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Abstract

We show that the Riemannian Kerr solutions are the only Rie-

mannian, Ricci-
at and asymptotically 
at C2-metrics g�� on a 4-

dimensional complete manifoldM of topology R2�S2 which have (at

least) a 1-parameter group of periodic isometries with only isolated

�xed points ("nuts") and with orbits of bounded length at in�nity.

�Present address: Institut f�ur theoretische Physik der Univ. Wien, Boltzmanngasse 5,

A-1090 Wien, Austria. E-mail: simon@pap.univie.ac.at

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25183462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The relevance of instantons, (here understood as being regular, real, Rie-
mannian, Ricci-
at manifolds), in quantum gravity [1]-[4] has stimulated
interest in theorems on the (non-) existence in particular of periodic such
solutions and of solutions with isometries. It has been shown under rather
general conditions that there are no non-trivial instantons on R4 and on R3�S
[5]. Known examples include the R2�S2 Kerr-NUT instanton [2, 4, 6] which
(like many others) has been found by \Euclideanizing" the corresponding
Lorentzian solution [7], and the adaption of Lorentzian uniqueness (\no-
hair") theorems has been discussed as well [3]. The di�erent character of
the Riemannian case (the absence of horizons and ergospheres and the exis-
tence of singularity-free solutions) require and suggest, however, alternative
approaches to the uniqueness problem. Based on a characterization of the
Lorentzian Kerr metric in terms of complex quantities [8] which become real
in the Riemannian case and also satisfy generalizations of \Israel"-type iden-
tities [9] we have obtained the following result. (We abbreviate \Riemannian"
by \Riem." and \Lorentzian" by \Lor." henceforth. Greek indices go from
0 to 3).

Theorem. The Riem. Kerr solutions are the only Riem., Ricci-
at and
asymptotically 
at C2-metrics g�� on a 4-dimensional complete manifold M
of topology R2 � S2 which have (at least) a 1-parameter group of periodic
isometries with only isolated �xed points and with orbits of bounded length
at in�nity.

Introductory material and 2 Lemmas will precede the proof. Details of
parts of our analysis and extensions thereof will be given elsewhere.

The condition of Ricci 
atness (R�� = 0) implies that g�� and the Killing
�eld �� corresponding to the isometry �� (� is the group parameter) are
analytic in harmonic coordinates [10]. The set L of �xed points of �� has the
following structure [2]. At every q 2 L the di�erential ��� leaves invariant
two 2-dimensional orthogonal subspaces T+

q and T�
q of the tangent space

Tq. If ��� acts as the identity on one of T+

q or T�
q there is a 2-surface of

�xed points called "bolt" which we exclude by assumption. If q is isolated
it is called a "nut" after the Taub-NUT metric [11]. In this case ��� acts
as rotations in each of T+

q and T�
q with periods �� = 2�=�� (the smallest

values of � such that ���X
� = X� for X� 2 T�

q ). �+ and �� are also the
skew eigenvalues of r��� in an orthonormal frame and called "gravities" of
the nut. As �� is assumed to be periodic, there is a (smallest) � 0 such that
��0�X = X for all X 2 Tq which implies that �+p+ = � 0 = ��p� for relative
prime integers p+ and p�. Since �� commutes with the exponential map, i.e.
exp(���X) = �� (expX), the period of ���X at q equals the periods of the
orbits through all points of a geodesic emanating from q with tangent vector
X (at least) as long as the exponential map is non-singular.
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Let � = ���� denote the norm and !� = ����� �
�r��� the twist of

��. (����� is antisymmetric and �0123 = (det g)1=2). By Ricci 
atness,
r�(�

�2!�) = 0. Hence the "nut charge" [2]

m�
i =

1

8�

Z
Si

��2!�dS
� =

�

2�+i �
�
i

(1)

is independent of the compact 3-surface Si which encloses the nut ni and
does not intersect others. The surface element dS� points outwards. The
second part of (1) follows by Taylor-expanding �� at ni and by shrinking Si
to ni.

In Lemma 1 and in the Theorem we adopt a standard de�nition of asymp-
totic 
atness (AF) [4, 12] and require M minus a compact set to be di�eo-
morphic to R+�S�S2 and the metric and its �rst and second derivatives to
go to the 
at metric and its derivatives, with the usual 1=r� fallo� in coor-
dinates adapted to the isometry, i.e. @�g�� = 0. The de�nition implies that
at in�nity all orbits �� have the same length which we call l1. (We remark,
however, that the limit of the length function may be discontinuous when
the limiting orbit is approached via orbits which wind repeatedly around the
large S2 � S-surfaces of constant distance from a nut). In Lemma 2 we will
require "local asymptotic 
atness" (ALF) with the cyclic group Z [4, 12]. In
this setting we can de�ne the "dual mass" m� [13] by considering the integral
in (1) over the asymptotic region. We remark that (M; g��) is AF i� it is
ALF and m� = 0. �� is normalized such that �! 1 at in�nity.

