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Introduction

Electromagnetic duality is a very old idea, possibly predating Maxwell’s equations.
Although the route that has recently led to a precise and convincing formulation has
been long, it has turned out to be of quite surprising interest. This is because it has
synthesised many hitherto independent lines of thought, and so intriguingly interelated
disparate ideas arising in the quest for a unified theory of particle physics valid in the
natural space-time with three space and one time dimension. Despite the progress,
final proof is lacking and likely to require further breakthroughs in fundamental math-
ematics.

Although nature does not seem to display exact electromagnetic duality, realistic
theories could well be judiciously broken versions of the exact theory in which sufficient
structure survives to explain such long-standing puzzles as quark confinement in the
way advocated by Seiberg and Witten [1]. Spectacular support for their arguments
comes from applications in pure mathematics where new insight has been gained into
the classification of four-manifolds [2], transcending the celebrated work of Donaldson

Here I shall review the developments leading up to the formulation of exact elec-
tromagnetic duality, taking the view that an understanding of this must precede that
of the symmetry breaking.

The Original Idea

The apparent similarity between the electric and magnetic fields £ and B was
confirmed and made more precise by Maxwell’s discovery of his equations. In vacuo,
they can be written concisely as just two equations [4]:

V.(E+iB)=0, (1a)

VA(E+:1B)= ig—t(ﬂ+i§) (1b)

at the expense of introducing a complex vector field E + ¢B. These equations display
several symmetries whose physical importance became clear subsequently. They dis-
play Poincaré (rather than Galilean) symmetry, and, beyond that, conformal symmetry
(with respect to space-time transformations preserving angles and not just lengths).
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Unlike the Poincaré symmetry, the conformal symmetry is specific to four space-time
dimensions. Even more sensitive to the precise space-time metric is the electromag-
netic duality rotation symmetry of Maxwell’s equations

E+iB— ¢"(E+iB) (2)

since only in 3 + 1 dimensions do the electric and magnetic fields both constitute
vectors so that the complex linear combination E + ¢B appearing in (1) and (2) can
be formed. It is the extension of the fascinating symmetry (2) of (1) that is the main
theme of what follows.

Notice that we can form two real, quadratic expressions invariant with respect to

(2) [4): . .
SIE+ iB|* = §(E2 + B?),

1
5 (E+iB)" NE+iB)=ENB,
i
respectively the energy and momentum densities of the electromagnetic field.
On the other hand, %(ﬂ +1B)?* is complex with real and imaginary parts given

by
1
5(152 — B*) +iE.B.

As the real part is the Lagrangian density, this shows that it forms a doublet under
(2) when combined with E.B which is a total derivative. Thus the Maxwell action
forms a doublet with a “topological quantity” which is proportional to the instanton
number in non-abelian theories.

We would like to generalise the electromagnetic duality rotation symmetry (2) to
include matter. We could also consider generalisations to non-abelian gauge theories
of the type which seem to unify the fundamental interactions. In either case we meet
the same difficulty that the gauge potentials enter the equations of motion and that
we do not know how to extend the transformation (2) to include them. Eventually we
shall find a way of combining the two generalisations, thereby extending the symmetry.

There is another, familiar, difficulty with the equations of motion in non-abelian
gauge theories; that they are conformally invariant (in 3 + 1 dimensions). As a con-
sequence, the gauge particles which are the quanta of the gauge potentials, should
be massless. This is fine for the photon, but not for any other gauge particles. This
problem seems to be rather general and deep: unified theories chosen according to
geometric principles tend to exhibit unwelcome conformal symmetry. This occurs in
string theory too, at least as a world sheet symmetry. As a consequence, there is a
general problem of understanding the origin of mass through a geometrical mechanism
for breaking conformal symmetry. We know of only two possible solutions, at first sight
different, but related in what follows.

