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ABSTRACT

Changes of variables giving the dual model are constructed
explicitly for σ-models without isotropy. In particular, the jaco-
bian is calculated to give the known results. The global aspects
of the abelian case as well as some of those of the cases where the
isometry group is simply connected are considered.
Considering the anomalous case, we infer by a consistency ar-
gument that the ‘multiplicative anomaly’ should be replaceable
by adequate rules for factorization of composite jacobians. These
rules are then generalized in a simple way for composite jacobians
defined in spaces of different types. Implimentation of these rules
then gives specific formulas for the anomally for semisimple alge-
bras and also for solvable ones.
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1 Introduction

One of the striking features of string theory is target-space duality [1]. This

duality relates space-times of very different nature, that correspond (locally)

to the same CFT. In particular, considering a dualization with respect to

a non-abelian isometry, the corresponding symmetry admitted by the dual

model is non-local, and exists no more as an isometry. From that, one may

conclude the non-local nature of possible transformations between the two

models. As suggested by Giveon, Rabinovici and Veneziano [2], and proved

by Álvarez, Álvarez-Gaumé and Lozano [3], a σ-model admitting an isometry

with vanishing isotropy is related to its dual by a canonical transformation.

In the following we derive an explicit change of variables that produces the

dual action for models without isotropy. Dealing with the jacobian, we resort

to factorization rules for composite and inverse operators’ ‘determinants’.

The structure of the paper is as follows: In section 2 we present and prove a

general change of variables relating (locally) the case without isotropy to its

dual, classically; the corresponding jacobian is produced in section 3, relying

on results from section 4 (which is somewhat independent), where general

rules for decomposition of determinants of composite tensors are given. The

rules are inferred by the requirement that functional changes of variables

be consistent. The global aspects of the case where the isometry group is

abelian and the space is (possiblly) curved can be found in section 5. Still in

that section - some global aspects of the non-abelian simply-connected case

are realized. Section 6 is dedicated to reviewing some of the above results

and their significance.

2 The Change of Variables

The main model regarded in this paper is the general case without isotropy

studied in [4],[5] and presented here briefly. Consider a target space with

coordinates g that transform as g → ug where u, g ∈ G, (G is some Lie

group), and further inert coordinates xi. The general action can be written
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in the form

S[g−1∂g, g−1∂̄g, x] =
1

2π

∫
d2z

(
(g−1∂g)aEab(x)(g

−1∂̄g)b +

(g−1∂g)aFR
aj(x)∂̄x

j + ∂xiFL
ib (x)(g

−1∂̄g)b + ∂xiFij(x)∂̄x
j −

Φ(x)∂∂̄σ
)
, (2.1)

where σ is the conformal factor and

(g−1∂g)a ≡ tr(T̃ ag−1∂g) ⇔ g−1∂g = (g−1∂g)aTa , etc. (2.2)

The generators Ta, a = 1, ..., dim(G), obey

[Ta, Tb] = f cabTc , (2.3)

and the ‘dual generators’ T̃ a are defined by the condition

tr(TaT̃
b) = δba . (2.4)

To construct the dual model (for review see [1] and references therein),

one gauges (minimally) the isometry group with gauge fields A, Ā (in complex

worldsheet coordinates). These fields are then constrained to be flat by the

addition of the term λcF
c(A, Ā) to the lagrangian, upon integrating out of

the lagrange multipliers λc. Gauge fixing g = 1 then gives the action

S[A, Ā, x] +
1

2π

∫
d2z λc(∂Ā

c − ∂̄Ac +Af cĀ) , (2.5)

where S[A, Ā, x] is (2.1) with g−1∂g and g−1∂̄g replaced by the independent

fields A and Ā, respectively. (Note: from now on matrix and vector indices

will sometimes be supressed). Finally, (gaussian) integrations over the gauge

fields yield the form of the dual model (in the non-anomalous case)

Sdual[λ, x] =
1

2π

∫
d2z

(
(∂λa − ∂x

iFL
ia)N

ab(∂̄λb + FR
bj ∂̄x

j)

+ ∂xiFij∂̄x
j − (Φ− ln detN)∂∂̄σ

)
, (2.6)

where

Nab ≡ [(E + f cλc)
−1]ab . (2.7)
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In the anomalous case, the only correction to (2.7) is an extra non-local term

proportional to trTa ([4],[7],[5]).

In this note we present another way to derive the dual model. Namely we

perform a change of variables in the functional integral from {g, x} to {λ, x}

a) (g−1∂g)E(x) = ∂λ− ∂xFL(x)− (g−1∂g)f cλc ⇔
b) g−1∂g = (∂λ− ∂xFL(x))(E(x) + f cλc)

−1 (2.8)

1 (see section 5 for the change of variables of opposite chirality).

