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Abstract

Owing to its lack of derivability, the dissipative anomaly operator appearing in the theory

of turbulence without pressure recently proposed by Polyakov appears to be quite elusive.

In particular, we give arguments that seem to lead to the conclusion that an anomaly in the

�rst equation of the sequence of conservation laws cannot be a priori excluded.
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In a recent paper [1] (see also [2]) Polyakov has put forward a method to treat turbulence

with exact �eld theoretical methods, in the case when the e�ect of pressure is negligible.

The work has been inspired in a paper by Chekhlov and Yakhot [3], where new results

concerning Burgers' turbulence have been given. The starting point for this one-dimensional

case is Burgers equation

ut + uux = �uxx + f(xt);

< f(x; t)f(x0; t0) > = �(x� x0) �(t� t0); (1)

where � is a function that de�nes the spatial correlation of the random forces. Equation (1)

is the one dimensional version of the Navier-Stokes equation with a random force of white

noise type and with zero pressure. Physical applications of equations of this type include

the study of crystal growth [4] and galaxy formation [5].

For the generating functional

Z(�1x1j : : : j�NxN) =
D
exp

X
�ju(xjt)

E
; (2)

one obtains
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and further [1]

_Z +
X

�j

@

@�j

 
1

�j

@Z

@xj

!
=
X

�(xi � xj)�i�jZ +D; (4)

where D is the dissipation term

D = �
X

�j

D
u00(xjt)exp

X
�ku(xkt)

E
: (5)

If the viscosity � were zero one would have a closed di�erential equation for Z. To

reach the inertial range one must, however, keep � in�nitesimal but non-zero. The anomaly

mechanism mentioned above implies that in�nitesimal viscosity produces a �nite e�ect,

whose computation is one of the main objectives in [1]. In a �rst stage, the inviscid equations

(5) have been considered (� = 0). Then, modulo the stirring force and the viscosity, one has

the sequence of conservation laws for Eq. (1)

@

@t
(un) +

n

n+ 1

@

@x
(un+1) � 0; n = 1; 2; 3; : : : (6)

the sign � meaning precisely that the viscosity and the stirring force terms are dropped out

[1].

As discussed by Polyakov in detail, Eq. (5) can be interpreted as a relation for the

generating functionals hun1(x1) : : : u
nk(xk)i, involving both the stirring force and the viscos-

ity. The latter presents a problem. The rule is that in any equation involving space points

separated by a distance larger than a, the viscosity can be put equal to zero.
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And here comes the speci�c situation we want to deal with. In principle, it seems

legitimated to use the inviscid limit for the �rst equation, n = 1, of (6), because in this case

one can make use of the steady state condition

d

dt
hu(x1) : : : u(xN)i = 0; j xi � xj j� a: (7)

The problems start, in principle, with the case n = 2, because then one has to take a time

derivative of the product of two (or more) u's at the same point.

This problem can be solved, in the case n = 2, by making the replacement

u2(x) =) u(x+
y

2
)u(x�

y

2
); j xi � xj j� y� a (8)

and by leting y! 0 only after the viscosity is taken to zero. Using then the inviscid equations

for n = 1 one can write

�
d

dt
[u(x1)u(x2)] �

1

2

(
@

@x1

h
u2(x1)u(x2)

i
+

@

@x2

h
u2(x2)u(x1)

i)
; x1;2 = x�

y

2
: (9)

By employing simple algebraic identities, and the following expression

@

@y

h
u3(x1)� u3(x2)

i
=

1

2

@

@x

h
u3(x1) + u3(x2)

i
�!

@

@x
u3(x); (10)

one gets

�
d

dt
[u(x1)u(x2)] �

2

3

@

@x
u3(x) + a0(x); (11)

where a0(x) is a dissipative anomaly operator, given by [1]

a0(x) = lim
y!0

1

3

@

@y
[u(x1)� u(x2)]

3
: (12)

It is here crucial to observe that the anomaly would be zero if u(x) were di�erentiable.

However, as remarked in [1], the steady state condition clearly prevents this from being

true. Indeed, one of the consequences of Eq. (5) is that in the steady-state situation one has

d

dt

D
u2
E
= �(0) � ha0i = 0; (13)

and the celebrated Kolmogorov relation holds

D
[u(x1)� u(x2)]

3
E
/ �(0)(x1 � x2): (14)

The value of the anomaly de�nes the limiting contribution of the viscous term in the steady

state

lim
�!0

�u(x)u00(x) = �a0(x): (15)

Notice, again, that the fact that the anomaly a0(x) is non vanishing (together with its im-

portant consequences, as the Kolmogorov relation) depends solely on the non-di�erentiability

3



of the function u(x). Simple considerations |the �rst of which could be pure symmetry|

can lead us easily to the conclusion that an anomaly of the same type can be also present

in the �rst of the equations. In fact, its absence has not been proven in [1], but just the

compatibility of the general argument with the fact that it can be zero (the whole argument

has been termed by Polyakov himself a consistent conjecture [1]).

Crude symmetry considerations yield

�
d

dt
u(x) �

1

2

@

@x
u2(x) + lim

y!0

1

2

@

@y
[u(x1)� u(x2)]

2
; (16)

where, again the non-di�erentiability of the function u(x) permits the anomaly term (the

second one on the rhs) to be non-zero. Another consideration that leads to the same result

can be put under a similar form as the derivation of the anomaly a0(x), by just point-splitting

the x�derivative of u2(x) (what is not a trivial matter at all, given the non-di�erentiability

of u(x)), in the way

�
1

2

@

@x
u2(x) �!

1

2

@

@x
[u(x1)u(x2)] ; (17)

and proceeding with the same kind of manipulations as in [1], one gets (16). In particular,

the new anomaly term |which following the Polyakov's labeling we could call a
�1(x)| i.e.

a
�1(x) = lim

y!0

1

2

@

@y
[u(x1)� u(x2)]

2
; (18)

is also clearly seen to be non-vanishing in general. This is realized by direct calculation of

the derivative as a quotient of di�erences and by considering di�erent possible ways of taking

the two limits involved, namely the one of the derivative itself and the limit y ! 0. Notice

that this non-vanishing is naively even more strong than in the cases n = 2 and further,

because di�erentiability would here yield an in�ntesimum of �rst order only, while in the

case n = k it would be of the corresponding order k.

It is di�cult to give an immediate meaning to this possible anomaly. Of course, it would

modify Kolmogorov relation and all the subsequent anomalies (starting from a0(x)), since it

would contribute a term in the derivation of the relations for u2 and all the subsequent uk.
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