The first is the idea that mass arises from the vacuum spontaneously breaking
some of the gauge symmetry via a “Higgs” scalar field [5,6,7]. The second is a principle
due to Zamolodchikov [8] that we now discuss.
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Zamolodchikov’s Principle and Solitons

The second insight into the origin of mass comes from another area of physics.
Yet, as we shall see, it seems connected to the first, in four dimensions at least.
The conformal symmetry on the world sheet needed for the internal consistency of
string theory hinders the emergence of a physically realistic mass spectrum in an
otherwise unified theory. However, when string theory is abstracted to the study of
“conformal field theory”, and applied to the study of second order phase transitions
of two dimensional materials, it is seen that the simple application of heat breaks the
conformal symmetry controlling the behaviour at the critical temperature. In specific
models it was learnt by Onsager, Baxter and their followers [9] that it is possible to
supply heat while maintaining integrability (or solvability). Zamolodchikov [8] has
elevated this observation to a principle which has rationalised the theory of solitons
and more. In two dimensions, the local conservation laws characteristic of conformal
symmetry (or augmented versions such as W-symmetry) are chiral. This means that
the densities are either left moving or right moving (at the speed of light) and so can
be added, multiplied or differentiated. If conformal symmetry is judiciously broken,
a certain (infinite) subset of the chiral densities remain conserved, although no longer
chirally so. Their conserved charges, that is their space integrals, generate an infinite
dimensional extension of the Poincaré algebra in which the charges carry integer spins.
The charges with spin plus or minus 1 are the conventional light cone components of
momentum. The sinh-Gordon equation illustrates this nicely. It can be written

82¢ 82¢ /~L2 _
o Tap (=0 o

The last term, proportional to e #?, can be multiplied by a variable coefficient 7 so
that n = 1 yields (3), while n = 0 yields the Liouville equation. Liouville exploited the
conformal symmetry of his equation in order to solve it completely, long ago.

It is interesting to investigate the behaviour as n varies from 1 to 0. As long as
n > 0, a simple redefinition of the field ¢ by a displacement restores the sinh-Gordon
form (3) but with p replaced by un'/*. As ph is the mass of the particle which is the
quantum excitation of ¢, we see that it is singular as 1 approaches zero with critical
exponent 1/4. So we see how mass arises from the breaking of conformal symmetry.
This short discussion was classical but it extends to the quantum regime as envisaged
by Zamolodchikov [8].

The sine-Gordon equation is obtained from the sinh-Gordon equation (3) by re-
placing 3 by ¢3. It then exhibits the symmetry

27
¢— b+ — (4)
B
and, consequently, possesses an infinite number of vacuum solutions ¢, = 222 n € Z,

b
all with the same minimum energy, zero. The particle of mass uh describes fﬁlctuations
about any of these vacua. But there also exist classical solutions which interpolate two
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successive vacua and which are stable with respect to fluctuations. These solutions
can be motionless, describing a new particle, the soliton, at rest, or can be boosted to
any velocity less than that of light. The jump in n, equal to +1, can be regarded as
a topological quantum number, indicating either a soliton or an antisoliton. What is
particularly remarkable is that one can consider a solution with an arbitrary number of
solitons and/or antisolitons, initially well separated, but approaching each other, then
colliding and finally emerging with velocities unchanged and energy profiles generally
unscathed except for time advances relative to uninterrupted trajectories [10]. Thus
the solitons persist in their structure despite their collisions and can legitimately be
regarded as providing classical models of a particle with a finite mass and a structure
of finite extent. This phenomenon is a very special feature of sine-Gordon theory
that can be ascribed to the infinite number of conservation laws mentioned previously,
themselves relics of conformal symmetry.

This sort of integrable field theory has two “sorts” of particle, the quanta of the
fluctuation of the field ¢ (obtained by second quantisation) and the solitons which
are classical solutions. Skyrme [11] was the first to ask whether these two “sorts” of
particle are intrinsically different and found that they were not. His explanation was
that, in the full quantum theory, it is possible to construct a new quantum field whose
fluctuations are the solitons. The new field operator is obtained by an exponential
expression in the original field ¢

iBox ¥ da' 22
77Z):l:(x) —e 6((15 f_oo Bt) (5)

with two spin components (and a normal ordering understood). Coleman and Man-
delstam [12,13] later confirmed that v satisfied the equations of motion of the massive
Thirring model.

