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Abstract
The equations of motion of the charged

particle under the action of electric forces in the simple Electrostatic

Quadrupole (ESQ) and in the Helical Electrostatic Quadrupole (HESQ)

are

solved. The HESQ electric �eld is realized by the four pole tips

forming concentric helices of pitch �. The transformation

matrices for ESQ and HESQ are found as the basic elements for designing

more complex optical systems.
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1 Introduction

Commonly, a system of magnetic lenses as, for example, solenoids and

magnetic quadrupoles, is used for focusing and transport of

particle beams. On the other hand, a system composed of electrostatic

lenses forming a section of linac has been applied only in

some cases. For example, a helical electrostatic quadrupole

(HESQ) was used for transport and matching of an H� beam to a RFQ

[1]. Note that the beam must be azimuthally symmetric and highly

convergent to be matched to the RFQ acceptance.

A similar system for focusing low energy and high current negative

Cu� and Au� ion beams was developed at the National Laboratory

for High Energy Physics (KEK) [2]. Reasons for such a choice exposed

in [3] were the following:

1. Electrostatic focusing is more e�ective at lower particle velocities

than magnetic focusing because of the velocity term in the force

equation.

2. Di�culties concerning the beam emittance growth caused by large

space charge forces in the beam are easily surmountable in the case of

electrostatic focusing.

3. Electrostatic focusing is very exible.

Because of the high voltage required for electrostatic focusing the

problem of discharge breakdown arises and spherical as well as chromatic

aberrations take place if Einzel lenses or electrostatic quadrupoles are

utilized. The helical electrostatic quadrupole provides a more suitable

system for the transport and focusing of the beam with low velocities.

The focusing forces are continuously spread in space thus reducing

the possibility of breakdown and also maintaining the beam size

during the transport. This property of a helical
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electrostatic quadrupole inuences favourably the aberrations. The

helical electrostatic quadrupole represents a �rst-order focusing

optical system with high focusing power.

The aim of this work is to calculate transformation matrices for a

simple electrostatic quadrupole and a helical electrostatic quadrupole.

They are the basis for designing much more complex optical systems

for transport and focusing of heavy ion beams, which should become a

topic

of further theoretical studies.

2 Simple electrostatic quadrupole

Let us consider the motion of a charged particle in the electrostatic �eld

given by the potential:

� = G
2
(x2 � y2);

(1)

where

G=V
a2

(2)
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(V - d.c.voltage, a - distance of the vanes from the axis, x, y are the

coordinates in the plane perpendicular to the optical axis z). The

potential,

�, is the solution of the Laplace equation with boundary

conditions: for x = a; y = 0 is � = V=2 and

for x = 0; y = a is � = �V=2.
This represents electrostatic quadrupole �eld corresponding to the

�xed geometry of the electrodes with an alternating potential.

From (1) x and y components of the electric �eld intensity are:

Ex = �Gx
(3)

Ey = +Gy

(4)

Let us �rst treat the case of the projection of the

particle trajectory in the xz plane. Then, using (3), we

�nd the equation of the motion to be

md2x
dt2=�eGx

4



(5)

where m and e are mass and charge of the particle.

If G > 0, the solution of eq.(5) is

x=Acos ( eG
m
)
1

2 t+B sin ( eG
m
)
1

2 t

(6)

with constants A, B, which are determined by the initial conditions:

x(t = 0) = x0; dx=dt(t = 0) = _x0.

We now set

dx
dt= dx

dz
dz
dt
=x0 _z=x0v

(7)

and we obtain the projection of the particle trajectory and derivative in

xz plane:

x=x0 cosKz +
x0

0

K
sinKz

5



(8)

x' = -Kxo sinKz + x00 cosKz:

(9)

with K = [(eG)=(mv2)]1=2.

In matrix notation the equations may be written as:

0
@ x

x0

1
A =

0
@ cosKz 1

K
sinKz

�K sinKz cosKz

1
A

0
@ x0

x00

1
A

Evidently, if the sign of the gradient G is reversed we have:

0
@ x

x0

1
A =

0
@ coshKz 1

K
sinhKz

K sinhKz coshKz

1
A

0
@ x0

x00

1
A
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It follows from eqs.(3),(4) that if the beam is focused in xz plane

for G > 0 then the beam is defocused in the yz plane and vice versa.

Corresponding transformation matrices of the trajectory projection

in the yz plane will be:

for G > 0

TD =0
@ coshKz 1

K
sinhKz

K sinhKz coshKz

1
A

and for negative G

TF =0
@ cosKz 1

K
sinKz

�K sinKz cosKz

1
A

If we let the particle pass through the two successive �eld regions

with G > 0 and G < 0 we �nd that such system is highly astigmatic. The

focal points in the xz and yz planes are at very di�erent locations.

