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EXTRACTION OF HADRON-HADRON POTENTIALS ON THE

LATTICE WITHIN 2+1 DIMENSIONAL QED 1
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A potential between mesons is extracted from 4-point functions within lattice gauge

theory taking 2+1 dimensional QED as an example. This theory possesses con�nement

and dynamical fermions. The resulting meson-meson potential has a short-ranged hard

repulsive core due to antisymmetrization. The expected dipole-dipole forces lead to at-

traction at intermediate distances. Sea quarks lead to a softer form of the total potential.
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1. Introduction. The extraction of an e�ective interaction, or potential, between two

composite hadrons from a quantum �eld theory is of fundamental importance. On one

hand, since a potential is a central object of classical and quantummechanics, its de�nition

based on a quantum �eld is interesting in itself. On the other hand, the potential between

clusters of particles has proved very useful in many studies of subatomic physics. Here

we have in mind the quark-gluon degrees of freedom at the subnuclear level which are

thought to give rise to the nucleon-nucleon forces usually described by meson theory. The

vacuum of QCD contains both virtual gluons and quarks. At short distances the nucleon-

nucleon forces are mediated by gluon exchange between the constituent quarks whereas

for longer distances the production of quark-antiquark pairs should be the dominating

mechanism. Quark-antiquark exchange can be treated as an e�ective meson exchange

leading to the construction of the Bonn and Paris potentials [1]. Gluon exchange can be

studied by phenomenological potential and bag models which provide some insight into

the interaction mechanism of the six-quark system [2].

The aim should be to calculate the nucleon-nucleon forces directly from the quantum

�elds of QCD. Such a project has to deal with the e�ective forces between composite colour

singlets, in other words, their \chemistry". This goes along with a characteristic change

of scale leaving a residual e�ective interaction 10�2 to 10�3 times smaller than a typical

hadron mass. The numerical di�culties involved in going from the GeV to the MeV scale

in a lattice computation are evident. For this reason it seems appropriate to investigate

simpler lattice models which exhibit similar physics. Naturally, one needs to insist on

con�nement and the presence of fermions. In this spirit we report on a simulation aimed

at extracting an e�ective meson-meson interaction from a QED gauge �eld model in 2+1

dimensions with staggered fermions which has con�nement.

In the last years lattice calculations with static quarks have demonstrated that the

potential between two three-quark clusters yields an attractive potential limited to the

overlap region of the baryons [3, 4]. A hard repulsive core of the potential, as stipulated

by experiments and their interpretation, could not be observed in the region where the
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two nucleons have relative distance close to zero. Beyond the static theory, employing

dynamical quark propagators, correct antisymmetrization and quark exchange become

possible [5]. In this framework the mechanism which leads to a repulsive core will be

investigated here analytically and numerically within lattice QED2+1.

2. Lattice QED. We have studied a euclidean lattice �eld theory in 2 + 1 space-time

dimensions for a U(1) gauge symmetry group and staggered fermions. The action of the

system is S(U; ��;�) = SG(U) + SF (U; ��;�) which depends on the gauge �elds U and on

the fermion �elds ��, �. For the gauge action SG we use Wilson's plaquette formulation

SG = �
X
x;�<�

(1 �
1

N
Re Tr U�(x)U�(x+ �̂)Uy

�(x+ �̂)Uy
� (x)) ; (1)

where � = 2N=g2 contains the gauge coupling g and the number of colours N which is

one in our case. For the fermionic action SF we employ the Kogut-Susskind prescription

[6]

SF =
NF

4

(X
x�

�x�
1

2
(��(x)U�(x)�(x+ �̂)� ��(x+ �̂)Uy

�(x)�(x)) +mF

X
x

��(x)�(x)

)
;

(2)

where NF is the number of external avours, mF the dynamical quark mass and the �x�

are reminiscent of the Dirac matrices.