The proof for that runs as follows:

Substituting 2.8a in the first term of (2.1), using

F [g−1∂g, g−1∂̄g] = 0 , (2.9)

and finally substituting 2.8b one gets the identity

(g−1∂g)aEab(x)(g
−1∂̄g)b + (g−1∂g)aFR

aj(x)∂̄x
j + ∂xiFL

ib (x)(g
−1∂̄g)b∂xi =

(∂λa − ∂x
iFL

ia)[(E + f cλc)
−1]ab(∂̄λb + FR

bj ∂̄x
j) + ∂̄(λg−1∂g)− ∂(λg−1∂̄g). (2.10)

Equation (2.10) relates an action in group variables to an action in the alge-

bra variables, up to a total derivative term which is discussed in section 5.

This completes the proof in the level of the lagrangian.

Next, we turn to study the jacobian for the transformation (2.8).

3 The Jacobian

Denoting both sides of (2.8)b as A, their variations with respect to g and λ

are respectively

LHS Dc(g−1δg) = ∂(g−1δg)c +Aaf cab(g
−1δg)b

RHS
(
−ÑD̃(δλ)

)c
= N bc(∂δλb −Aafdabδλd) ,

(3.1)

1If the structure constants are totally anti-symmetric (i.e. for compact semi-simple

group) one also has ∂(g−1λg) = ((g−1∂g)aEab + ∂xFLb )g−1T bg, from which λ is derived

explicitly.
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where ˜ denotes the functional transpose 2. The required jacobian is thus

J = Dg
Dλ = |D−1ÑD̃| , (3.2)

where |x| stands for det(x). This can be proved to be the ratio

|N |
|DD̄|

|D||D̄|

∣∣∣
ḡ=g

= |N | exp{−
tr

2π

∫
d2z (g−1∂g∂̄σ + g−1∂̄g∂σ)} (3.3)

calculated in [5] to the first order in the conformal factor σ. These de-

terminants correspond to the changes F (A(g), Ā(ḡ)) → g, g → A, ḡ → Ā

(parametrized as in (4.1)). A general practice for treating ‘determinants’ of

inverse and transpose operators is one of the offshoots of the next section,

where the equivalence of (3.2) and (3.3) follows naturally.

One might want to derive the general form of the dual model found in

[5]. To that end, notice that

0 = tr
∫
σF (g−1∂g, g−1∂̄g) = tr

∫
σ∂(g−1∂̄g)− tr

∫
σ∂̄(g−1∂g) ⇒

tr
∫
g−1∂̄g∂σ = tr

∫
g−1∂g∂̄σ

(3.4)

so that by (2.8), (3.3) becomes

J = |N | exp{−
2

2π

∫
d2z ∂̄σN(∂λ − ∂xFL)} ; (3.5)

then, by substituting the equations of motion for λ [4], one obtains the same

form for the terms linear in σ as in [5] 3.

2Notice the similarity between the characterization of the symmetry D(g−1δg) = 0 of

the original model - and the corresponding symmetry of its dual: D̃(δλ) = 0. See section

6 for a possible significance of such similarity. The (global) gauge invariant measure for

λ is given in (3.1RHS). Its dependence on the background fields is due to the non-local

nature of the symmetry as we transform g → λ. Another thing worth mentioning at this

point is that (2.8) also relates two different field equations - that of the original model,

which looks like: ∂J̄(g, x) + ∂̄J(g, x) = 0 and that of the dual - F (A(λ, x), Ā(λ, x)) = 0

(see [4] for the exact forms).
3A quick way to obtain the very result found in [5] is by using the σ dependent trans-

formation g−1∂g = (∂λ− ∂xFL + ∂σtr T )N .
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4 Factorization of Jacobians

The Motivation

Consider some action S that depends on the group variables g, ḡ through the

(gauge) fields

A = g−1∂g , Ā = ḡ−1∂̄ḡ , (4.1)

which in turn appear in S in combinations F (A, Ā) = DĀ − ∂̄A. When

changing variable ḡ → Ā followed by the change Ā→ F , the total jacobians

multiplying the partition function’s integrand are

J = (|D||D̄|)−1 . (4.2)

On the other hand, changing F → ḡ directly, one collects the jacobian

|DD̄|−1. Now, for path integration to be consistent, the results of these

two courses of changing variables from ḡ to F should be no different in the

end. But as we saw in (3.3), their ratio is non-trivial, at least for groups with

traceful structure constants; this is the mixed anomaly [7], here in the form

of a ‘multiplicative anomaly’ [5] which seems to violate the functional chain

rule.

