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In previous work constant magnetic �eld strength solutions for SU(2) gauge theory on a torus were found, which

somewhat surprisingly turned out to be classically stable. This was called marginal stability, as moving along

one of its zero-modes, two of the stable modes turn unstable. Here we investigate the stability under quantum

uctuations in the domain where the solutions possess the marginal stability at the classical level.

Constant curvature solutions in gauge theo-
ries have frequently been studied for non-Abelian
gauge theories, where it was realized that a con-

stant magnetic �eld is an unstable solution of
the equations of motion, due to the self-coupling

of the gauge �elds [1]. Attempts were made to
�nd stable con�gurations that evolved from these
constant magnetic �elds and was the basis for

the Copenhagen vacuum picture [2]. A regular
two-dimensional lattice of ux con�gurations was

found, whose periodicity turned out to be equiv-
alent to twisted boundary conditions [3], which

were formulated by 't Hooft in a di�erent con-
text [4]. Compactifying in all spatial directions
leads to an infrared cuto� and renders a pertur-

bative calculation reliable in a small volume [5].
In the four dimensional context it can be shown

that a constant �eld is stable if it is self-dual [6,7],
and in the course of the stability analysis for non-
selfdual con�gurations the full uctuation spec-

trumwas determined [8]. The analysis in three di-
mensions is obtained by adding a periodic fourth

direction, and leads to a degenerate twist. This,
in the four-dimensional context exceptional, but

in three dimensions generic case, was not studied
fully. Thus we missed an amusing and surprising
result, which was discovered while designing and

testing cooling algorithms for saddle-points that
are not local minima of the energy (or action)

functional [9]. The most general constant curva-
ture solution in SU(2) gauge theories on a torus

�Based on a talk at Lattice'95 (Melbourne, July 1995)

has as many gauge invariant parameters (mod-
uli) as the number of dimensions. By considering
the gauge invariant Polyakov-loop observables it

is easily seen that the constant curvature solu-
tion, compacti�ed to a torus, is not translation in-

variant. In the generic four-dimensional case the
moduli are equivalent to translations and from
this it is obvious that the uctuation spectrum is

independent of the moduli. However, if the twist
is degenerate on a d dimensional subspace, the

vector potential is invariant under translations in
this subspace, and the Polyakov loops label mod-

uli on which the uctuation spectrum can and
does depend. For three dimensions this is the
generic case. Restricting to the case of non-zero

�eld only, the subspace along which the solution
has translation invariance is one dimensional.

For one class of constant magnetic �eld solu-
tions on a torus (corresponding to the smallest
possible non-zero magnetic �eld), it turns out

that the usually unstable modes depend on the
moduli in such a way that they turn stable for a

limited range of values. Moving along the mod-
uli (which does not change the energy) in the

stable region, will bring one to the region where
two uctuation modes will become unstable, and
the con�guration decays. The e�ects we study

here are absent in a (naive) in�nite volume limit,
where infrared divergencies, however, render per-

turbative arguments ambiguous. Unfortunately,
we will �nd that quantum uctuations will ren-
der the marginally stable con�gurations unstable.

As such, this observation is only of marginal in-
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terest. Note that for weak coupling the time scale
involved in the decay is much longer than for the

decay of classically unstable solutions.

1. All constant magnetic �eld solutions

For SU(2) gauge theories it can be shown [6]
that solutions of the equations of motion with

constant �eld strength are given, up to a gauge
transformation, by

Ao
� = �iF��x��3=2; (1)

where F�� is a constant anti-symmetric tensor.

On a torus, in addition we have to require that the
vector potential is periodic up to a gauge transfor-

mation [4]. For convenience only we will restrict
our attention to a symmetric torus of unit length.
So for suitable gauge functions 
�(x) 2 SU(2)

Ao
�(x+ �̂) = 
�(x)(A

o
�(x) + @�)


�1
� (x): (2)

This can be read as a di�erential equation for

these gauge functions, which can be cast in a sim-
ple form by writing


�(x) = exp(Ao
�(x))!�(x): (3)

Without further assumptions on !�(x) this yields

D�!�(x) = @�!�(x) + [Ao
�(x); !�(x)] = 0; (4)

for any � and �. It is now straightforward to

show (see [8], app. B) that !�(x) are constant
and commute with �3. They can be parametrized

by constants C� mod 2� as

!�(x) = exp(iC��3=2); (5)

