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Abstract

Renormalization group techniques are used in order to obtain the improved non-local

gravitational e�ective action corresponding to any asymptotically free GUT, up to invariants

which are quadratic on the curvature. The corresponding non-local gravitational equations

are written down, both for the case of asymptotically free GUTs and also for quantum R2-

gravity. The implications of the results when obtaining the 
ux of vacuum radiation through

the future null in�nity are brie
y discussed.
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The e�ective action has turned out to be a quite important subject in the study of

di�erent aspects of quantum �eld theory. Among the phenomena to which it has been applied

successfully, we can mention symmetry breaking/restoration e�ects, phase transitions in

general, models of quantum corrected �eld equations, etc.

Most of the studies of the e�ective action have been limited to a quasi-local approach

(for a general introduction see [1, 2]), that is, they deal with almost constant background

�elds, as is the case of quantum gravity on a De Sitter background [3] |which is important

in in
ationary universes. Recently, some interest has arisen ([4]-[7], see [6] for an extense

account) for the case of weak but very quickly varying background �elds, which typically

lead to non-local e�ective actions. In the present note, by using simple renormalization

group (RG) methods |implemented by means of a Wilsonian procedure [8]| we are going

to show how one can obtain in fact an improved non-local e�ective gravitational action for

a big class of theories.

The starting point for our considerations will be a massless, multiplicatively renormaliz-

able theory including scalar, spinor and vector �elds on a classical gravitational background.

The corresponding Euclidean Lagrangian has the following form

L = Lm + Lext;

Lm = LY M +
1

2
(r�')

2 +
1

2
�R'2 +

1

4!
f'4 + i (
�r� � h') ;

Lext = a1R
2 + a2C

2

���� + a3G+ a42R: (1)

By choosing a speci�c gauge group, we can assume that some multiplets of the scalar, ',

and spinor,  , �elds are given in some concrete representation of the gauge group.

We will assume that our theory (1) is a typical asymptotically free GUT in curved

spacetime (for a general introduction, see [2]). In principle one could equally well consider

other types of GUTs, what would not change qualitatively the conclusions of our study

below.

The running coupling constants corresponding to the asymptotically free couplings of the

theory (1) have the form [9, 10]

g2(t) = g2
"
1 +

B2g2t

(4�)2

#�1
; g2(0) = g2;

h2(t) = �1g
2(t); f(t) = �2g

2(t); (2)

where t is the RG parameter while �1 and �2 are numerical couplings de�ned by the speci�c

features of the theory under consideration. We know of many examples of such theories,
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with gauge groups SU(N), O(N), E6, etc. [9, 10]. Asymptotic freedom (g2(t) ! 0, t! 1)

is realized for all running couplings: gauge, Yukawa and scalar ones, as is easy to see from

(2).

The study of asymptotically free GUTs in curved spacetime was started in Ref. [11] (for

a review and detailed list of references see [2]). In the theories with one scalar multiplet, for

the running scalar-graviton coupling constant one gets

�(t) =
1

6
+

�
� �

1

6

�"
1 +

B2g2t

(4�)2

#b
; (3)

where �(0) = � and where for the di�erent GUTs the constant b can be either positive,

negative or zero (see Ref. [2]).

The gravitational running couplings are de�ned by the following di�erential equations

(we shall consider the gravitational equations in the Euclidean region)

da1(t)

dt
=

1

(4�)2

�
�(t) �

1

6

�2 Ns

2
;

da2(t)

dt
=

1

120(4�)2
(Ns + 6Nf + 12NA) ;

da3(t)

dt
= �

1

360(4�)2
(Ns + 11Nf + 62NA) ; (4)

where Ns; Nf and NA are the number of real scalars, Dirac spinors and vectors, respectively

(notice that the running of a4(t) will not be meaningful for us, as we shall see below).

Owing to the fact that the theory under discussion is multiplicatively renormalizable, the

e�ective Lagrangian satis�es the RG equation

 
�
@

@�
+ �i

@

@�i
� 
i�i

@

@�i

!
Leff (�; g�� ; �i; �i) = 0; (5)

where � is the mass parameter, �i = (g2; h2; f; �; a1; a2; a3; a4) is the set of all coupling

constants, the �i are the corresponding �-functions and �i = (A�; �;  ). The solution of

Eqs. (5) by the method of the characteristics gives (for all quantum �elds we consider a zero

background �eld, �i = 0):

Leff (�; g�� ; �i) = Leff (� e
t; g�� ; �i(t)); (6)

where
d�i(t)

dt
= �i (�i(t)) ; �i(0) = �i: (7)
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Observe that for some of the coupling constants, the corresponding Eq. (7) has been written

above explicitly (Eq. (4)), while for a subset of them Eqs. (7) have been actually solved (see

Eqs. (2) and (3)).