Lemma 1. Under the requirements of the Theorem M has precisely 2 nuts
n1 and n2 whose "gravities" ��1 and ��2 satisfy �+1 = �+2 and ��1 = ���2 .
(The choice of the labels + and � is a convention). Moreover, we have
l1 � min(2�=�+; 2�=��) where �� = j��1 j = j��2 j.

Proof. AsM has topology R2�S2, it has Euler number � = 2 and signature
� = 0. In the absence of bolts and using AF, the index theorem implies that
� is equal to the number of nuts and 3� = �+1 =�

�
1 +��1 =�

+

1 +�+2 =�
�
2 +��2 =�

+

2 .
(See [14] for the compact case and [12, 15] regarding boundary terms). To-
gether with (1) and m�

1
+ m�

2
= m� = 0 we obtain the �rst part of the

lemma.
As M is not compact there is (at least one) X1 2 Tn1 and (at least one)

X2 2 Tn2 such that 
1 = exp(tX1) and 
2 = exp(tX2), t 2 (0;1) approach
in�nity as minimizing (radial) geodesics [16]. As families �� (
1) and �� (
2) of
such geodesics diverge in the asymptotic region, the exponential map remains
non-singular in the limit. Hence l1 equals the periods of ���X1 and ���X2

which can be �� or � 0 � ��. Thus the lemma holds.
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From R�� = 0, !� is curl-free, i.e. r[�!�] = 0. AsM is simply connected,
r�! = !� de�nes a scalar �eld ! globally and up to a constant which
we choose such that ! vanishes at in�nity. We also de�ne E� = � � !,
� = 1

2
(r���)(r��� ) and � = 1

4
����� (r���)(r��� ) which satisfy, again from

R�� = 0,
2E� = 4(� � �) = ��1r�E�r�E� � 0: (2)

The maximum principle and the asymptotic conditions imply E� < 1 and
hence E� = �E� + 2� � �E� > �1.

To simplify what follows we now foliate MnL by the orbits of �� [2, 17].
We obtain a manifold (N ; 
ij) where 
ij is the pullback of 
�� = �g�� �
����. (Tensors on N carry latin indices). We denote by Di and Rij the
covariant derivative and the Ricci tensor with respect to 
ij and introduce
w� = (1 + E�)�1(1� E�); � = 1�w+w�; Ai =

1

2
(w+Diw� �w�Diw+) and

Di
� = ��1Di � 2��2Ai. Since jE�j < 1 we have 0 < w� < 1 and � > 0.

On N the condition R�� = 0 reads

DiDi
�w� = 0 (3)

Rij = 2��2D(iw�Dj)w+: (4)

When (M; g��) is ALF, (N ; w�; 
ij) is asymptotically 
at in a standard sense
(compare [21]).

In coordinates r = <�m where < is the radial "Boyer-Lindquist"- coor-
dinate (equ. (2.13) of [18]) the Riem. Kerr-NUT metric reads

w� = m�(r � � cos�)�1; (5)


ijdx
idxj = (r2 �m+m� � �2)�1(r2 �m+m� � �2cos2�)dr2+

+(r2 �m+m� � �2cos2�)d�2 + (r2 �m+m� � �2)sin2�d�2: (6)

Here m = 1

2
(m+ + m�) and m� = 1

2
(m+ �m�) are the mass and the dual

mass and � is another real constant. For m� = 0 this is the Riem. Kerr
metric for which �� = @=@� has 2 nuts at r =

p
m2 + �2; � = 0 and � = �.

In the Riem. Schwarzschild case (m� = � = 0) this vector has a bolt at
r = m. For the Riem. Kerr metric Kruskal-like coordinates can be obtained
by "Euclideanizing" (3.8) of [18].

Our characterization involves the pairs of quantities

k4� = Diw�Diw�; (7)

B�
ij = 4��2C[DiDjw� � (3w�1

� +��1w�)Diw�Djw�]; (8)

where C denotes the trace-free part and
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C�
ijk = 4��2(DiD[jw�Dk]w� � 
i[ju

�
k]); (9)

where
u�k = 
ijDiD[jw�Dk]w�: (10)

On sets where k4� 6= 0 (3) and (4) imply, for each � 2 R,

DiDi
�

k�+1

�

w�
�

= �(� + 1)
k��1�

�w�
�

(Dik� � k�

w�
Diw�)(D

ik� � k�

w�
Diw�) +

+
�+ 1

16

k��7�

w�
�

�3C�
ijkC

ijk
� : (11)

For � � 0, the r.h. sides of (11) are non-negative and for � = 3 they can be
written as 1

8
�3w�3

� B�
ijB

ij
� .