Expectation values of physical quantities, de�ned through path integrals, are estimated

via Monte Carlo simulations. We compare results for QED2+1 with and without dynamical

fermions. The simulation was done on an L2 � T = 242 � 32 periodic lattice with the

compact U(1) Wilson action at � = 1:5 and staggered fermions with NF = 0 and NF = 2,

both with mF = 0:1. We used 64 independent gauge �eld con�gurations generated with

the molecular dynamics algorithm [7]. Fermion propagators were computed utilizing a

random source technique [8] with 32 and 16 random sources in the quenched case and in

full QED2+1, respectively.

3. Meson-Meson Correlator. The one-meson �eld is a product of staggered Grass-
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mann �elds � and �� with external avours u and d

�~x(t) = ��d(~xt)�u(~xt) : (3)

The meson-meson �elds with relative distance ~r = ~y � ~x are then constructed by

�~r(t) = L�2
X
~x

X
~y

�~r;~y�~x�~x(t)�~y(t) = L�2
X
~x

��d(~xt)�u(~xt)��d(~r + ~x t)�u(~r + ~x t) : (4)

The information about the dynamics of the meson-meson system is contained in the

4-point time correlation matrix

C
(4)

~r~r 0(t; t0) = h�
y

~r(t)�~r 0(t0)i � h�
y

~r(t)ih�~r 0(t0)i ; (5)

where h i denotes the gauge �eld con�guration average. Working out the contractions

between the Grassmann �elds the following diagrammatic representation is obtained

C(4) = C(4A) + C(4B)� C(4C) � C(4D) (6)

= +
����TTTT

�
��TT6

�
��TT?

: (7)

Each of the four contributions to the correlator comprises the exchange of gluons and

sea quarks. For diagrams C(4A) and C(4B) those take place between the mesons, whereas

diagrams C(4C) and C(4D) correspond also to interaction mediated by the exchange of

valence quarks. Denoting contractions of the Grassmann �elds by

: : :
n
� : : :

n
�� : : : = Gn ; with n = 1 : : : 4 ; (8)

we have for example

C(4A) � h
43

�y~y 0

21

�y~x 0

12

�~x

34

�~yi = hG1G
�
2
G3G

�
4
i; with ~r = ~y � ~x ; ~r 0 = ~y 0 � ~x 0; (9)

where � stands for the sums with normalization factors that carry over from (4). The

gauge con�guration average is taken over the product of all four propagators G.

In order to de�ne an e�ective meson-meson interaction it is crucial that the nonin-

teracting components in C(4) are isolated. This is achieved by means of a cumulant (or
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cluster) expansion [9] of the gauge �eld average. For example

C(4A) � hG1G
�
2
ihG3G

�
4
i+ hG1G3ihG

�
2
G�
4
i

+hG1G
�
4
ihG3G

�
2
i+ hhG1G

�
2
G3G

�
4
ii ; (10)

where the last term de�nes the cumulant. In the �rst term no interactions from gluons or

sea quarks between the mesons exist. It is thus interpreted to describe freely propagating

mesons on the lattice. With reference to (8){(10) de�ne

�C(4A) = h
21

�
y

~x 0

12

�~xih
43

�
y

~y 0

34

�~yi � hG1G
�
2
ihG3G

�
4
i : (11)

Diagram C(4B) can be analyzed in a similar fashion, which then leads us to de�ne �C(4B).

The sum of those

�C(4) = �C(4A) + �C(4B) (12)

respects the boson symmetry on the meson-�eld level and constitutes the free meson-

meson correlator with the relative interaction switched o�.

4. E�ective Interaction from Time Evolution. The deviation of C(4) from �C(4)

contains the residual e�ective meson-meson interaction. To �nd its de�nition, one may

calculate the correlation matrix Ĉ between two elementary boson �elds �̂(~xt) that live on

the lattice sites. The corresponding quantum mechanical Hamilton operator consists of a

free and an interacting part, Ĥ = Ĥ0+ĤI . It is possible to derive an explicit expression for

ĤI in terms of the correlators of order n = 0 and n = 1 from the perturbative expansion

of Ĉ ful�lling

Ĉ(t� t0) = e�ĤI(t�t0) : (13)

This result leads us, by way of analogy, to de�ne an e�ective meson-meson interaction as

HI = �
@C

@t

�����
t=t0

; with C = �C(4)� 1

2C(4) �C(4)� 1

2 : (14)

This de�nition is meant as a relation between matrices and holds independently of the

basis. It can be tested both in momentum space [10] and in coordinate space. The above
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equations build a bridge between the quantum �eld theoretical correlation functions on

the lattice and an e�ective quantum mechanical Hamiltonian.