The construction (5) is an example of the vertex operator construction later to be
so important in string theory and in the representation theory of infinite dimensional
algebras (resembling quantum field theories).

There are multicomponent generalisations of the sine-Gordon equations called
the affine Toda theories, likewise illustrating Zamolodchikov’s principle in a nice way,
and revealing the role of algebraic structures such as affine Kac Moody algebras [14].
Again there are particles created by each field component, now possessing interesting
mass and coupling patterns (related to group theory). Remarkably, there are an equal
number of soliton species and these display very similar properties [15].

Magnetic Charge and its Quantisation

Let us now return to the question of extending the electromagnetic duality rotation
symmetry (2) to matter carrying electric and magnetic charges. Suppose first that
matter can be regarded as being composed of classical point particles carrying typical
electric and magnetic charges ¢ and ¢, say. Then it is easy to include the source
charges on the right hand side of Maxwell’s equations (1) and to supplement (1) by
the equations of motion for the individual particles subject to a generalised Lorentz
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force. This system maintains the symmetry (2) if, in addition,
¢ +ig — (g +1g). (6)

The price to be paid for achieving this is the inclusion of unobserved magnetic charge.
We must therefore suppose that the failure to observe magnetic charge is either due
to an associated very large mass or some other reason.

Turning from the classical to the quantum theory, we immediately find a diffi-
culty, namely that the electromagnetic couplings of the matter wave functions require
the introduction of gauge potentials, a procedure which is not straightforward in the
presence of magnetic charge.

Nevertheless, in 1931, Dirac overcame this difficulty and showed that the intro-
duction of magnetic charge could be consistent with the quantum theory, provided
its allowed values were constrained [16]. His result was that a magnetic charge ¢1,
carrying no electric charge, could occur in the presence of an electric charge ¢, like
the electron carrying no magnetic charge, provided

g2g1 = 2mnh n=0,£1,4+2,... (7)

As he pointed out, this condition had a stunning consequence: provided ¢; exists
somewhere in the universe, even though unobserved, then any electric charge must
occur in integer multiples of the unit 29%}", by (7). This quantisation of electric charge
is indeed a feature of nature and this explanation is actually the best yet found.
Although apparent alternative explanations, evading the necessity for magnetic charge,
have appeared, they turn out to be unexpectedly equivalent to the above argument,
as we shall see.

There is a problem with the Dirac condition (7), namely that it does not respect
the symmetry (6). In fact (7) is not quite right because, although Dirac’s argument is
impeccable, there is an implicit assumption hidden within the situation considered. It
took a surprisingly long time to rectify this and hence restore the symmetry (2) and
(6), as we see later.

Given that this difficulty is overcome, we can seek a consistent quantum field the-
ory with both electric and magnetic charges. Then, presumably, the particles carrying
magnetic charge would have a structure determined by the theory, and hence a mass
dependent on the charges carried. Just as the Maxwell energy density respected the
symmetry (2), we would expect this mass formula to respect (6) so that

M(q,9) = M(lq +ig]) = M(v/¢* + ¢*). (8)
We now proceed to find such a theory.
Magnetic Monopoles (and dyons) as Solitons

We can now draw together several clues in the ideas already discussed. One
concerns the quantisation of electric charge: since the electric charge operator, @,
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is the generator of the U(1) gauge group of Maxwell theory, its quantisation could
be explained by supposing that it is actually a generator of a larger, simple gauge
group (that could unify it with other interactions). If the larger group were SU(2),
for example, @) would then be a generator of an SU(2) Lie algebra, that is, an internal
angular momentum algebra. Consequently its eigenvalues would be quantised, thereby
providing an alternative explanation of electric charge quantisation which apparently
evades the need for magnetic charge.