When �� is hypersurface-orthogonal (! = 0) the objects B�
ij coincide and

are, by virtue of (3) and (4), equal to certain functions f�(�) times the Ricci
tensors R�

ij with respect to the metrics 
�ij =
1

16
��1(1��1=2)4
ij . Likewise, for

! = 0 each of C�
ijk reduces to the Cotton tensor which characterizes confor-

mal 
atness. The corresponding characterizations of the Lor. Schwarzschild
metric and the restriction of (11) for certain values of � were employed in
uniqueness proofs [9, 19]. In the general case B�

ij , k� and C�
ijk have complex

Lor. counterparts Bij , k and Cijk which have analogous properties. The
latter two quantities have been employed in local characterizations of the
Kerr metric among the AF ones [8] and of a larger class of metrics if the
asymptotic assumption is dropped [20]. The methods of these papers can be
straightforwardly applied in the Riem. case and yield the following result.

Lemma 2. An ALF C2-solution (w�; 
ij) of (3) and (4) is isometric to a
Riem. Kerr-NUT metric i� it satis�es one of (12), (13) or (14) (a pair of
equations in each case) in a neighbourhood U of a point of N :

Either k+ = �+w+ or w+ = 0; and either k� = ��w� or w� = 0; (12)

where �� > 0 are constants.
B�

ij = 0: (13)

C�
ijk = 0: (14)

Proof. Degenerate cases in which either w+ and w� are functionally related
or one of w� vanishes on U are easily disposed of. In the generic case, from
(3) and (11), (12) implies (13) and (14). Conversely, (12) follows either by
inserting (8) into B�

ijw
j
� = 0, using also (3), or from C�

ijk = 0 and the ALF
conditions as in the Lor. case [8, 20].
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The Riem. Kerr-NUT metric in the form (5), (6) is easily seen to satisfy
(12). To show the converse we essentially follow [20] and de�ne the vector
�eld

li = �1

2
��4� ��4

+
w�3
� w�3

+
� �ijk(D

jw�)(D
kw+) (15)

which, from (3) and (13), is hypersurface-orthogonal (�ijkl
iDj lk = 0) and

Killing (D(ilj) = 0): Hence there exists a function r0 on U such that li =
@=@r0 and the metric coe�cients in the coordinates r0 and r� = 1

2
(��2

+
w�1
+
�

��2� w�1
� ) are independent of r0. Moreover, from (12) and (15) the metric is

diagonal in these coordinates and


r+r+ + 
r�r� = 
ijDir+Djr+ + 
ijDir�Djr� = 1; (16)


r0r0 = 
ijl
ilj = 
r+r+
r�r�(r2

+
� r2� � ��2

+
��2� )2: (17)

Finally, inserting (8) into (B+

ijw
j
�+B�

ijw
j
+)D

ir� = 0 and using (16) and again
(3) and (12) yields linear �rst order di�erential equations for 
r+r+ or 
r�r�.
Integrating, we �nd (5) and (6) with r+ = r, r� = � cos�, r0 = ��1� and
�� = jm�j�1=2 where � is a constant of integration. This proves the lemma.

Proof of the Theorem. We prove the Theorem by integrating (11) for � = 1.
Rewriting the l.h. sides in terms of quantities de�ned above we �nd

r�[
(1 + E+)(1 + E�)

�
(r�

p
� � �

1� E2�
) +

p
� � �

2�2
(r�E� � 1 � E2�

1 � E2�
r�E�)] � 0;

(18)
and by Lemma 2 equality implies Kerr in the AF case. The vector pair in
brackets, called Y �

� , is singular at the nuts and on the sets X� where ��� = 0.
The latter are submanifolds of dimension � 2 and invariant under �� as can
be shown from (2) like in the static Lor. case [19]. We note that at a nutp
� � � = j�+� ��j, and we assume �rst that none of the nuts is (anti-) self

dual, viz. j�+ � ��j 6= 0. Applying the divergence theorem to (18) we get
the bounds

0 �
Z
1
Y �
� dS� +

X
i=1;2

Z
Si

Y �
� dS� +

Z
T�

Y �
� dS� (19)

on surface integrals (with dS� directed outwards) over in�nity, over small
spheres Si around the nuts and over small tubes T� around X�. Again both
bounds are simultaneously saturated for Kerr only. Performing the limits
Si ! ni and T� ! X� as carefully as done in [19] we �nd that the last
pair of integrals in (19) is non-positive whereas the �rst two pairs can be
evaluated using (1) and Lemma 1. We obtain

0 � �4�l1 � 8�m�
1
j�+

1
� ��

1
j � 8�m�

2
j�+

2
� ��

2
j �

� �4�min(2�=�+; 2�=��) + (4�2=�+��)(j�+ + ��j � j�+ � ��j) =
= 0 (20)
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which also follows easily for (and excludes) (anti-) self-dual nuts. This �n-
ishes the proof.

