is larger numerically.

5 Corrections due to finite distribution of the deuteron
charge and magnetic moment

In the case of hydrogen this problem was considered many years ago [17]. For deuterium those
corrections should be obviously larger. In the zra the problem has here a closed solution.
Let us start with the second-order amplitude of the electron-deuteron scattering as in-
duced by the deuteron charge and magnetic moment. The nucleus will be treated in the
static limit. However, its finite charge and magnetic moment distributions will be taken into
account by introducing the corresponding form-factors, F,, and F,. This amplitude is

di R — Fch(q_Q) Fm(q_Q)
— _ 4 2 Hd /
1% (4ma) om, | @y i[§xq] 7

.’YO(lA—i_é"i_me)’? _ ’7([+d+me)70
(14 q)* — m? '
Here again I, = (m,,0,0,0), and g, = (0,¢). This expression can be conveniently trans-
formed to

(29)

V=S [ @) Fuld) T (30)
™ q
where T} is the momentum-independent magnetic Born amplitude (15).
The effect we are interested in, vanishes of course if unity is substituted for both form-
factors. Therefore, the corresponding relative correction to the Born amplitude 7 and to
the hf splitting is in fact

Ay = 8”3:0‘ / % [Fn(@®) Fu(®) — 1] (31)



In the zra both deuteron form-factors have simple form:

. 4
Fu(®) = Fu(g®) =< 0[]0 > = — arctg—. (32)
q 4K
Substituting it into formula (31), we get the following explicit expression for the correction

discussed: m
Ay = —a3—;(1+210g2). (33)

Two closely related features of the effect (in no way specific for deuterium only) are
worth emphasizing here. This correction is of first (but not second) order in the ratio of the
nuclear size to the Bohr radius mea/k. Then, contrary to possible naive expectations, the
contributions of the charge and magnetic form-factors are not additive. Both circumstances
can be traced back to the fact that the typical momenta entering integral (31) are of the
nuclear, but not atomic, scale.

6 Deuterium hf structure, discussion of results

Our total result for the nuclear-structure corrections to the deuterium hf structure, comprising
all the contributions, (17), (18), (23), (28), (33), is

— 2
A= %{u—g(l—FQlogQ)}—i- z—a%logﬂi('up fn )

o
2K hd T My K hd
3o My m — lUn 3o My Kk 1
e jog Mty My ST o B (2 gy 3) (34)
T my K Hd 8t my, Me fAd
3am m
— —Clog—L2—(p2—2pu, — 3+
T m, 8 Md(up fip + tn)

Numerically this correction to the hf splitting in deuterium constitutes
Av = 43kHz. (35)

It should be compared with the lacking 45 kHz (see (3)). Taking into account the approx-
imations made, first of all the crude nuclear model (zra), then the neglect of nonlogarithmic
contributions, we believe that the agreement is quite satisfactory. In particular, including the
correction due to the effective interaction radius rg into the normalization of the deuteron
ground state wave function (see details in the next section) would certainly enhance some
contributions.

Clearly, the nuclear effects discussed are responsible for the bulk of the difference between
the pure QED calculations and the experimental value of the deuterium hf splitting. The
calculation of this hf correction, including accurate treatment of nuclear effects, would serve
as one more sensitive check of detailed models of deuteron structure.



7 Nuclear polarizability and Lamb shift in deuterium

The nuclear polarizability contribution to the Lamb shift was considered recently in Refs.
(8,9, 10]. Here we present an analytical calculation of the effect with a closed result. The
zra approximation used by us is applicable when the region of the wave function localization
is much larger than the interaction range. Essentially the same condition is necessary to use,
instead of the true interaction, the crude approximation of the square-well potential, as it is
done in Refs. [8, 9].

The effect we are interested in now, is due to the photon-deuteron scattering amplitude
induced by the convection current only. We will see that in this problem, that of the nu-
clear polarizability contribution to the Lamb shift, the characteristic values of the photon

4-momenta are as follows: )

w k| <T=" <k~ (36)

myp
Therefore, now we can omit in the Compton amplitude all dependence on k. Aswell as in the
amplitude M?, , all the intermediate states here have [ # 0 and can be described therefore by
plane waves. We will use again matrix element (25), but this time at k = 0. At last, in the
present problem we are interested in the scalar part of scattering amplitude which reduces to

e 4 5 / dp p? 1 1
— =] Zdmmr | = — .
2m, /) 3 w2 (p2+ k2?2 |w — (p? + K¥)/m, w+ (pP* + K2)/m,
We subtract from the expression in braces the term

mp
p2 + K2 :

After integrating over p this term being added to the Thomson scattering (seagull) amplitude
for a proton, — €?/m,, reproduces the correct one for a deuteron, — e?/2m,,. With the identity

J— + R
w—Uu w+ u

1 1 2 2w?
u (W= u?)u

we get the following expression for the photon-deuteron scattering amplitude in question:
2
3 € 8 2
an = — (%) §5mn RW My

. / dp r (37)

w2 (PP + K2 {w? — (PP + K2)?[m2}

The contribution of this tensor to the electron-deuteron scattering amplitude

4 . (1 — F .
d*k dzmdjn ’Y’L(l k + me)'}’] M3 (38)

T3 = drai /
e K2 — 2k mn



can be easily transformed to

T8 _ 327r2oz2/£/d}7 p?