Multiplying !�(x) with a non-trivial element of
the center of the gauge group (�1 for SU(2)), does
not e�ect the boundary conditions of the gauge
�elds (not only for Ao

�(x), but for all of them).
To disentangle the gauge invariant parameters

it is useful to consider the Polyakov loops [9,10]

P�(x) = 1

2
Tr

�
Pexp

�Z 1

0

Ao
�(x)dx�

�

�(x)

�

= cos( 1
2
C� � F��x�); (6)

which shows that C� are gauge invariant parame-
ters. By performing an overall gauge transforma-

tion we can transform !�(x) to the identity, and
shift C� to the vector potential

AC
� (x) = �iF��x��3=2 + iC��3=2: (7)

Anti-periodic gauge transformations leave the
boundary conditions invariant (but ip the sign of


�(x) and Pj(x)). They shift the values of C� by
2�. Also we need to require that jPj(x)j is a pe-

riodic function in all directions (the sign is again
associated to the center of the gauge group and at
the heart of the twisted boundary conditions [4]).

This is seen to imply

F�� = �n�� ; (8)

with n�� integer and Z�� = exp(�iF��) are pre-
cisely the twist factors [4], which are the extra
factors that arise when interchanging � and � in


�(x+ �̂)
�(x).
We note that if F�� is an invertible matrix the

C� can be absorbed by a translation

AC
� (x) = �iF��(x� � y�)�3=2; C� = F��y� : (9)

However, in three dimensions any non-zero anti-
symmetric tensor has precisely one degenerate

eigenvector which can be identi�ed with the mag-
netic ux vector de�ned by mi = 1

2
"ijknjk and

obviously Pj(~x+s~m) = Pj(~x). We hence identify
the moduli

c � ~C � ~m; (10)

which is not related to a translation. Note that
translation in the direction ~m leaves Ao

�(x) invari-
ant such that the number of moduli is equal to

the number of dimensions. Obviously, the spec-
trum of uctuations around the constant mag-

netic �eld is not e�ected by translations, but it
can (and will, as we know form our experience

for F�� = 0) depend on the parameter c. It is
also useful to note that any gauge �eld that satis-
�es the boundary conditions of eq. (2) is periodic

in the direction ~m. This is most easily seen by
repeatedly applying eq. (2). Using the explicit

abelian form of 
k(x) (see eqs. (3,5)) one �nds

Aj(~x+ ~m=e) = �
�(~m)
3 Aj(~x)�

��(~m)
3 ; (11)

where e is the greatest common divisor of the
mi and �(~m) = m1m2m3=e

2. One easily veri-

�es that this implies periodicity, except if ~m =
(1; 1; 1) mod2. In that case the �3 component

of ~A is periodic, whereas the other two are anti-

periodic. Here we will only be concerned with
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the marginally stable case, for which there is a
non-empty interval in c with all uctuations sta-

ble. This is realized only [9] by ~m = (0; 0; 1) (or
any ~m equivalent to it under the cubic symmetry

group).

2. The full uctuation spectrum

We compute here for ~m = (0; 0; 1) the trans-
verse uctuation spectrum on a symmetric torus

of unit length. We keep the moduli not related
to a translation in the expression for the vector
potential and absorb the translation parameters

in the boundary conditions

~Ac(~x) = ~Ao(~x) + ic~m�3=2;


k(~x) = exp
�
i�~m^(~x� ~y)�3=2

�
: (12)

Expanding the vector potential in components as

Aj = Ac
j �

ip
2
dj�+ �

ip
2
d�j�� �

i

2
bj�3; (13)

one �nds the following boundary conditions

bj(~x+ k̂) = bj(~x); (14)

dj(~x+ k̂) = exp
�
i�k̂ � [~m^(~x� ~y)]

�
dj(~x):

The uctuation operator splits as follows [8]

d�z(M�4�)dz+d��z(M+4�)d�z+d
�

3Md3� 1

2
bk@

2
j bk(15)

with

z=
x1�ix2p

2
; dz=

d1+id2p
2

; d�z=
d1�id2p

2
(16)

and M = �D2
j , where Dj is the covariant deriva-

tive with respect to Ac, which on the bj modes
reduces to the ordinary derivative, but on the dj
modes leads to