5. Hard Core from Adiabatic Approximation. An analysis of the coordinate-space

matrix elements of the correlators C(4) and �C(4) reveals an interesting perspective on the

repulsive core. From C(4) expressed in terms of the fermion propagators it is easy to see

analytically that

C
(4)

~r~r 0(t; t0) = C
(4A)

~r~r 0 (t; t0) + C
(4B)

~r~r 0 (t; t0)� C
(4C)

~r~r 0 (t; t0)�C
(4D)

~r~r 0 (t; t0) � 0 ;

if ~r = 0 or ~r 0 = 0 : (15)

In our simulation we choose the relative distance between the mesons to be the same at the

initial and �nal times of the propagation, ~r = ~r 0. In the spirit of the Born-Oppenheimer

approximation it is assumed that the interaction proceeds faster than the motion between

the mesons [11]. This seems to be justi�ed because the quark mass mF = 0:1 is relatively

large. In this sense we replace the sum over all eigenstates in the spectral representation

of the correlation function by an average term with an e�ective energy W (~r)

C
(4)

~r~r (t; t0) =
X
n

jh~rjnij 2e�En(t�t0) ' c(~r )e�W (~r)(t�t0) : (16)

To the extent that the energy W (~r) of the meson-meson system at �xed relative distance

~r can be extracted from the large-t behaviour of the diagonal elements we may conclude

from (15){(16) that W (~r = 0) = +1, provided the strength factor c(~r ) is nonzero at

~r = 0. In this case the e�ective interaction possesses a hard repulsive core. It is due to

the anticommuting nature of the constituent fermion �elds leading to Pauli repulsion.

6. Results. We want to test numerically the two ways suggested above through (13){

(14) and (16), respectively, to extract an e�ective meson-meson potential from a quantum

�eld theory. The correlators C(4) and �C(4) were computed for time slices t = 15 : : : 19

around the symmetry point tc = 17 in periodic time. The potentials were obtained

from cosh-�ts to the correlators C. The �rst de�nition (13){(14) represents a matrix and
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Figure 1: Meson-meson potentials as a function of relative distance r for the direct chan-

nels (A+B) extracted from quenched QED2+1. The result (a) HI(r) from the e�ective

time evolution is compared with (b)WI(r) of the adiabatic approximation. In both cases

the direct channels lead to a repulsive potential barier. Curves are guide to the eye and

error bars result from a jack-knife analysis.

leads to a nonlocal Hamilton operator HI(~r; ~r
0) where ~r; ~r 0 is the separation between

the mesons. Since computation of the entire 4-point correlation matrix is very time-

consuming we only obtained the diagonal elements. This also allows a direct comparison

with WI(r) = W (r) � 2m from the second de�nition (16), where 2m = 1:031(9) is the

mass of the noninteracting two-meson system.

We begin the description of our simulation data with the quenched theory, NF = 0.

The result for HI(r) including the direct diagrams (A+B) only is presented in �g. 1a

and that for WI (r) is plotted in �g. 1b. Both results correspond to a repulsive potential

barier. The quark-exchange diagrams (C+D) yield similar behaviour (not shown) except

their contributions enter with a minus sign into the total correlations (6),(7).

In �g. 2 all four diagrams (A+B){(C+D) are included. For both HI(r) and WI(r)

there is some evidence for a repulsive core, as discussed earlier, followed by attraction at

medium distances. The shapes emerge as a subtle interplay between all graphs (A+B)
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Figure 2: Full meson-meson potentials as a function of relative distance r for all four

graphs (A+B){(C+D) in pure QED2+1. Both total potentials (a) HI(r) and (b) WI(r)

hint at a repulsive core at short range and exhibit attraction at medium distances. The

resulting potential originates from a sensitive interplay between all contributing graphs.