Factorization

To resolve this puzzle 4 the ghost actions (the variation of which with re-

spect to the conformal factor should give the value of the anomaly) defining

the functional determinants are invoked 5. Let us write the ghost actions in

interest: we have g, ḡ and F that are worldsheet scalars where A, Ā are com-

ponents of a worldsheet vector; the fermionic ghosts of types s (for scalar)

and v (vector) are thus introduced. Changing A → g, the corresponding

jacobian may be written as 6

DA/Dg = |D|vs ≡
∫
DvDs exp

∫
vDs (4.3)

4The author wishes to thank S. Elitzur for suggesting the direction which led to the

formulation and also for the proof (5.3).
5the ζ-function procedure is not defined for jacobians relating two spaces of different

types. When both procedures are defined, one might want to prove that they are different

by local counterterms at most.
6Such definitions are not Lorentz-invariant and are ill-defined in general [7]. This,

however, should not interfere with our argument which is compelled by the chain rule.
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where the integration in the exponent is over the worldsheet, partial deriva-

tives change to worldsheet covariant ones, and indices of all types are su-

pressed. By partial integration we have

∫
vDs =

∫
sD̃v ⇒ |D|vs = |D̃|sv . (4.4)

Further, bearing in mind the chain rule, one can factorize and re-merge ‘de-

terminants’ of vector operators‘ products and derive identities such as:

|O1O2|ss = |O1|sv|O2|vs = |Õ1|vs|Õ2|sv =

|Õ1Õ2|vv = |(O2O1)̃|vv = |O2O1|vv .
(4.5)

By considering a change of variables and its inverse change, we also have

|O−1

1 O2|ss = |O−1

1 |sv|O2|vs = |O1|−1
vs |O2|vs . (4.6)

These rules for chaining jacobians are easily generalized to jacobians of

tensors relating two objects, possibly of different ranks (with respect to world-

sheet diffeomorphisms). The basic rules for that are

a) |A|r1r2 = |Ã|r2r1
b) |A|r1r2|B|r2r3 = |AB|r1r3
c) |A−1|r1r2 = |A|−1

r2r1

(4.7)

with obvious notations. These rules should be correct whenever they corre-

spond to legitimate changes of variables.

Applying these rules to the anomaly (3.3), it may take the following equiva-

lent forms

|DD̄|ss
|D|vs|D̄|vs

=
|D|sv|D̄|vs
|D|vs|D̄|vs

=
|D|sv
|D|vs

=
|D|sv
|D̃|sv

= |D̃−1|vs|D|sv = |D̃−1D|vv = |DD̃−1|ss . (4.8)

This proves the equality of (3.2) and (3.3) in particular. As to the example

in the beginning of the section, the corresponding ratio is

|DD̄|ss
|D|sv|D̄|vs

= 1 (4.9)
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according to (4.8) or (4.7).

With (4.8) in mind, let us consider the anomaly in two classes of cases.

By definition, we have∫
vDs =

∫
vb∂s

b + vcf
c
abA

asb. (4.10)

If G is semisimple, then fabc is totally antisymmetric. Reshuffeling indices

and integrating by parts, (4.10) may be written as∫
−sb∂v

b − sbf
b
acA

avc = −
∫
sDv ⇒ |D|vs = |D|sv (4.11)

⇒ no anomaly, by virtue of (4.8).

If G is solvable, there exists a triangular basis for the algebra s.t.∫
vDs =∫

v1∂s
1 +Aµf 1

µ1v1s
1

+ v2∂s
2 +Aµf 1

µ2v1s
2 +Aµf 2

µ2v2s
2

. . .

. . .

. . .
+ vN∂s

N +Aµf 1
µNv1s

N + . . . +AµfNµNvNs
N .

(4.12)

Integrating over s1 and then over v1, produces the functional determinant

| − ∂ +Aµf 1
µ1|sv , (4.13)

while setting v1 to zero, by which all of the terms in the second column

vanish. Repeating this procedure for (s2, v2), ..., (s
N , vN), we finally get the

formula

|D|vs =
N∏
k=1

| − ∂ +Aµfkµk|sv =
N∏
k=1

|∂ − Aµfkµk|sv . (4.14)

Switching s and v, we get

|D|sv =
∏N
k=1 | − ∂ +Aµfkµk|vs =

∏N
k=1 |∂ −A

µfkµk|vs =∏N
k=1 |∂ + Aµfkµk|sv , (4.15)
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so the anomaly , which is the ratio of (4.14) and (4.15) can be written as a

product of chiral anomalies. By Adler and Bardeen [12], we conclude that if

the anomaly vanishes to first order, it cancels altogether. The condition for

that is [5] ∑
k

fkµk = 0 . (4.16)

The methods above can also be used for the general case, i.e. a semi-direct

product of a semisimple group and a solvable one (e.g. the Lorentz group).