M = aay+aya+(i@3�c)2; a=�i@�z� i�z; (17)

where a can be seen as an annihilation operator,

[a; ay] = 2�. Also [M;a] = �4�a, [M;ay] = 4�ay

and [@3;M ] = 0. From this we �nd that the eigen-
values of the uctuation operator are given by

�n;k(c)=2�(2n�1)+(2�k�c)2; n2IN; k2ZZ(18)

for the dj and �~k = (2�~k)2; ~k 2 ZZ3 for the bj
modes. Transversality for the latter is imposed

Figure 1. Lowest eigenvalues for the uctuation
operator for the continuum (full lines), a 43 (dot-
ted lines) and 63 (dashed lines) lattices. The lev-

els indicated by the arrow are four-fold and the
others are two-fold degenerate. From ref. [9]

by demanding @jbj = 0 and are hence two-fold
degenerate. To �nd the other degeneracies we

consider the eigenfunctions of the dj modes in
terms of the eigenfunctions of M

	n;k(~x) = (ay)n�o(z; �z)e
2�ikx3=

p
n! ; (19)

such that the eigenfunctions for the eigenvalue of
eq. (18) are given by dz=	n;k, d3=	n�1;k (n 6=0)

and d�z=	n�2;k (n 6=0; 1). Transversality,

�iDjdj�+=[adz+a
yd�z�(c+i@3)d3]�+=0; (20)

is seen to give one linear constraint and leaves a

four-fold degeneracy (as dj is a complex mode)
for n > 1. For n = 1 there is no d�z eigenfunction

and we have a two-fold degeneracy, whereas for
n = 0 only dz survives as an eigenfunction, which
is by itself transverse, since �0(z; �z) is annihilated

by a. One easily veri�es [8] that

�o(z; �z) = e���zzfo(z � y); (21)

with y = (y1 � iy2)=
p
2 and fo(z) a holomor-

phic function satisfying the boundary conditions
implied by eq. (14). For ~m = (0; 0; 1) there is

only one such function, related to a Riemann
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theta function (for the explicit form see ref. [8],
eq. (3.24)).

Except for n = 0 all eigenvalues are positive.
Two negative eigenvalues appear for jc � 2�kj <p
2� in �0;k(c). The region of stability for c 2

[0; 2�] is therefore given by
p
2� < c < 2��

p
2�.

In �gure 1 we present the spectrum for n = 0; 1; 2

and k = 0; 1. The continuum result (full lines) are
compared with numerical results on a 43 (dotted

lines) and 63 (dashed lines) lattice for the uctua-
tion spectrum around the simple transcription of
~Ac(~x) to a lattice, which is also an exact solution

of the lattice equations of motion [9]. Note that
the region of stability is reduced with decreasing

lattice spacing, but persists.

3. The e�ective potential

Having identi�ed the eigenvalues and degenera-
cies, it is straightforward to compute the e�ective

potential in the region of stability.

Ve�(c) = 2
X

n2IN;k2ZZ

[�
1

2

n;k(c) + �
1

2

n+2;k(c)]: (22)

Using the heat kernel expansion gives

Ve�(c) =
2

�(� 1

2
)

X
n2IN;k2ZZ

Z
1

0

dt
1+e�8�t

t3=2
e�t�n;k(c)

= ��� 1

2

X
k2ZZ

Z
1

0

dt
(1+e�8�t)e�t�0;k(c)

(1�e�4�t)t3=2
: (23)

We split the integration over t in the intervals
[0; 1] and [1;1]. For the integration over the �rst

interval, Poisson resummation is appliedX
k2ZZ

e�t(2�k�c)
2

= (4�t)�
1

2

X
`2ZZ

cos(`c) e�`
2=4t: (24)

This leaves only the integral for the ` = 0 term

divergent, which can be dropped, since it is inde-
pendent of c. All other integrals are �nite, even

at the edge of the stability region and can be per-
formed numerically with high accuracy. The re-

maining sum is rapidly converging. The following
expression is accurate to better than 1 : 105

Ve�(c)=2�
1

2

0;0(c)+2�
1

2

0;1(c)+�(c��)2+�(c��)4;(25)

with � = �0:517943 and � = 0:011789, which are

determined from the exact Taylor coe�cients. In

�gure 2 we plot Ve� (c), normalized to vanish at
the endpoints. It is obvious that the quantum

uctuations render these solutions unstable.
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Figure 2. E�ective potential in the stable region.
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