However, we still have to furnish a mechanism selecting the direction of ¢ amongst
the three SU(2) directions. This can be achieved by a scalar field with three compo-
nents (¢1(x), d2(x), d3(x)), like the SU(2) gauge fields. This scalar field has to have
the unusual feature of not vanishing in the vacuum, so that it can select the () direction
there. It is therefore a “Higgs” field providing the mechanism whereby the vacuum
spontaneously breaks the SU(2) gauge symmetry down to the U(1) subgroup [5,6,7].
As well as this, it also breaks conformal symmetry, introducing mass for two of the
gauge particles, leaving the photon massless.

There is a simple formula for the resultant masses of the gauge particles

M(q,0) = alq|, (9)

where ¢ is the eigenvalue of () specifying the electric charge of a specific mass eigenstate.
a constitutes a new fundamental parameter specifying the magnitude of the vacuum
expectation value of the scalar Higgs field. Actually the mass formula (9) is much more
general. Instead of the gauge group being SU(2), it could have been any simple Lie
group, G, say, and (9) holds as long as the Higgs field lies in the adjoint representation
of G, like the gauge fields.

In the vacuum, the gauge group G is spontaneously broken to a subgroup
U(l)g x K/Z, (10)

where @ still generates the invariant U(1) subgroup commuting with A". The denom-
inator Z indicates a finite cyclic group in which the U(1)g intersects K, and will not
be important for what we have to say.

But this setup, a spontaneously broken gauge theory with a Higgs in the adjoint
representation, is very much the analogue in four dimensions of the sine-Gordon theory
in two dimensions. Instead of the symmetry relating the degenerate vacua being
discrete, (4), it is now continuous, being the gauge symmetry, G, and it is again possible
to trap nontrivial topologically stable field configurations of finite energy. Indeed in
1974, 't Hooft and Polyakov [17,18] found a classical soliton solution emitting a U(1)
magnetic flux with strength 47h/¢ in the SU(2) theory with heavy gauge particles
carrying electric charges +¢. Thus there is a soliton which is a magnetic monopole
whose charge indeed satisfies the Dirac condition (7). Thus the desired novelty of this
explanation of electric charge quantisation is illusory as it reduces to Dirac’s original
argument [16]. For a more detailed review of the material in this section see [19].

However what we have done is inadvertently achieve our other aim, that of con-
structing a theory in which the magnetic monopoles have structure and a definite
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mass which can be calculated by feeding the field configuration into the energy den-
sity and integrating over space. The result is the following inequality, known as the
“Bogomolny” bound [20],

M(0,g) > alg|. (11)

The similarity to the Higgs formula (9) prompts the question as to whether the in-
equality in (11) can be saturated to give equality. This is possible in the “Prasad-
Sommerfield” limit in which the self interactions of the Higgs field vanish [21]. Then
the lower bound in (11) is achieved if the fields satisfy certain first order differential
equations, known as the “Bogomolny equations” [19]

& =0, Dy = 0, B; = +D;¢, (12)

where & and B; denote the nonabelian electric and magnetic fields. Solutions to (12)
have zero space momentum and therefore describe a magnetic monopole at rest, with
mass alg| (if |¢g| has its minimum least positive value).

The sine-Gordon solitons satisfy similar first order differential equations that im-
ply that the mass can also be expressed as a surface term, but there is an important
difference. This is that the Bogomolny equations (12) (unlike the first order sine-
Gordon equations) can also be solved for higher values of the topological charge, here
magnetic charge. When the magnetic charge is m times its least positive value, the
space of solutions to (12), called the moduli space, form a manifold of 4m dimensions.
3m of these dimensions can be interpreted as referring to the space coordinates of m
individual magnetic monopoles of like charge.

This means that m like magnetic monopoles can exist in arbitrary configurations
of static equilibrium (unlike m sine-Gordon solitons, which must move). So, as they
have no inclination to move relatively, like magnetic monopoles at rest must fail to
exert forces on each other [22]. (This is reminiscent of the multi-instanton solutions
to self-dual gauge theories: indeed the Bogomolny equations (12) can be interpreted
as self-dual equations in four Euclidean dimensions).