Actually, the idea itself of a RG improvement procedure was suggested many years ago

[12]. What we do here is to make use once more of this interesting concept. Physically, the

meaning of expression (6) is the following: Leff (called sometimes the Wilsonian e�ective

action [8]) is obtained through the above equations provided its functional form for some

value of t is known (usually it is the classical Lagrangian that serves as boundary condition at

t = 0). Another di�culty is related with the choice of t, which cannot be given a unique de�-

nition due to the presence, in general, of several di�erent efective masses (see the discussions

in Refs. [13, 14] concerning that point, for curved and for 
at spaces, respectively).

There are di�erent approaches to the gravitational e�ective action (for a general intro-

duction, see [1, 2]). In the literature, mainly the case of a local e�ective action has been

discussed (i.e., the situation where the gravitational �eld is slowly varying). One-loop non-

local e�ective actions have been considered in Refs. [4]-[7] (see also the references therein),

in di�erent contexts, but almost exclusively the case of a free scalar �eld theory has been

taken into account.

We will be interested in the situation where the gravitational �eld is weak, but rapidly

varying, e.g.

rrR >> R2: (8)

The non-local one-loop e�ective action for a free scalar �eld theory in this case has been

calculated in Ref. [5] (see also [6, 7, 15]), up to the second order on curvature invariants.

Such a calculation is quite tedious, moreover, its extension to other �elds (especially, to

interacting �elds) is anything but trivial (see [6] for a discussion and list of references).

We will make use of this RG improvement technique in our calculation, what is going

to yield a correspondingly more precise result than the one that has been obtained till

now by means of previous approaches to the problem. First, all those calculations have

been carried out in the one-loop approximation, while ours here will yield the RG improved

e�ective Lagrangian to leading-log order (through summation of all possible logarithms) of

perturbation theory, i.e., clearly beyond one-loop. Secondly, the theory under discussion had

been usually restricted to scalar �elds, while the considerations here will be applicable to

any renormalizable theory on a curved background, including the ordinary renormalizable

models of quantum gravity, as R2-gravity (see [2] for a review). In particular we will present
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results for an arbitrary asymptotically free GUT in curved spacetime (see [2, 11]).

To begin, using the general expression (6) we can write explicitly the RG improved

e�ective Lagrangian for the theory (1), employing the classical Lagrangian as boundary

condition:

Leff = a1(t)R
2 + a2(t)C

2

���� + a3(t)G+ a4(t)2R; (9)

where the choice of RG parameter t will be described below. From the explicit one-loop

calculation [10, 11], the RG parameter is found to be

t �
1

2
ln
�2+ c1R

�2
; (10)

where the constant c1 is di�erent in the di�erent sectors (scalar, spinor and vector). By

looking at (8) one can see that in order to get the dominant contribution we may just keep

the �rst term in (10), i.e. t ' (1=2) ln(�2=�2). From the explicit study of the non-local

e�ective action [5]-[7] it follows that the thing one has to understand is the way non-local

form factors act, as formal operators obeying the variational rules of �nite matrices (in the

Lorentzian region). Note also that the terms a4(t)2R and a3(t)G are still total derivatives

after the RG improvement (compare with the other regime in [13] where these terms become

important). Notice that a di�erent way of understanding the appearance of the �2 under

the logarithm is to resort to RG considerations in curved space [2], where we know that a

scale transformations of the metric, g�� ! e�2tg�� , ought to be performed. Since, under

this transformation, R2
! e4tR2 and 2! e2t2, the logarithm corresponding to those terms

becomes relevant in the high-energy limit t!1.

Finally, the RG improved non-local gravitational e�ective Lagrangian takes the form

Leff = R

8<
:a1 � (� � 1=6)2Ns

2B2g2(2b+ 1)

2
4 1 + B2g2 ln(�2=�2)

2(4�)2

!2b+1

� 1

3
5
9=
;R

+C����

"
a2 +

ln(�2=�2)

240(4�)2
(Ns + 6Nf + 12NA)

#
C����; (11)

where a1 and a2 are intital values for the corresponding e�ective couplings. Notice that with

the above form factors the solutions ful�ll the requeriment of asymptotic 
ateness [15]. As

it has been discussed in Refs. [15, 16], the coe�cients of the terms linear in ln(�2) give a

measure of the energy radiation through the future null in�nity.

Here we have obtained an e�ective Lagrangian, Leff , which sums all the logarithms of

perturbation theory, up to second order terms on curvature invariants on the background,
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of weak but quickly varying curvature. The theory under consideration is an asymptotically

free GUT but, in principle, we can consider in the same way any other kind of renormalizable

quantum �eld theory.

Notice, however, that the price one has to pay for the universality of the approach (i.e.,

for the possibility to write (11) for a variety of theories beyond the one-loop approximation)

is the fact that we cannot proceed to higher orders in the curvature. The reason is that

the terms as R3, R4; : : : are ultraviolet �nite. At the same time, the ordinary technique to

one-loop order [6, 7] gives the possibility, in principle, to calculate the non-local e�ective

action up to any desired order in the curvature |although it is quite complicated, already

in the case of the scalar theory. It turns out, therefore, that the two approaches complement

each other quite well.

