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Abstract

I measure the V � I color distribution of two samples of radio-selected quasars.

Quasars from one sample are projected on the sky within 1� of a rich foreground

Abell cluster of galaxies, while quasars from the other sample are more than 3� from

any such cluster . There is no signi�cant di�erence between the color distributions

of the two samples. The 90% upper limit on the relative reddening between the two

samples is E(B�V ) = 0:05 mag. This result limits the allowed quantity of smoothly

distributed dust in rich clusters, and contradicts previous indications for the existence

of such a component.
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1 Introduction

Distant populations such as faint �eld galaxies and quasars are often viewed through

foreground clusters of galaxies, which can distort our view of those populations. Mea-

suring such distortions can be useful for a better understanding of both the back-

ground objects and of the mass-content and structure of the clusters.

Clusters can have two opposite e�ects on the density of background objects seen

through a cluster. Gravitational lensing by the cluster potential can cause either

an enhancement or a de�cit in the number of background objects, depending on

the intrinsic number vs. brightness relation of the background population, and the

limiting magnitude to which the population is detected (e.g. Rodrigues-Williams &

Hogan 1994). Dust in a cluster will obscure and redden a background population, and

will therefore reduce the density of background objects down to a given magnitude

limit. The detection of dust in rich clusters is of great interest in itself, since it can

provide clues to the source of the observed intracluster X-ray emitting gas (e.g. Dwek,

Rephaeli & Mather 1990).

Over the past years there have been various reports of overdensities of quasars be-

hind foregound clusters of galaxies (Bartelmann, Schneider, & Hasinger 1994; Bartel-

mann & Schneider 1993a; Wu & Han 1995; Seitz & Schneider 1995; Williams &

Hawkins 1995). Quasar-galaxy associations have also been reported (e.g. Fugmann

1988, 1990; Bartelmann & Schneider 1993b) and, when occuring on large angular

scales, are probably evidence for the same phenomenon (i.e. the e�ect of the clusters

in which the galaxies reside). The magnitude of the e�ect is still controversial. Some

workers �nd an enhancement that is too large to be consistent with the magni�ca-

tion e�ect of gravitational lensing, given our current assumptions about the quasar

population and the masses of clusters (e.g. Williams & Hawkins 1995).

On the other hand, several studies have reported large de�cits of distant quasars

or clusters of galaxies behind nearby clusters of galaxies, and have proposed extinc-

tion by intracluster dust as the cause. Zwicky (1957) �rst pointed out a de�cit of

distant clusters behind rich ones. Karachentsev & Lipovetskii (1969) used the same

method to derive a mean cluster extinction of AV � 0:2 mag. Similarly, Bogart &

Wagoner (1973) found that distant Abell clusters are anticorrelated on the sky with
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nearby ones. To account for this e�ect, they argued for an extinction correspond-

ing to AV � 0:4 mag and extending to � 2:5 times the optical radii of the nearby

clusters. Szalay, Holloshi & Toth (1989), con�rmed the e�ect but ascribed it to the

di�culty of identifying background clusters, rather than to dust. Boyle, Fong, &

Shanks (1988) identi�ed quasars and clusters of galaxies on automatically-scanned

plates. They found a � 30% de�cit of quasars within 40 of the clusters, attributable

to an extinction of AV = 0:15 mag. Romani & Maoz (1992, hereafter RM92) found

that optically-discovered quasars from the V�eron-Cetty & V�eron (1989) catalog avoid

rich foreground Abell clusters of galaxies, with a de�cit of 60% within 200�400 of the

cluster, and � 25% out to a radius of 1�. Radio-selected quasars are free from this

e�ect. RM92 postulated that there is an average extinction of AV = 0:4 within a 1�

radius of the cluster, but that it is probably patchy, with many of the lines of sight

undergoing as much as 1 mag of extinction. Williams and Hawkins (1995) recently

searched for a reddening and obscuration e�ect in variability-selected quasars behind

galaxy clusters identi�ed automatically on UK-Schmidt plates. They �nd an overden-

sity of quasars behind the clusters, which they attribute to gravitational lensing, and

no evidence for reddening, based on the comparison of the U �B color distributions

of the quasars that are behind clusters and those in the �eld.