The behaviour of the electrostatic quadrupole system is similar to the

magnetic quadrupole but the action of forces is di�erent. It follows

directly from mathematically equal forms of the equations of motion

(within an approximation of the �rst order). An analogous treatment of

the magnetic quadrupole leads to the same form of the transformation

matrices TF and TD with the constant K =
p
k,

where

k is the magnetic quadrupole strength k = eg=p and g is the �eld

gradient

[4].
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3 Helical Electrostatic Quadrupole

The Helical Electrostatic Quadrupole provides a stronger �rst-order

focusing

and it is also stronger than the alternating gradient focusing [3].

Electric focusing of this kind is a spatially continuous focusing.

It is realized by a structure of four vanes with an alternating voltage bias

�V=2. The vanes form a helix with

the pitch �, which represents a free parameter of the focusing structure.

� is de�ned as an angular rate per unit length along the axis.

The helical quadrupole �eld can be described by the potential:

� = const I2(�r) cos(2#� �s)

(10)

(I2(�r) is the modi�ed Bessel function of the second order)

which satis�es the Laplace equation ful�lling the boundary conditions:

� = V
2

if 2# � �s = 0(11)

� = �V
2

if 2#� �s = �
2

(12)

For small value of the argument the Bessel function I2(�r)
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can be expanded in a power series and the expression

(10) is reduced to

� = 1
2
Gr2 cos(2# � �s)

(13)

if we restrict ourselves to the lowest order term r2.

Using (13), the components of the quadrupole �eld

are

d�
dx=�G[x cos(�s)+y sin(�s)]

(14)

d�
dy=�G[x sin(�s)�y cos(�s)]

(15)

d�
ds=G�[(x2�y2) sin(�s)�2xy cos(�s)]
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(16)

They are written in Cartesian coordinates having s

direction along the optical axis.

The equations of motion for charged particle in electrostatic �eld

can be derived from the principle of the least action or simply from

Newton's law. In the system of coordinates (x; y; s) they have the

form

x"=e
_sp(Ex�x0Es)

(17)

y"=e
_sp(Ey�y0Es)

(18)

where p = mv , _s = ds=dt and x0; y0 are the derivatives

with respect to s variable.

Considering the particle moving near the axis, the approximative

expression (13) can be used to describe the quadrupole �eld.

Then the equation for

transverse motion in the continuously rotated quadrupole system will be:
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x"= -Kx cosz - Ky sinz

(19)

y"= -Kx sinz + Ky cosz

(20)

where z = �s and K = (eG)=(�2 _sp).

The task is to �nd the transformation matrix. That means we shall have

to express the transverse amplitude and angle of an arbitrary trajectory

at any point of the optical system as a function of the optical conditions

at the beginning of the system. It is seen that there is a coupling between

the trajectory projections into perpendicular planes xz and yz. Thus,

the transformation matrix will have 4 � 4 dimensions.

To solve the system of equations (19), (20) , we de�ne a new function

W=x + iy .

(21)
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Di�erentiating (21) twice and using

eq.(19),(20) gives

W"=-Keiz(x� iy)

(22)

Calculating the third and fourth derivate of W from (22) and their com-

binations

yield �nal di�erential equation

W""- 2iW"'- W"-K2W = 0

(23)

In such a way we obtained the di�erential equation of the fourth order

with

constant coe�cients, which is easily solvable. Its solution is:

W=expiz
2[W1exp(ipz)+W2exp(�ipz)+W3exp(iqz)+W4exp(�iqz)]

(24)
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where p = 1
2

p
1 + 4K and q = 1

2

p
1 � 4K.

Taking into account the conditions upon x, y the arbitrary complex

constants in eq.(24) can be speci�ed. To do it we divide the function

W (x+ iy) into real and imaginary parts in the complex plane x, iy:

W = exp(iz
2)[(a+i�a)

exp(ipz)+(b+i�b)exp(�ipz) +
+(c+i�c)exp(iqz)] + (d + i �d)exp(�iqz)]:
(25)

Performing the algebraic operations and after some rearrangement we

obtain

the system of four equations for x; y; x0; y0:

x = Acos z
2
cos pz � �A sin z

2
sin pz�

Bsin z
2
cos pz � �B cos z

2
sin pz �

Csin z
2
cos qz � �C cos z

2
sin qz+

Dcos z
2
cos qz � �D sin z

2
sin qz

(26)
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x' = -Apcos z
2
sin pz � 1