The remaining m coordinates, one for each monopole, have a more subtle, but
nevertheless, important interpretation: they correspond to degrees of freedom conju-
gate to the electric charge of each monopole. Because of this, it is possible for each
magnetic monopole soliton to carry an electric charge, ¢, say [23]. In this case, they
are called “dyons”, following the terminology introduced by Schwinger [24]. Then the
mass of an individual dyon is given by, [25],

M(q,9) = alg +ig| = an/¢* + ¢*. (13)

The first remarkable fact about this formula is that it is universal. It applies equally
to the dyon solitons of the theory and to the gauge particles, as it includes the Higgs
formula (9). In fact it applies to all the particles of the theory created by the funda-
mental quantum fields, as it also includes the photon and Higgs particles which are
both chargeless and massless. Thus, whatever G, (13) unifies the Higgs and Bogo-
molny formulae and is therefore democratic in the sense that it does not discriminate
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as to whether the particle considered arises as a classical soliton or as a quantised field
fluctuation [26].

Secondly the mass formula (13) does indeed respect the electromagnetic duality
rotation symmetry (6) as it has the structure (8).

Electromagnetic Duality Conjectures

We have seen that spontaneously broken gauge theories with adjoint Higgs (in the
Prasad-Sommerfield limit) have remarkable properties, at least according to the naive
arguments just outlined. Magnetically neutral particles occur as quantum excitations
of the fields present in the action, whereas magnetically charged particles occur as soli-
tons, that is, solutions to the classical equations of motion. Yet, despite this difference
in description, all particles enjoy a universal mass formula (13).

Skyrme showed that, in two dimensions, the soliton of sine-Gordon theory could be
considered as being created by a new quantum field obeying the equations of motion
of the massive Thirring model [11,12,13]. Thus the same quantum field theory can
be described by two distinct actions, related by the vertex operator transformation
(5). It is natural to ask if something similar can happen in four dimensions, with
the theory under consideration. There, the solitons carry magnetic charge with an
associated Coulomb magnetic field. This suggests that the hypothetical quantum field
operator, creating the monopole solitons, should couple to a “magnetic” gauge group
with strength inversely related to the original “electric” gauge coupling because of
Dirac’s quantisation condition,

4mh
qO—>go=ﬂ:q—, (14)
0

or possibly half this.

Thinking along these lines, two more specific conjectures were proposed in 1977.
First, considering a more general theory, with a simple exact gauge symmetry group
H, (i.e. not of the form (10)), Goddard, Nuyts and Olive established a non-abelian
version of the Dirac quantisation condition (7) and used it to propose the conjecture
that the magnetic, or dual group H" could be constructed in two steps as follows [27].

(i) The Lie algebra of H" is specified by saying that its roots a¥ are the coroots

of H :-

v 2w
o —a' = PR (15a)

(ii) The global structure of the group H" is specified by constructing its centre Z(H")
from that of H, Z(H) :-

Z(H) — Z(H") = 22 (15b)

where H is the universal covering group of H, that is, the unique simply connected
Lie group with the same Lie algebra as H.
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This conjecture remains open. Notice the similarity between (15) and (14). In
order to make progress, Montonen and Olive sought a more specific proposal in a sim-
pler context, and considered spontaneously broken gauge theories of the type discussed
above, but with the gauge group henceforth definitely chosen to be SU(2) [26]. This
is broken to U(1) by a triplet Higgs field so that the mass formula (13) holds good.

The possible quantum states of the theory carry values of ¢ and ¢ which form an
integer lattice when plotted in the complex ¢ + 7g plane (with Cartesian coordinates
(q,g)). Ignoring possible dyons, the single particle states correspond to five points
of this lattice. The photon and the Higgs particle correspond to the origin (0,0),
the heavy gauge particles W to the points (+¢o,0). Thus the particles created by
the fundamental fields in the original, “electric” action lie on the real, electric axis.
The magnetic monopole solitons M* lie on the imaginary, magnetic axis at (0, £go),
while the dyons could lie on the horizontal lines through these two points. Since, at
this stage, it is unclear what values of their electric charges are allowed, they will
temporarily be omitted, to be restored later.