The various results on extinction in clusters quoted above are not necessarily in

con
ict, because the experiments are not exactly the same. For example, the galaxy

clusters de�ned by Boyle et al. (1988) consist of tens of galaxies, as opposed to the

Abell clusters treated by Bogart & Wagoner (1973) and RM92, which are formed of

hundreds of galaxies each. As pointed out by RM92, selection e�ects in the various

identi�cation methods of quasars may have also a�ected some or all of the above

results. Several other workers have searched for evidence of dust in clusters through

reddening of elliptical galaxies (Ferguson 1993), IR emission (Annis & Jewitt 1993),

and emission-line ratios of cooling 
ows (Hu 1992), but have come up only with upper

limits of E(B � V ) <� 0:1 � 0:2 mag. An intercomparison of various results on dust

in clusters is given by Williams (1995).

In this paper, I search for a signature of dust in rich clusters and attempt to

disentangle it from selection e�ects by testing the following prediction of RM92. If

intracluster dust is responsible for the avoidance of rich Abell clusters by optically-
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selected background quasars, radio-selected background quasars projected within 1�

of Abell clusters will be redder than those that are not.

The V �I color of quasars is a particularly accessible probe of foreground redden-

ing. The relatively small scatter in the power-law slope of quasars, � � �0:5 � 0:4

(e.g. Richstone & Schmidt 1980), translates into a narrow V � I distribution, with

V � I = 0:65� 0:25. The Ly� forest, with its e�ect on the spectral slope of quasars,

enters the V band only beyond redshift z � 3, and hence does not a�ect the V � I

color of most known radio quasars. Because of the large wavelength interval between

the V and I bands, V � I is a sensitive reddening indicator. Foreground reddening

will shift the mean of the V � I distribution of quasars, relative to an unreddened

quasar sample. The accuracy to which the mean is measured is limited only by the

number of quasars observed.

2 Sample Selection, Observations, and Analysis

To test for the presence of reddening in clusters I de�ned two samples of quasars.

Quasars in one sample (hereafter \the obscured sample") are projected on the sky

within 1� of at least one rich and distant (R � 1;D � 5 ) Abell cluster of galaxies.

(See Abell 1958, for de�nition of richness and distance classes, R, and D.) These

criteria correspond to the population and the angle of the avoidance e�ect found by

RM92. The second sample (hereafter \the unobscured sample") consists of quasars

that are at least 3� from any such cluster. Great care was exercised in choosing the

quasar samples and observing them, in order to avoid arti�cially introducing color

di�erences between the samples through selection e�ects or systematic errors, but

also to minimize any noise that may dilute an existing signal.

From V�eron-Cetty & V�eron (1993) I selected all quasars from the PKS, B2, 3C,

and 4C radio surveys with redshift z > 0:3, positive declination, Galactic latitude

jbIIj > 40� for longitude 60� < lII < 300� and jbII j > 50� otherwise, and apparent

magnitude V � 18:9. From among these quasars, I then selected all that were either

within 1� of at least one D � 5, R � 1 cluster of galaxies listed by Abell (1958), or

more than 3� from any such Abell cluster.

The motivation for choosing radio-selected quasars was that such quasars were
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shown by RM92 to not avoid clusters, and should therefore be unbiased probes of the

reddening induced by the clusters. (For example, if dust extinction causes the avoid-

ance of clusters by optically-selected quasars, then optically-selected quasars near

clusters would preferably be those that had escaped extinction, and hence would be

relatively unreddened.) Only quasars from the four radio surveys above were chosen,

in order to make the sample as homogeneous as possible while not making it too small.

The redshift limit on the quasars ensured that they are behind the clusters; Struble

& Rood (1991) have shown that the redshifts of the D � 5 clusters are 0:1 <� z <� 0:3.