Using Leff one can obtain the e�ective gravitational equations. Adding the quantum

matter-induced e�ective Lagrangian (11) to the classical Einstein Lagrangian (without the

cosmological constant, for simplicity), one gets the e�ective gravitational equations in close

analogy with Refs. [6, 7, 15]. Before doing this, it is convenient to rewrite

C2

���� = G + 2R2

�� �
2

3
R2; (12)

and to substitute it into Eq. (11). Then, one �nds the following Euclidean e�ective gravita-

tional equations

�
1

8�G

�
R�� �

1

2
g��R

�
+

8<
:a1 + (� � 1=6)2Ns

2B2g2(2b+ 1)

2
4 1 + B2g2 ln(�2=�2)

2(4�)2

!2b+1

� 1

3
5

�
2

3
a2 �

ln(�2=�2)

360(4�)2
(Ns + 6Nf + 12NA)

) h
4r�r�R� 4g��2R +O(R2)

i
(13)

+2

"
a2 +

ln(�2=�2)

240(4�)2
(Ns + 6Nf + 12NA)

# h
2r�r�R � g��2R � 22R�� +O(R

2)
i
= 0:

Observe that in order to obtain the e�ective gravitational equations it is not necessary to

take into account the g�� -dependence of the form factors. As was discussed in Ref. [15], the

e�ective gravitational equations can be used in order to study the problem of collapse.

To be remarked is the fact that the above approach works well for renormalizable models

of quantum gravity too. In order to exemplify this, let us consider R2-gravity under the form

L =
1

�

�
R�� �

1

3
R2

�
�

!

3�
R2: (14)

Such a theory is multiplicatively renormalizable, being non-unitary in the perturbative ap-

proach (for a general review and a list of references, see [2]). The RG improved non-local
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e�ective Lagrangian corresponding to this theory, with the same gravitational background

(8), can be easily constructed. The e�ective gravitational equations are (for simplicity, only

leading-log terms have been kept)

"
1

�
+

133

20(4�)2
ln(�2=�2)

# h
r�r�R � g��2R � 22R�� +O(R

2)
i

+2

"
�

1

3�
�

!

3�
+

�
10

9
!2 +

5

3
! +

5

36

�
ln(�2=�2)

2(4�)2

#

�

h
4r�r�R� 4g��2R +O(R2)

i
= 0; (15)

where � and ! are the initial values for the corresponding e�ective couplings.

Following now Refs. [15, 16] (it is explained there in which form non-local e�ective

action can be relevant for black-hole physics), we can discuss the implications that the

above non-local gravitational action has concerning the 
ux of the vacuum radiation in an

asymptotically free GUT. Working with the asymptotically 
at (Lorentzian) solution of Eqs.

(13) one may consider the congruence u(x) = const. of the light rays that can reach the

future null in�nity F+. We shall denote, as in [15], by r the luminosity distance along rays

and by M(u) the Bondi mass at F+ (see [17]). Then, the �nal expression for the radiation

corresponding to the vacuum energy in a spherically symmetric state has been found to be

the following [15]:

dM(u)

du
= �

1

4�
(w1 + 2w2)

d2

d2u

Z
F
+

F�
dr r R+O(R2); (16)

where w1 and w2 are the coe�cients of terms linear in ln(�2) of (11), that is

Leff =

(
R��

"
a1 �

2

3
a2 �

w1

2(4�)2
ln

 
�
2

�2

!#
R�� +R

"
2a2 �

w2

2(4�)2
ln

 
�
2

�2

!#
R

)
; (17)

where a1 and a2 can be taken to be zero and where a1(t) has been expanded up to terms

linear on ln(�2). Taking into account the overall change of sign of Leff in the Lorentzian

region, from (4) we obtain

w1 =
1

60
(Ns + 6Nf + 12NA) ; w2 = �

1

180
(Ns + 6Nf + 12NA) +

Ns

2

�
� �

1

6

�
: (18)

In this way we can calculate the rate of the vacuum energy radiation through the future null

in�nity, taking into account corrections to the GUT under consideration. To be remarked is

the fact that the choice of � can in
uence this rate of radiation signi�cantly (18). Radiation

disappears when the null surface u = const. comes very close to the horizon [15, 16]. Then,
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in order to �nd the Hawking radiation [18] one has to calculate the next-to-leading correction

in (17), namely the O(R2)-terms.

To summarize, using rather simple RG considerations, we have constructed a RG im-

proved non-local gravitational Lagrangian corresponding to a general asymptotically free

GUT and also to R2-quantum gravity. The corresponding e�ective gravitational equations

have been written down as well. It would be now of interest to study the applications of

these equations to black hole physics in more detail, since they certainly modify a number

of results obtained previously.
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