2
A sin z

2
cos pz

- �Ap sin z
2
cos pz � 1

2
�A cos z

2
sin pz

+Bpsin z
2
sin pz � 1

2
B cos z

2
cos pz

- �Bp cos z
2
cos pz + 1

2
�B sin z

2
sin pz

+Cqsin z
2
sin qz � 1

2
C cos z

2
cos qz

- �Cq cos z
2
cos qz + 1

2
�C sin z

2
sin qz

-Dqcos z
2
sin qz � 1

2
D sin z

2
cos qz

- �Dq sin z
2
cos qz � 1

2
�D cos z

2
sin qz

(27)

y = Asin z
2
cos pz + �A cos z

2
sin pz+

Bcos z
2
cos pz � �B sin z

2
sin pz +

Ccos z
2
cos qz � �C sin z

2
sin qz�

Dsin z
2
cos qz � �D cos z

2
sin qz

(28)

y' = -Apsin z
2
sin pz + 1

2
A cos z

2
cos pz

+ �Ap cos z
2
cos pz + 1

2
�A sin z

2
sin pz

-Bpcos z
2
sin pz � 1

2
B sin z

2
cos pz

- �Bp sin z
2
cos pz � 1

2
�B cos z

2
sin pz

-Cqcos z
2
sin qz � 1

2
C sin z

2
cos qz
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- �Cq sin z
2
cos qz � 1

2
�C cos z

2
sin qz

-Dqsin z
2
sin qz � 1

2
D cos z

2
cos qz

+ �Dq cos z
2
cos qz � 1

2
�D sin z

2
sin qz

(29)

with eight unknown real constants:

A = a+b, B = �a+�b; �A = a� b; �B = �a� �b

(30)

D = c+d, C = �c+ �d; �D = c� d; �C = �c� �d:

(31)

For determination of the constants we have four initial conditions:

x(z=0) = x0; y(z = 0) = y0; x
0(x = 0) = x00; y

0(z = 0) = y00:

(32)

The second and third derivatives of x and y provide the other
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four conditions:

x"0 = Kx0; x0000 = Kx00 +Ky0;

(33)

y"0 = �Ky00; y0000 = Kx0 �Ky00:

(34)

Here zero subscript indicates the initial values at z = 0.

Summarizing we get for the calculation of the constants

(30) and (31) the system of eight equations:

x0 = A+D(35)

y0 = B + C(36)

x'0 = �1
2
(C +B)� �Bp+ �Cq(37)

y'0 =
1
2
(A+D) + �Ap + �Dq(38)

0 = (Ap + �A)p+ (Dq + �D + x0q)q(39)

0 = (Bp + �B + y0p)p + (Cq + �C)q(40)

0 = Ky0 +Kx00 +
1
8
y0 + �Bp3 + �Cq3 + 3

2
(Bp2 + Cq2) + 3

4
( �Bp+ �Cq)(41)
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0 = -Kx0 +Ky00 +
1
8
x0 + �Ap3 + �Dq3 + 3

2
(Ap2 +Dq2) + 3

4
( �Ap+ �Dq)

(42)

from which it follows:

A = x0 � y0

0

2K

B = x'0 2K

C = y0 � x0

0

2K

D = y'0 2K(43)

�A = � A
2p

�B = �2pB
�C = � C

2q

�D = �2qD:
(44)

After an amount of elementary but tedious algebra we �nd the following

transformation matrix:

T1 =

0
BBBBBBBBB@

sinpz
2p

sin z
2
+ cos pz cos z

2
(cos qz � cos pz) sin z

2
+
�
� sin qz

2q
� 2p sin pz

�
cos z

2

� sinpz
2p

cos z
2

cos pz cos z
2
+ sin qz

2q
sin z

2

cos pz sin z
2
� sin pz

2p
cos z

2
(cos pz � cos qz) cos z

2
+
�
2p sin pz � sin qz

2q

�
sin z

2

� sinpz
2p

sin z
2

cos pz sin z
2
� sin qz

2q
cos z

2
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� cos qz sin z
2
+ sin qz

2q
cos z

2
(cos qz � cos pz) cos z

2
+
�
� sinpz

2p
+ 2q sin qz

�
sin z

2

� sin qz
2q

sin z
2

� cos qz sin z
2
+ sinpz

2p
cos z

2

cos qz cos z
2
+ sin qz

2q
sin z

2
(cos qz � cos pz) sin z

2
+
�
2q sin qz � sinpz

2p

�
cos z

2

sin qz
2q

cos z
2

cos qz cos z
2
+ sinpz

2p
sin z

2

1
CCCCCCCCCA

Let us consider K reverse. It is equivalent to keeping K positive, but

changing the signs in eqs.(19),(20).