Positive declinations were chosen to allow measurements at low airmass, where the

error in color determination is smallest. The limits on Galactic coordinates avoided

regions of the sky where the Abell catalog is substantially incomplete due to Galactic

extinction. This is important especially in choosing the \unobscured" sample, since

quasars behind uncatalogued clusters would be mixed into this sample, and hence

potentially dilute a di�erence between the obscured and unobscured samples. The

high Galactic latitude of all the quasars also guarantees that the additional scatter

induced by Galactic reddening is at most �0:02 mag (Burstein & Heiles 1978). The

apparent-magnitude limit was chosen to allow accurate measurement of a large sam-

ple in a short time. The 1� limit corresponds to the radius of the e�ect found by

RM92. The 3� radius is the largest that still produces a quasar sample large enough

to statistically detect a small (>� 0:1 mag) shift in the color distribution.

Application of the above criteria produced a list of 41 quasars in the obscured

sample and 46 quasars in the unobscured sample. Tables 1 and 2 list the names

and parameters of the selected quasars. Figure 1 shows the distribution in Galactic

coordinates of the quasars and the Abell clusters. Note that the two quasar samples

are well mixed on the sky. They are also similar in their redshift and magnitude

distributions.

The quasars were imaged with the Wise Observatory 1m telescope on 1995 May

3-4, May 8-9, and July 28-29 UT using a Tektronix 1024�1024-pixel back-illuminated

CCD at the Cassegrain focus. Standard Johnson-Cousins V and I �lters were used.

Photometric standards from Landolt (1992) were observed throughout each night.

Exposure times were 300 s in each �lter for quasars with estimated catalog magni-

tudes fainter than 17.9 mag, and 150 s in each �lter for the brighter ones. To avoid
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systematic e�ects, the observations of the obscured and unobscured samples were

intermingled as much as possible on each night and between nights.

Standard CCD data reduction was carried out with the IRAF package. The in-

strumental V and I magnitudes of each quasar were measured with the DAOPHOT

(Stetson 1987) task within IRAF, relative to bright stars in the same image that

served to model the point-spread function (PSF). Typical uncertainties in the PSF

�tting were 0.01 mag for the brighter quasars to 0.04 mag for the fainter ones. Aper-

ture photometry of the standard stars was used to calculate a photometric solution

and its errors, which was applied to the quasar measurements to bring them to the

Landolt (1992) system. Color-correction terms were small (� 0:01 mag). The scat-

ter of the standard-star measurements about the photometric solution was 0.02{0.04

mag. This error was combined in quadrature with the DAOPHOT error and with

the photometric error as determined from the covariance matrix of the photometric

solution, to form the total error on the V and I magnitude. The V and I measure-

ments, the V � I color, and their errors appear in Tables 1 and 2. Typical errors

in V � I are 0.07 mag. Due to observing contraints (weather, moonlight, time), 31

quasars from the obscured sample and 40 quasars from the unobscured sample were

successfully observed. To reduce scatter, �ve quasars from the obscured sample and

�ve quasars from the unobscured sample with V � I errors exceeding 0.1 mag will be

excluded from the subsequent analysis.

Figure 2 shows the binned V � I distributions of the obscured and unobscured

samples. There is no obvious di�erence between the two samples. A Kolmogorov-

Smirno� (KS) test on the cumulative distributions fails to reject the null hypothesis

that the two samples are drawn from the same population. The mean and the stan-

dard deviation of the mean is 0:655� 0:043 and 0:623� 0:048 for the unobscured and

obscured samples, respectively. A Student's t-test shows that the two means are con-

sistent. From Student's-t distribution, the 95% (90%) upper limit on the di�erence

between the means of the two samples is �(V �I) = 0:108 mag (0.084 mag). There is

also no evidence for a bimodality in the distribution of the obscured sample, as would

be expected if there was patchy obscuration in the clusters intercepting of order half

the lines of sight. There are several abnormally red (V � I > 1) quasars, but these

exist in equal proportions in both the obscured and the unobscured samples.
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To test for systematic e�ects in the calibration, the V � I distributions of various

nights were compared. There are no signi�cant di�erences based on a KS test or a

Student's t-test.

3 Discussion and Conclusions

For Galactic dust, E(V � I) = 1:60E(B � V ) = 0:52AV (Rieke & Lebofski 1985).