3m, w2 (p? 4+ Kk?)3

[ dk 1 2w 1
oy e e ) e

The first term in the braces here contains no photon propagation, neither 1/k*, nor 1/k2.
In other words, it corresponds to the instantaneous Coulomb interaction. The second term
corresponds to the exchange by three-dimensionally transverse quanta, i.e., to the magnetic
interaction of convection currents.

Perhaps, the most convenient succession of integrating expression (39) is as follows: the
Wick rotation; transforming the integral over the Euclidean w to the interval (0, co); the
substitution k — k w; integration over w; integration over k (at the last two procedures it
gets clear that the effective values of w, |k| belong to interval (36) indeed); at last, integration
over p. The following identity is useful here:

/01 dr (1 —2)* 2" 'logz = w

Tatp) [P0 — vlatbl v(b) = jb log T(b).

The effective electron-nucleus interaction operator (equal to —7T3)) can be finally pre-
sented in the coordinate representation as

81 1
Vie = —am, ad(O) 5 (log — + %> 5(?) (40)
Here a4(0) is the static value of the deuteron electric polarizability defined as usual by the
relation

/ dp P —|—/<o2 < 0|7|n >< n|7|0 >
Oéd
3

WP+ R — )

The matrix elements entering expression (41) are dominated by large distances. In this
asymptotic region the naive zra expression (21) for the deuteron ground state wave function
should be supplied by the correction factor (1 — rox)~'/? taking into account finite effective
interaction radius 7o (see Refs. [14, 18]). In this way we get the following result for the static
electric polarizability:

ag(0) = ——— " _ 0.64fm® (42)

32(1 — ror) K4

This numerical value is close to the experimental one [19]: 0.70(5) fm® (as well as to the values
0.613, 0.623, 0.625fm® obtained in Ref. [10] with different separable nuclear potentials and
to 0.635 fm® found in Ref. [8] with a square-well potential).

The overall result (40) consists of two contributions of different physical origin. The
dominating one is generated by the instantaneous Coulomb interaction. Its contribution to
the overall numerical factor

81 1
-5 (log — + —>

20
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in formula (40) is
81 5
4 (log - + 12> )
The magnetic interaction contributes to the overall factor
| 81 17
( 8 Me 12> '

The level shift of the deuterium ground state produced by operator (40) constitutes
—22.3 kHz. The Coulomb and magnetic contributions to it are, respectively, — 19.7 and
— 2.6 kHz. The results are close to those of Refs. [8, 9, 10].

No wonder that the Coulomb contribution is negative: this is a true second-order (in the
electron-nucleus static interaction) correction to the ground state of a system consisting of
an electron at rest and a nucleus which is in the ground state itself. The sign of the mag-
netic contribution cannot be fixed in this way: in the language of the common noncovariant
perturbation theory this is a fourth-order correction, second-order in the photon-electron
interaction and second-order in the photon-nucleus one.

One more contribution to the Lamb shift in deuterium is caused by the deuteron magnetic
polarizability, considered earlier also in Ref. [10]. This is in fact the contribution of the
scalar part of amplitude (19). The calculation simplifies due to the following circumstances.
First, the numerators d;,, of the photon propagators reduce here obviously to d;,. Then,
the integration over k is spherically-symmetric one. So, to our purpose the scalar part of
amplitude (19) may be simplified to

(p — pn)* K (K + K1)

9m}
= [ dp 1
By K2 / @ . 43
W TR 0P R P~ G+ R )
We have used here the explicit form of the 1Sy coordinate wave function in the zra:

0 = sin(pr + 0)
V2w

M! = —4na

(44)

where

ctgd = E, k1 = T7T.9MeV.
p

Its overlap with the ground state zra wave function (21) constitutes
V871K (K + K1)
(P* + 2)\P* + K

Further calculations are close to those related to the electric polarizability; only the
last integration, that over p, is done numerically for the nonlogarithmic contribution. The
resulting effective electron-nucleus interaction operator can be written as

Vi = ame Ba(0) <1og§ - 124) (7). (46)

e

< 150 |351 > = (45)
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Here (3;(0) is the static value of the deuteron magnetic polarizability equal to

(ko — pn)?* 1+ 51/35
8myk? 1+ ki/k

Ba(0) = & (47)

This contribution to the Lamb shift of the deuterium ground state constitutes 0.31 kHz which
is very close to the result of Ref. [10].
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