They take the form:

x"= +Kx cosz + Ky sinz

(45)

y"= +Kx sinz - Ky cosz

(46)

(K is again considered to be positive)

from which it follows for the second and third derivatives of x and y at

z = 0:
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x"0 = �Kx0; x0000 = �Kx00 �Ky0;

(47)

y"0 = Ky00; y0000 = �Kx0 +Ky00:

(48)

Then the equations for

the calculation of the constants (30) are:

x0 = A+D(49)

y0 = B + C(50)

x'0 = �1
2
(C +B)� �Bp� �Cq(51)

y'0 =
1
2
(A+D) + �Ap + �Dq(52)

0 = (Ap + �A+ x0p)p + (Dq + �D)q(53)

0 = (Bp + �B)p+ (Cq + �C + y0q)q(54)

0 = -Ky0 �Kx00 +
1
8
y0 + �Bp3 + �Cq3 + 3

2
(Bp2 + Cq2) + 3

4
( �Bp + �Cq)(55)

0 = Kx0 �Ky00 +
1
8
x0 + �Ap3 + �Dq3 + 3

2
(Ap2 +Dq2) + 3

4
( �Ap + �Dq)
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(56)

The solution is:

A = - y'0 2K

B = y0 +
x0

0

2K

C = - x'0 2K

D = x0 +
y0

0

2K
(57)

�A = �2pA
�B = � B

2p

�C = �2qC
�D = �D

2q
:

(58)

Using these constants we obtain a new transformation matrix:

T2 =

0
BBBBBBBBB@

sin qz
2q

sin z
2
+ cos qz cos z

2
(cos qz � cos pz) sin z

2
+
�
sinpz
2p
� 2q sin qz

�
cos z

2

sin qz
2q

cos z
2

cos qz cos z
2
+ sin pz

2p
sin z

2

cos qz sin z
2
� sin qz

2q
cos z

2
(cos pz � cos qz) cos z

2
+
�
�2q sin qz + sinpz

2p

�
sin z

2

sin qz
2q

sin z
2

cos qz sin z
2
� sin pz

2p
cos z

2
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� cos pz sin z
2
+ sinpz

2p
cos z

2
(cos qz � cos pz) cos z

2
+
�
sin qz
2q
� 2p sin pz

�
sin z

2

sinpz
2p

sin z
2

� cos pz sin z
2
+ sin qz

2q
cos z

2

cos pz cos z
2
+ sinpz

2p
sin z

2
(cos qz � cos pz) sin z

2
+
�
2p sin pz � sin qz

2q

�
cos z

2

� sinpz
2p

cos z
2

cos pz cos z
2
+ sin qz

2q
sin z

2

1
CCCCCCCCCA

Now we introduce the rotation matrix R for rotation of the coordinate

system x; y by an angle � :

R =0
@ U cos� �U sin�

U sin� U cos�

1
A

where

U =0
@ 1 0

0 1

1
A

It is possible to demonstrate fairly simply that the change of sign of K in

the equations of motion is related to a rotation by an angle �=2.

It follows from the relation:

RT2R
T = T1

(where RT denotes the transposed matrix R)

with the angle �=2 substituted for � in the matrix
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R:

Performing the calculation of both the matrices T1,T2

we supposed K to be positive and less than 1=4. In this case the

characteristic equation has imaginary roots and the matrices contain only

the functions sin and cos of the arguments pz and qz in contrast to

the behaviour of the simple electrostatic quadrupole. In case of K > 1=4

the functions sin and cos in the matrices T1,T2

are replaced by sinh and cosh and the system is defocusing.

4 Conclusion

It is seen from the foregoing results that the ESQ transformation matrices

have the same forms as magnetic quadrupole matrices (see, for example,

[4]). Consequently,

the same mathematical formalism can be applied to designing a more

complex

beam transport lines. As an example, we can cite the work [5], in

which a suitable mathematical formalism is briey described and applied

to

con�gurations consisting of several rotated permanent magnetic quadrupoles.

Clearly, making conclusions for any con�gurations constructed from ESQ

disks and drift spaces one must keep in mind a di�erent action of electric

and magnetic forces on the moving particle.

The general features of the continuously rotated magnetic quadrupole

system

for transport and focusing of high current beams were analyzed in [6].

If we extended this analysis to HESQ we should obtain similar results.

HESQ exhibits the same features as rotated magnetic quadrupole and the
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similar conclusions about its transport and focusing properties as in

[6] can be made if we account for the fact that the electrostatic focusing

is more e�ective in case of small particle velocities than the magnetic

one.

In this work we analysed the trajectory of a charged particle moving in

an

electrostatic �eld in the helical quadrupole geometry. The result is

the transformation matrix which should serve for design of more

complicated transport lines of the high current beams of heavy ions.

It is supposed that the TRANSPORT code will be used for this purpose.

The resulting tranformation matrix is too complex to calculate

the transport parameters of the con�guration consisting of HESQ ana-

lytically.
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