Assuming such properties for intracluster dust (see Dwek et al. 1990, for a discussion

of the suitability of such an assumption), the upper limit on the reddening found

above, E(V � I) < 0:084 mag, translates to E(B � V ) < 0:053 mag or AV < 0:162

mag at the 90% con�dence level.

RM92 found suggestions in the limited color data for the quasars in the V�eron

catalog that, if dust is responsible for the avoidance of clusters by quasars, the ob-

scuration is patchy, with about half of the lines of sight su�ering a reddening of

E(B � V ) � 0:3 mag, or E(V � I) � 0:5. Such an e�ect would have been readily

apparent in the data presented here, and is strongly ruled out. Similarly, the average

AB � 0:5 mag (i.e. AV � 0:4mag) predicted by RM92 is ruled out. Since most of

the quasars measured here are > 300 from the cluster centers, a centrally-peaked dust

distribution, with high central reddening and AV � 0:11 mag out to 1�, cannot be

ruled out. Dwek et al. (1992) have, however, argued that dust can only survive in

the outer parts of the cluster, if at all. Note also that the seven quasars that are

< 300 from the clusters do not have unusual color. There is no trend of quasar color

with angular separation from the clusters or with angular separation normalized by

the Leir & van den Bergh (1977) angular radius of each cluster.

I conclude that, as alternatively proposed by RM92, the avoidance of foreground

clusters by optically-discovered quasars is probably a selection e�ect due to the di�-

culty of identifying quasars (whether using objective-prism or color excess techniques)

in crowded �elds. A similar, selection-induced avoidance of Galactic stars by quasars

found in objective-prism surveys has been demonstrated by Gould, Bahcall, & Maoz

(1993).

Dust in rich clusters might still be accomodated with the present results if both

the comoving density and the dust content of the clusters do not evolve between z = 0
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and the mean redshift of the quasars, z = 1:22. Under this assumption, the line of

sight to the average quasar in either sample passes through the postulated � 6-Mpc

dust halo of � 2 � 3 distant clusters, and both samples would be equally reddened.

If this were the case, however, one would expect to see at 0:3 < z <� 1:2 a correlation

of quasar V � I color with redshift. I �nd no such trend in the data, but the number

of objects is small.

The results presented here also argue against the extinctions of AV � 0:2 mag

found by Karachentsev & Lipovetskii (1969) and AV � 0:4 mag derived by Bogart &

Wagoner (1973) for nearby Abell clusters, based on their anticorrelation with distant

clusters. The di�culty in identiying several clusters on one line of sight is the likely

true cause of the e�ect. This is not necessarily the case, however, if the dust properties

of Abell clusters are strongly evolving, such that dust has appeared in the intracluster

medium of nearby clusters by z <� 0:1. The results I have shown only marginally rule

out the small amount of extinction (AV � 0:15) deduced by Boyle et al. (1988),

and in any case, that e�ect was reported for a di�erent (much poorer) population

of clusters. That result, however, is challenged by the null detection of reddening

for a similar population of clusters by Williams & Hawkins (1995). They propose

that Boyle et al.'s (1988) reported underdensity of quasars behind clusters is the

result of gravitational lensing by the cluster potential. Such an e�ect can arise as a

result of a faint quasar-detection 
ux limit combined with a shallow-sloped quasar

number-brightness relation.

To summarize, I have shown that radio-selected quasars behind Abell clusters are

not redder than quasars that do not have a cluster in the foreground. The 95% upper

limit on the reddening exerted by the intracluster medium is E(V � I) < 0:108 mag.