However, the general classification of such groups is still a mystery and so is

the general rule for factorization of the corresponding covariant derivatives.

5 Global Aspects

Notations and mathematical tools on compact Riemann surfaces

1) The z-component of a one-form ω = (ωz, ωz̄) can be completed to a full

closed singled-valued one-form of which ωz is its z-componet, as follows

ω̃ = (ωz, ω̃z̄) = (ωz, ∂̄
∫
z0

dz ωz) = dC (z0 = const) , (5.1)

where C is a multivalued function on the surface. One can verify the above

on the torus and therefore on every handle of the surface.

2) For a closed one-form Y , let Y0 stand for its zero mode(s) where Ye denotes

its exact part, that is, Y0 ≡
∑
j αj

∮
ℵj Y and Ye ≡ Y − Y0, where {αj}, j =

1, ...2g is the (unique) basis to the space of harmonic differentials on a surface

of genus g, satisfying
∮
ℵj
αk = δjk and {ℵj} is a basis to the first homology

group of the surface.

3) For two closed one-forms α and β one has

∫
α ∧ β =

n∑
i=1

∮
ai

α
∮
bi

β −
∮
bi

α
∮
ai

β , (5.2)

where {ai, bi|i = 1, ...,g} denote the non-trivial cycles on the g-genus surface

[6].
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4) If θ(z, z̄) and λ(z, z̄) are two multivalued functions on a surface one has∫
d2z (∂θ)0(∂̄λ)e =

∫
d2z ∂̄((∂θ)0λs)−

∫
d2z ∂̄(∂θ)0λs = 0− 0 = 0 , (5.3)

where the subscript s stands for the single valued part, that is,

λs(z, z̄) =
∫ z

z0

(dλ)e , (5.4)

and thus (dλ)e = dλs. We deduce the decoupling of terms, that are a product

of zero modes and exact modes - from the action.

5) The equations of motion for the zero modes of a one-form Aa = (A, Ā)a

in actions of the form

S =
1

2π

∫
d2z (AMĀ+AN +KĀ) (5.5)

where the matrices M,N and K don’t depend on A, may be written as

(MĀ+N)0 = (AM +K)0 = 0 . (5.6)

The zero modes are defined by 2) after completing N , K, A and Ā (1)) and

using 4) for the decoupling of the exact and the zero modes.

An abelian case

The original model: Let the original action be

Soriginal =
1

2π

∫
d2z ∂θR2∂̄θ , (5.7)

with R = R(x(z, z̄)), θ = θ + 2πl , l = const. In order to dualize (5.7) we

write an equivalent action

S =
Re

2π

∫
d2z ∂θR2∂̄θ + (∂θ)0(∂̄λ)0 − (∂λ)0(∂̄θ)0 , (5.8)

where now θ’s holonomies are any 2g real numbers and λ (who’s single valued

part is yet unspecified) satisfies∮
ai

(dλ)0 =
4πmi

l
,
∮
bi

(dλ)0 =
4πni
l

. (5.9)
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To recover θ’s original periodicity, we write the total derivative term in (5.8)

as i
4π

∫
(dθ)0 ∧ (dλ)0, which by (5.2) equals i

l

∑
j(nj

∮
aj
dθ−mj

∮
bj
dθ). Notice

that the zero subscripts in (5.9) are omittable. Summing over all possible

integer nj and mj , constrains θ’s periodicity to be 2πl.

The dual model: Imposing the equations of motion of (∂θ)0 and (∂̄θ)0 on

(5.8) imposes

(∂λ)0 − (∂θR2)0 = 0 . (5.10)

Therefore, by virtue of (1) we define

(∂λ)e = (R2∂θ)e , (5.11)

and use (5.10) to write

∂λ = R2∂θ (5.12)

and substitute it in the first term of (5.8), which after omitting the zero

subscripts form its next terms takes the form

Re
2π

∫
d2z ∂λ∂̄θ + ∂θ∂̄λ− ∂λ∂̄θ = Re

2π

∫
d2z ∂θ∂̄λ

∂θ=∂λR−2

= (5.13)

Sdual = Re
2π

∫
d2z ∂λR−2∂̄λ , (5.14)

where λ = λ+ 4π
l
.