Our result can possibly be generalized in various directions. Firstly, it
might be possible to show directly (i.e. without using results of this paper)
that geodesics emanating from nuts ni with tangent vectors in the pref-
ered subspaces T�

ni
either join the nuts or reach in�nity. This would yield a

stronger version of Lemma 1 (namely that l1 equals the period �� of the cor-
responding subspaces) without or under weaker assumptions on the topology
of M.

We also would like to allow "bolts". In fact, we can show as follows that
(M; g��) must be the Riem. Schwarzschild metric if L is connected. Since the
twist scalar satis�es r�(�

�2r�!) = 0 which is regular elliptic except at L,
! must have its maximum and its minimum at L or at in�nity. But extrema
at the in�nity of M or N can be ruled out by compactifying the end of N
(as in the Lor. case [22]). Since ! is constant on L it must vanish identically,
i.e. �� is hypersurface-orthogonal. The proof can now be completed via any
of the Lor. methods [9, 19, 23], in particular again by integrating (18).

Of course Lemma 2 suggests that our uniqueness result might be extend-
able to the Kerr-NUT case. For this purpose we should assume ALF instead
of AF, generalize Lemma 1 to include the boundary terms in the signature
[15, 12] and note that the dual mass m� no longer vanishes.

Furthermore, there presumably result still more general families of \half-
Kerr-NUT" solutions (and of Lor. counterparts) by imposing only one of the
00+00 or 00�00 parts of (12), (13) or (14) (or corresponding Lor. equations).
Under suitable asymptotic conditions a uniqueness result for the Riem. so-
lutions might be obtained by integrating the corresponding part of (18).

Acknowledgement
I am grateful to Lars Andersson, Robert Bartnik, Robert Beig, Piotr
Chru�sciel, Gary Gibbons and Helmuth Urbantke for helpful discussions.

References

[1] Hawking S W 1977 Phys. Lett. 60A 81
Eguchi T, Gilkey P B and Hanson A J 1980 Phys. Rep. 66 213
Gibbons G W and Hawking S W eds 1993 Euclidean Quantum Gravity

(Singapore: World Scienti�c)

[2] Gibbons G W and Hawking S W 1979 Commun. Math. Phys. 66 291

[3] Lapedes A S 1982 Seminar on Di�erential geometry, Ann. of Math.

Stud. 102 ed S T Yau (Princeton: Princeton University press)

[4] Perry M J ibid.

7



[5] Witten E 1981 Commun. Math. Phys. 80 381
O'Murchadha N and Shanahan H 1993 Phys. Rev. Lett. 70 1576

[6] Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2752

[7] Kerr R P 1963 Phys. Rev. Lett. 11 237

[8] Simon W 1984 Gen. Rel. Grav. 16 465

[9] Israel W 1967 Phys. Rev. 164 1776
Robinson D C 1977 Gen. Rel. Grav. 8 695

[10] M�uller zum Hagen H 1970 Proc. Camb. Phil. Soc. 68 199

[11] Taub A 1951 Ann. Math. 53 472
Newman E T, Tamburino L and Unti T 1963 J. Math. Phys. 4 915

[12] Gibbons G W, Pope C N and R�omer H 1979 Nucl. Phys. B 157 377

[13] Ramaswami S and Sen A 1981 J. Math. Phys. 22 2612

[14] Bott R 1967 Mich. Math. J. 14 231
Atiyah M F and Singer I M 1968 Ann. Math. 87 546
Baum P and Cheeger J 1969 Topology 8 173

[15] Atiyah M F, Patodi V K and Singer I M 1975 Proc. Camb. Phil. Soc. 77
43 and 78 405

[16] Kobayashi S and Nomizu K 1969 Foundations of Di�erential Geometry

II (New York: John Wiley & Sons) Theorem 7.5

[17] Geroch R 1971 J. Math. Phys. 12 918

[18] Boyer R H and Lindquist R W 1967 J. Math. Phys. 8 265

[19] M�uller zum Hagen H, Robinson D C and Seifert H J 1973 Gen. Rel.

Grav. 4 53

[20] Perj�es Z 1984 in Proc. 3rd Quantum Gravity meeting, Moscow 1984 ed
M A Markov

[21] Beig R and Simon W 1980 Gen. Rel. Grav. 12 439

[22] Beig R and Simon W 1981 Proc. Roy. Soc. Lond. A 376 333
Kundu P 1981 J. Math. Phys 22 2006

[23] Bunting G L and Masood-ul-Alam 1987 Gen. Rel. Grav. 19 147

8