This result suggests that the avoidance of foreground Abell clusters by optically-

selected quasars is, at least in large part, a selection e�ect rather than a signature

of dust extinction. The limit on reddening presented here improves upon previous

limits based on null detections of reddening e�ects, and constrains the mean column

density of dust in a rich cluster to < 6:5 � 10�6 g cm�2, and the total dust mass

within a 1� radius to <� 1:5 � 1012M�. Smaller amounts of reddening in clusters, as

suggested by some studies, are still allowed. The bounds on dust in clusters can be

improved by measuring the color distributions of larger samples of quasars.
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Table 1: Quasars > 3
� from Abell clusters

Name R.A.(1950) Dec.(1950) z V �V I �I V � I �(V � I)

PKS 0109+17 01:09:09.6 17�37056" 2.157 18.940 0.059 18.083 0.064 0.857 0.087

PKS 0114+07 01:14:49.5 07�26030" 0.861 18.374 0.053 18.091 0.061 0.284 0.081

PKS 0229+13 02:29:02.4 13�09040" 2.065 { { { { { {

PKS 0256+075 02:56:47.0 07�35045" 0.893 { { { { { {

B2 0901+28B 09:01:30.6 28�31031" 1.121 17.829 0.051 17.211 0.052 0.618 0.072

B2 0941+26 09:41:50.2 26�08033" 2.906 18.591 0.063 17.918 0.057 0.673 0.085

4C 40.24 09:45:50.0 40�53043" 1.252 { { { { { {

PKS 0952+179 09:52:11.8 17�57044" 1.472 { { { { { {

3C 232 09:55:25.5 32�38023" 0.533 16.546 0.039 16.306 0.040 0.240 0.056

PKS 1012+022 10:12:40.8 02�13050" 1.374 17.493 0.047 16.666 0.045 0.828 0.065

4C 60.15 10:45:23.3 60�24037" 1.722 18.862 0.063 17.731 0.049 1.130 0.080

PKS 1048+24 10:48:46.7 24�03058" 1.270 { { { { { {

B2 1104+36 11:04:41.6 36�32026" 0.393 18.942 0.066 18.226 0.069 0.716 0.096

3C 261 11:32:16.3 30�22001" 0.614 18.562 0.051 17.686 0.046 0.876 0.068

PKS 1134+01 11:34:55.7 01�32051" 0.430 18.445 0.115 17.245 0.057 1.200 0.128

B2 1148+38 11:48:53.3 38�42033" 1.299 17.227 0.040 16.544 0.040 0.683 0.057

B2 1204+39 12:04:04.6 39�57045" 1.530 18.357 0.051 17.726 0.055 0.631 0.076

3C 268.4 12:06:42.1 43�56002" 1.400 18.109 0.047 16.934 0.038 1.175 0.061

B2 1211+33 12:11:32.8 33�26026" 1.598 17.551 0.041 16.749 0.042 0.802 0.058

4C 53.24 12:13:01.5 53�52036" 1.065 18.245 0.043 17.799 0.061 0.446 0.075

3C 270.1 12:18:03.9 33�59050" 1.519 18.520 0.048 17.855 0.063 0.664 0.079

B2 1220+37 12:20:42.3 37�23039" 0.489 18.346 0.042 17.756 0.074 0.590 0.085

B2 1225+31 12:25:55.9 31�45013" 2.219 15.866 0.038 15.147 0.036 0.719 0.052

B2 1234+33B 12:34:36.8 33�30053" 1.280 18.426 0.048 18.276 0.093 0.150 0.105

PKS 1236+077 12:36:52.3 07�46045" 0.400 19.180 0.057 17.810 0.046 1.370 0.073

B2 1237+35 12:37:55.4 35�19026" 1.194 17.363 0.036 16.943 0.050 0.420 0.062

4C 44.20 12:39:57.0 44�12034" 0.610 18.289 0.048 17.679 0.063 0.609 0.079

B2 1244+32B 12:44:55.4 32�25023" 0.949 17.509 0.041 17.151 0.042 0.358 0.059

PKS 1252+11 12:52:07.7 11�57021" 0.870 16.802 0.032 16.512 0.044 0.290 0.054