Now, if we follow the transformation (14) by a rotation through a right angle in
the ¢ 4 g plane, the five points just described are rearranged. This suggests that the
“dual” or magnetic formulation of the theory with M¥ created by fields present in the
action will also be a similar spontaneously broken gauge theory, but with the coupling
constant altered by (14). In this new formulation it is the W& particles that would
occur as solitons.

This is the Montonen-Olive electromagnetic duality conjecture in its original form
[26]. In principle, it could be proven by finding the analogue of Skyrme’s vertex
operator construction (5) [11], but, even with present knowledge, this seems impossibly
difficult. Notice that the sine-Gordon quantum field theory was described by two quite
dissimilar actions whereas in the four dimensional theories the two hypothetical actions
have a similar structure but refer to electric and magnetic formulations.

The magnitudes of physical quantities should agree whichever of the two actions is
chosen as a starting point for their calculation. The conjecture will immediately pass
at least two simple tests of this kind, showing that it is not obviously inconsistent.
The first test concerns the mass formula (13) and is passed precisely because of the
universal property that has already been emphasised.

A second test concerns the fact that, according to the existence of static solutions
to the Bogomolny equations with magnetic charge 2¢o discussed earlier, an MTM™
pair exert no static forces on each other. This result is according to the electric
formulation of the theory and ought to be confirmed in the magnetic formulation. This
is equivalent to checking that there is no WTWT force in the electric formulation.
In the Born approximation, two Feynman diagrams contribute, photon and Higgs
exchange. Using Feynman rules, one finds that photon exchange yields the expected
Coulomb repulsion but that the second contribution precisely cancels the first. This
can happen because the Higgs is massless in the Prasad-Sommerfield limit [26].

Thus, at the level considered, the conjecture is consistent, but there are more
searching questions to be asked. Their answers will lead to a reformulation of the
conjecture that passes even more stringent tests.
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Catechism concerning the Duality Conjecture

The Montonen Olive electromagnetic duality conjecture immediately provokes the
following questions:-

(1) How can the magnetic monopole solitons possess the unit spin necessary for heavy
gauge particles?

(2) Will not the quantum corrections to the universal mass formula (13) vitiate it?
(3) Surely the dyon states, properly included, will spoil the picture just described?

Clearly the answers to the first two questions will depend on the choice of quan-
tisation procedure, and presumably the most favourable one should be selected. The
idea of what the appropriate choice was, and how it answered the first two questions
came almost immediately, though understanding has continued to improve until the
present. The answer to the third question remained a mystery until it was decisively
answered by Sen in 1994, as we shall describe [28].

The immediate response of D’Adda, Di Vecchia and Horsley was the proposal
that the quantisation procedure be supersymmetric [29]. The point is that the theory
we have described is begging to be made supersymmetric since this can be achieved
without spoiling any of the features we have described. For example, since the scalar
and gauge fields lie in the same, adjoint representation of the gauge group they can
lie in the same supermultiplet. The vanishing of the Higgs self-interaction implied by
the Prasad-Sommerfield limit is then a consequence of supersymmetry. Because the
helicity change between scalar and vector is one unit, the supersymmetry is presumably
of the “extended” kind, with either N = 2 or N = 4 possible. Osborn was the first to
advocate the second possibility [30].

The reason supersymmetry helps answer the first question is that, given that it
holds in the full quantum theory, it must be represented on any set of single particle
states carrying the same specific values of the charges and of energy and momen-
tum. This is so, regardless of the nature of the particles, whether they are created
by quantum fields or arise as soliton states, that is, whether or not they carry mag-
netic charge. When the extended supersymmetry algebra with N supercharges acts
on massive states, the algebra is isomorphic to a Clifford algebra in a Euclidean space
with 4N dimensions [31]. This algebra has a unique irreducible representation of 22%
dimensions. This representation includes states whose helicity h varies over a range
Al = N with intervals of 1/2. The limits of this range may differ but should not
exceed 1 in magnitude if the states can be created by fields satisfying renormalisable
equations of motion, according to the standard wisdom.