This can readily be generalized to (2.1) with G = U(1)dimG. To omit the Re

in (5.14), one may change variables by replacing an integrand of the same

form, with a real λ. The realness issue carries over to the non-abelian case

and so should its solution.

A non-abelian case: Let the original action be

a) S = 1
2π

∫
d2z (g−1∂g)E(g−1∂̄g) =

b) 1
2π

∫
d2z ((g−1∂g)E)E−1(E(g−1∂̄g)) =

c) trRe
2π

∫
d2z (g(g−1∂g)Eg−1)0(∂̄gg

−1)0 + (g(g−1∂g)Eg−1)e(∂̄gg
−1)e ,

(5.15)

withG simply connected and (g−1∂g)E
def
= ((g−1∂g)E)bT

b def= (g−1∂g)aEabT
b ,

etc. To derive (5.15c) from (5.15a), we have used the trace cyclicity along
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with the conclusion from 4).

The dual model Since all mappings from a Riemann surface to a simply

connected group are homeotopic to a point (on the group’s manifold), the

configurations space of g is continuous and connected, therefore we can in-

voke the equations of motion of (Eg−1dg)0 together with 5), to constrain g’s

configurations s.t.

(g−1dg)0 = 0 ; (5.16)

the extent of validity of this step is yet to be examined (elsewhere). Substi-

tuting g with g−1 we can characterize this subspace also by

(gdg−1)0 = −(dgg−1)0 = 0 , (5.17)

so that the first term in (5.15c) decouples from the action. Using 1) we define

the function χ by

∂χ = g(g−1∂g)Eg−1 . (5.18)

Notice that χ’s possible multivalued part decouples from the action and may

therefore be taken to be zero. We substitute (5.18) in what’s left of (5.15) to

give

tr
Re

2π

∫
d2z ∂χ∂̄gg−1 . (5.19)

Integrating it by parts and then using the identity ∂(∂̄gg−1) = g∂̄(g−1∂g)g−1

yield

−tr
Re

2π

∫
d2z χg∂̄(g−1∂g)g−1 . (5.20)

Then, using the trace cyclicity and integrating by parts again we obtain

tr
Re

2π

∫
d2z g−1∂g∂̄λ , (5.21)

where λ = g−1χg is single valued. Finally, we observe that (5.18) may

equivalently be written as

g−1∂(gλg−1)g = (g−1∂g)E ⇔ g−1∂gλ+ ∂λ− λg−1∂g = g−1∂gE ⇔

∂λ = g−1∂g(E + f cλc)⇔ g−1∂g = ∂λ(E + f cλc)
−1 , (5.22)
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from which we obtain

Sdual =
1

2π

∫
d2z ∂λ(E + f cλc)

−1∂̄λ , (5.23)

where the λ’s are single valued. The total derivative term from the two

integrations by parts

tr
i

2

Re

2π

∫
d2z d(χdgg−1) (5.24)

vanishes because that χdgg−1 is single valued. The generalization to (2.1) is

again, straightforward.

6 Concluding Remarks

The constructions presented in this paper imply (once again) that in the

case without isotropy, the conformal invariance of an action and that of its

dual are equivalent to all orders of α′ (assuming a correct computation of

the jacobian, especially if that is non-local).

The author’s hope is that the change of variables presented in this work

will shed some light on the global issues in dual models of isometry groups the

mappings to which from Riemann surfaces fall into more interesting homol-

ogy structure than the one presented here i.e. the trivial one that corresponds

to simply-connected groups.

The (classical) equality in the case without isotropy (2.10) between the

original and the dual action might seem a surprise, since the former admits a

symmetry that seemingly is absent in the latter [10]. Further, a check of the

change of variables (2.8) verifies that transforming g → ug induces no change

in the dual coordinate λ. Where has the original symmetry gone? It has gone

non-local (cf.[4]) just to avoid detection by the Killing equation 7. Actually,

7With (2.8) in mind, one suspects the existence of some non-local generalization of

the Killing equation that is capable of detecting such hidden symmetries, thus providing

means by which dualization may be reversed.
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the very condition for the ‘smoothness’ of the change of variables, that is, for

the jacobian to be local, is that the symmetry factors (see footnote after eq.

(3.1)) |D| and |D̃| before the volume elements Dg and Dλ respectively should

cancel out. It is precisely when this correspondence between the symmetries

breaks, that the anomaly occurs.

As shown in section 4, the factorization approach to reorganize compos-

ite jacobians may be of help in tracing and isolating the very generators of

the anomaly, as well as in simplifying its ghost action. One might want to

generalize that to all Lie algebras and prove the chiral nature of the mixed

anomaly in general.
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