B2 1256+39 12:56:41.9 39�16023" 0.978 19.459 0.085 18.577 0.077 0.882 0.115

B2 1300+39 13:00:29.0 39�46008" 2.436 18.639 0.061 18.261 0.110 0.378 0.126

3C 281 13:05:22.5 06�58014" 0.599 17.347 0.041 16.866 0.042 0.481 0.059

B2 1306+27A 13:06:33.1 27�24010" 1.537 18.337 0.043 17.670 0.060 0.667 0.073

4C 18.36 13:08:29.5 18�15034" 1.689 19.004 0.071 18.216 0.061 0.788 0.093

3C 287.0 13:28:15.9 25�24038" 1.055 17.985 0.039 17.648 0.071 0.338 0.081

3C 286.0 13:28:49.7 30�45058" 0.846 17.271 0.040 16.773 0.038 0.497 0.056

PKS 1335+023 13:35:06.9 02�22012" 1.356 18.386 0.049 17.687 0.086 0.699 0.099

B2 1409+34A 14:09:46.2 34�29016" 1.820 18.457 0.045 17.740 0.044 0.716 0.063

B2 1414+34 14:14:50.0 34�42040" 0.750 17.586 0.032 17.426 0.052 0.161 0.061

4C 46.29 14:15:13.5 46�20055" 1.552 18.150 0.043 17.417 0.045 0.733 0.062

PKS 1421+122 14:21:04.6 12�13026" 1.611 18.377 0.038 17.720 0.064 0.657 0.074

PKS 1427+109 14:27:43.8 10�56046" 1.710 18.872 0.045 18.446 0.111 0.426 0.120

B2 1452+30 14:52:25.0 30�08006" 0.580 19.028 0.053 18.268 0.056 0.759 0.078

B2 1612+37A 16:12:03.7 37�50029" 1.630 18.896 0.043 { { { {

B2 1633+38 16:33:30.6 38�14009" 1.814 17.665 0.033 16.845 0.042 0.820 0.053

PKS 2301+060 23:01:56.3 06�03057" 1.268 18.433 0.045 17.810 0.060 0.623 0.075
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Table 2: Quasars < 1
� from Abell clusters

Name R.A.(1950) Dec.(1950) z V �V I �I V � I �(V � I) Sep.[0] (Abell No.)

PKS 0003+15 00:03:25.1 15�53007" 0.450 15.614 0.035 15.270 0.045 0.343 0.057 43.1(0001), 23.6(2705)

PKS 0008+171 00:07:59.4 17�07038" 1.601 17.333 0.037 17.018 0.052 0.315 0.064 17.1(0006)

4C 08.04 00:33:41.0 07�58034" 1.578 19.081 0.078 18.291 0.076 0.790 0.109 56.0(0068)

4C 09.01 00:33:48.3 09�51029" 1.909 18.310 0.052 17.254 0.055 1.056 0.076 59.6(0073)

3C 37 01:15:43.6 02�42020" 0.670 18.817 0.058 17.986 0.053 0.832 0.079 45.3(0172)

3C 47.0 01:33:40.5 20�42009" 0.425 17.905 0.040 17.339 0.049 0.567 0.063 27.7(0213)

PKS 0136+176 01:36:59.3 17�37056" 2.716 19.019 0.060 18.447 0.079 0.572 0.099 34.7(0221), 17.6(0227)

PKS 0158+18 01:58:56.0 18�22009" 0.799 17.714 0.039 17.393 0.049 0.321 0.062 14.7(0288)

PKS 0159+034 01:59:14.7 03�29003" 1.897 17.221 0.039 16.519 0.051 0.702 0.064 04.8(0293)

PKS 0214+10 02:14:26.7 10�50018" 0.408 16.456 0.037 15.993 0.047 0.463 0.060 43.9(0331)

4C 47.29 08:59:40.0 47�02057" 1.462 { { { { { { 35.7(0739)

3C 216.0 09:06:17.3 43�05058" 0.668 { { { { { { 44.0(0758)

PKS 0922+14 09:22:22.4 14�57023" 0.896 { { { { { { 46.0(0795)

B2 0949+36 09:49:26.6 36�20012" 2.050 18.359 0.048 17.693 0.059 0.666 0.076 42.9(0893)

B2 0952+35 09:52:49.3 35�47038" 1.241 19.194 0.112 18.412 0.110 0.781 0.157 42.6(0893)

4C 55.17 09:54:14.3 55�37017" 0.901 { { { { { { 12.0(0899)

B2 1009+33 10:09:17.6 33�24017" 2.260 { { { { { { 46.8(0943)