Curves are phenomenological �ts to the data (see text) with jack-knife error bars.

and (C+D). We tried a phenomenological �t function of the type

VI(r) = �r� � �e��r ; (17)

and found the following parameters: � = 19:7[10�3]; � = 55:2[10�3];  = 2:35; � = 0:254,

for HI , and � = 37:2[10�3]; � = 81:4[10�3];  = 5:42; � = 0:316, for WI . An exploratory

solution of the radial Schr�odinger equation in two dimensions to the corresponding poten-

tial form indicates a loosely bounded state. In both approximations additivity between

the potential from the quark-exchange graphs (C+D) and that of the direct term (A+B)

with respect to the total potential, H(A+B) � H(C+D) ' H(A+B)�(C+D), is ful�lled rea-

sonably well. This is a nontrivial point since the extraction of the potentials from the

corresponding correlation functions is a nonlinear procedure.

Simulations with NF = 2 external avours of dynamical fermions also have been

performed. In this case 16 random sources (instead of 32) were used to generate the

quark propagators. Further, the potentials from the correlator ratios are smaller. For
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Figure 3: Full meson-meson potentials as a function of relative distance r for all four

graphs (A+B){(C+D) extracted from QED2+1 with two avours. Both total potentials

(a) HI(r) and (b) WI(r) resemble those of the pure gauge case. Dynamical fermions

lead to softer interactions. The precision of the computation is not as accurate as in the

quenched simulation.

these reasons the data are considerably more noisy. Both simulations were performed at

the same value of � = 1:5. For ease of comparison, in the following pictures we rescale

the energy axis to that of the quenched computation by a factor equal to the mass ratio

2m(NF = 0)

2m(NF = 2)
=

1:031(9)

0:63(1)
= 1:65 : (18)

In �g. 3a the results for the total potential HI(r) are shown. There seems no qualitative

change compared to the pure gluonic case, except that sea quarks apparently lead to a

softer behaviour. The total potential WI (r) from the adiabatic approximation is shown

in �g. 3b. Again it resembles HI and dynamical quarks lead to a certain softening of

the interaction mechanism. Fits to the functional form (17) converged only for WI (the

dashed curve has simply been scaled).

7. Conclusion. We have proposed two possibilities to extract an e�ective interaction

between two composite particles. This brings us closer to our aim of extracting poten-
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tials of two nucleons consisting of three quarks each from lattice QCD. Such a project

necessitates the computation of a 4-point hadron Green function which is equivalent to

a correlation function of six quark propagators within the QCD path-integral. A feasible

approximation, which we study at present, might be to make two quarks of a baryon

heavy so that they only act as spectator quarks in the scattering process [12].

This paper contains a �rst study of the inuence of both gluons and dynamical quarks

on meson-meson systems in the framework of QED2+1. The sea quarks constitute the

meson exchange in the sense of the Yukawa theory. With the extension of the pure gauge

action to the full QED action the contribution of virtual mesons was investigated. It

was found that gluon exchange and valence-quark exchange are equally important. Sea

quark e�ects seem to be relatively small but might be decisive for the de�nite shape of

the potential. In the model used mesons feel a short-ranged hard-core potential due the

Pauli exclusion principle acting between their fermionic constituents. The medium-range

residual forces between colour-neutral quark-clusters are attractive. It should be noted

that a computation of meson-meson scattering phase shifts based on L�uscher's proposal

[13] indicates the same behaviour of the potential [14]. The correct antisymmetrization

of the meson-meson correlator was important for the emergence of a hard core. This is in

contrast to earlier work [3] in QCD with static quarks where antisymmetrization is not

possible. In the case of SU(3) the nonabelian colour structure will not necessarily lead

to a vanishing correlator, as for U(1) in (15), when the relative nucleon-nucleon distance

approaches zero. Preliminary studies seem to indicate attraction. Further investigations

with light valence quarks are necessary to solve the hard-core problem of the nucleon-

nucleon interaction.
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