So, of necessity, the monopoles carry spin, quite likely unit spin. Secondly, quan-
tum corrections tend to cancel in supersymmetric theories, essentially because the
supersymmetric harmonic oscillator has no zero point energy. This is relevant to the
second question because the small fluctuations about the soliton profile decompose
into such oscillators, with the mass correction equal to the sum of zero point energies.

The structure of the representation theory raises some questions. According to the
renormalisability criterion, the maximum range of helicity is Ah = 1—(—1) = 2, which
is just consistent with N = 2 supersymmetry, but apparently forbids N = 4 super-
symmetry. Another difficulty concerns the understanding of how the Higgs mechanism
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providing the mass of the gauge particles, works in the presence of supersymmetry.
The point is that the expression on the right hand side of the supercharge anticom-
mutator, v.P, is a singular matrix when P? = 0, that is, for massless states. As a
consequence, the supersymmetry algebra acting on massless states is isomorphic to an
Euclidean algebra in 2N dimensions and so now possesses a unique irreducible repre-
sentation of 2%V dimensions (the square root of the number in the massive case), with
helicity range Ah = N/2. This now accommodates both N = 2 and N = 4 super-
algebras but no more. Indeed it is the reason we cannot envisage a more extended
supersymimetry, such as N = 8, which requires gravitons of spin 2, whose interactions
are not renormalisable.

The question arises of how to reconcile the jump in the dimensions of the repre-
sentations with the acquisition of mass for a given field content of scalar and gauge
fields. The answer, due to Witten and Olive [32], is that something special happens
precisely when the Higgs field lies in the adjoint representation, as we have assumed,
and so can lie in the same supermultiplet as the gauge field. Then the electric charge,
g, occurs as a central charge, providing an additional term on the right hand side of
the supercharge anticommutator, thereby altering the structure of the algebra. The
condition for a “short” representation, that is, of dimension 2V, is now P? = a?¢?,
rather than P? = 0. Thus, providing the Higgs formula (9) holds, mass can be ac-
quired without altering the dimension of the irreducible representation. Furthermore,
magnetic charge can occur as yet another additional central charge with the condi-
tion for a “short” representation being simply the universal Bogomolny-Higgs formula
(13). In particular, this means that this formula now has an exact quantum status
as 1t follows from the supersymmetry algebra which is presumably an exact, quantum
statement (though there may be subtle renormalisation effects) [32].

More on Supersymmetry and N =2 versus N =4

The possibility that, unlike the unextended supersymmetry algebra, the extended
ones could be modified by the inclusion of central charges was originally noted by Haag,
Lopuszanski and Sohnius [33], while the physical identification of these charges was
due to Witten and Olive [32]. The confirmation of the result involved a new matter
of principle. Hitherto supersymmetry algebras had been checked via the algebra of
transformations of the fields entering the action. But since these will never carry
magnetic charge in the electric formulation, this method will not detect the presence
of magnetic charge in the algebra. Instead, it is necessary to manipulate all the charges
explicitly, treating them as space integrals of local polynomials in the fields and their
derivatives.

The supersymmetry algebras possess an automorphism (possibly outer) involving
chiral transformations of the supercharges

Q%’Reeii(ﬁ/zQ%’R a=12...N (16)

where the suffices refer to the handedness. When the central charges are present,
this automorphism requires them to simultaneously transform by (6) (at least in the
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N = 2 case). Thus the electromagnetic duality rotation is now seen to relate to a
chiral rotation of the supercharges, sometimes known as R-symmetry.

So far, the theory could possess either N = 2 or N = 4 supersymmetry and it
is necessary to determine which, if possible. At first sight, N = 2 is simpler as there
are precisely two central charges, ¢ and ¢, as we have described, whereas in N = 4
there are more. However the N = 4 theory has one very attractive feature, namely
that there is precisely one irreducible representation of the supersymmetry algebra
fitting the renormalisability criterion |h| < 1, which, moreover, has to be “short”,
and therefore satisfy the universal mass formula (13) [30]. It follows that any dyon
state must, willynilly, lie in a multiplet isomorphic to the one containing the gauge
particles. Correspondingly there is only one supermultiplet of fields and, as a result,
the supersymmetric action is unique apart from the values of the coupling constants.