B2 1011+25 10:11:05.6 25�04010" 1.636 { { { { { { 42.4(0964)

B2 1018+34 10:18:24.1 34�52031" 1.400 { { { { { { 04.7(0982)

PKS 1020+191 10:20:11.9 19�08046" 2.136 { { { { { { 05.0(0991), 43.2(0994)

B2 1020+40 10:20:14.6 40�03027" 1.254 17.882 0.049 17.236 0.041 0.646 0.064 52.1(0972)

4C 19.34 10:22:01.4 19�27034" 0.828 { { { { { { 38.6(0991), 36.5(0994)

4C 09.37 10:47:48.9 09�41048" 0.786 { { { { { { 59.4(1093), 25.5(1105), 50.2(1115)

3C 254.0 11:11:53.2 40�53041" 0.734 17.593 0.041 17.147 0.063 0.445 0.075 37.9(1190), 51.6(1203)

PKS 1158+007 11:58:49.5 00�45010" 1.383 18.825 0.087 18.558 0.150 0.267 0.173 53.8(1445)

B2 1204+28 12:04:55.0 28�11042" 2.177 18.426 0.054 17.803 0.046 0.622 0.071 52.0(1455)

B2 1208+32A 12:08:05.6 32�13048" 0.388 16.806 0.039 16.318 0.038 0.487 0.055 55.1(1498)

B2 1343+38 13:43:26.5 38�38012" 1.844 17.847 0.041 16.924 0.038 0.923 0.056 21.1(1785)

B2 1353+30 13:53:26.1 30�38051" 1.018 18.365 0.041 17.498 0.074 0.867 0.085 39.5(1826)

B2 1425+26 14:25:21.9 26�45038" 0.366 16.412 0.030 16.112 0.044 0.300 0.054 36.5(1912)

B2 1426+29 14:26:32.6 29�32026" 1.421 18.644 0.048 18.120 0.055 0.524 0.073 55.2(1929)

3C 309.1 14:58:56.6 71�52011" 0.904 17.269 0.031 17.113 0.100 0.156 0.105 41.8(2037)

PKS 1502+106 15:02:00.1 10�41018" 1.833 19.164 0.063 18.087 0.069 1.077 0.093 56.9(2016)

PKS 1502+036 15:02:35.7 03�38008" 0.413 18.709 0.048 18.000 0.078 0.709 0.091 45.9(2023)

B2 1506+33A 15:06:22.6 33�58025" 2.200 18.744 0.036 17.546 0.063 1.198 0.072 40.5(2034)

B2 1512+37 15:12:46.8 37�01055" 0.370 16.447 0.039 16.095 0.038 0.352 0.054 49.4(2042)

4C 43.39 16:29:38.6 43�55003" 1.167 18.779 0.050 18.392 0.055 0.387 0.074 54.3(2190), 36.0(2198), 42.5(2206)

4C 58.32 16:34:19.8 58�54042" 0.985 18.950 0.058 18.472 0.067 0.478 0.088 48.2(2208)

4C 47.44 16:36:19.2 47�23029" 0.740 18.727 0.040 18.016 0.074 0.711 0.084 55.3(2219)

PKS 2318+02 23:18:14.4 02�40034" 1.968 18.888 0.067 18.506 0.091 0.382 0.113 53.5(2574), 21.7(2582)

PKS 2319+07 23:20:03.9 07�55033" 2.090 18.431 0.050 17.793 0.055 0.638 0.074 39.5(2594)
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Figure 1: Distribution in Galactic coordinates of quasars and Abell clusters. Points

denote all R � 1, D � 5 Abell clusters. Squares denote radio-quasars from the

\obscured" sample and are < 1� from a foreground cluster. The circles, of radius

3�, mark the quasars from the \unobscured" sample, which are at least that angular

distance from any cluster.
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Figure 2: The observed distribution in V � I of the unobscured sample (solid line)

and the obscured sample (dashed line) of quasars. There is no signi�cant di�erence

in the distributions or their means, setting a 95% upper limit of E(V � I) = 0:108

on the reddening.
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