However, there is an even more compelling reason for N = 4 supersymmetry
which emerged some years later. In a series of papers it became apparent that the
Callan-Symanzik f-function vanished identically in the unique N = 4 supersymmet-
ric theory [34,35]. This was therefore the first example of a quantum field theory
in four dimensions with this property. The vanishing has at least three remarkable
consequences favourable to the ideas considered:

(1) As 3 controls the running of the coupling constant, its vanishing means that the
gauge coupling constant does not renormalise. Presumably this applies in both the
electric and magnetic formulations and it means that there is no question whether the
Dirac quantisation applies to the bare or renormalised coupling constants, as these are

the same (Rossi [36]).

(2) The trace of the energy momentum tensor is usually proportional to  times a local
quantity and so it should vanish in this theory, indicating that the theory is exactly
conformally invariant (if @ vanishes). Thus the N = 4 supersymmetric gauge theory
is the first known example of a quantum conformal field theory in four dimensions,
to be compared with the rich spectrum of examples in two dimensions. Furthermore,
the Higgs mechanism producing a nonzero value for the vacuum expectation value
parameter a presumably provides an integrable deformation realising Zamolodchikov’s
principle in four dimensions [8]. Notice that the naive idea that conformal field theories
should be more numerous in four rather than two dimensions seems to be false despite
the fact that the conformal algebra has only fifteen rather than an infinite number of
dimensions. Besides the N = 4 supersymmetric gauge theory, there are now a few
other known conformal field theories in four dimensions, all supersymmetric gauge
theories.

(3) Finally, just as the trace anomaly vanishes, so does the axial anomaly. In fact
the two properties are related by a supersymmetry transformation. This means that
the chiral symmetry (16) can be extended to the fields of the theory and is an exact
symmetry for N = 4. Thus we have answered an earlier question and seen that, indeed,
electromagnetic duality rotations can be extended to include matter, albeit in a very
special case.

The second point above, concerning the realisation of Zamolodchikov’s principle
in four dimensions via a special sort of Higgs mechanism [8], raises questions about
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the nature of “integrability” in four dimensions. As far as is known, the N = 4
supersymimetry algebra is the largest extension of Poincaré symmetry there, but only
provides a finite number of conservation laws, unlike the infinite number available in

two dimensions. On the other hand, there are, apparently, monopole/dyon solutions
with particle-like attributes (certainly if the duality conjecture is to be believed). But
a complete and direct proof is lacking, even though the results for like monopoles are
encouraging.

For each value of magnetic charge, the moduli space of solutions to the Bogomolny
equations (12) forms a manifold whose points correspond to static configurations of
distinet monopoles with total energy alg|. The problem of describing their relative
motion was answered by Manton [37], at least if it was slow. His idea follows from
the analogy with a Newtonian point particle confined to move freely on a Riemannian
manifold. It can remain at rest at any point of the manifold, but, if it moves, it follows
a geodesic on the manifold determined by the Riemannian metric. He realised that the
moduli spaces of the Bogomolny equations must possess such a metric and saw how
to derive it from the action. Actually it has a hyperkahler structure which makes it
very interesting mathematically. Moreover, Atiyah and Hitchin calculated the metric
explicitly for the moduli space with double magnetic charge [38]. This is sufficient
to determine the classical scattering of two monopoles at low relative velocity and
yielded surprisingly involved behaviour, including a type of incipient breathing motion
perpendicular to the scattering plane, visible on a video prepared by IBM.

Despite these beautiful results, there is no idea of how to describe relative motion
of monopole solitons with unlike charge. The duality conjecture predicts the possibility
of pair annihilation, unlike the sine-Gordon situation. This is why we say the soliton
behaviour is incompletely understood. It is certainly more complicated than in two
dimensions.

The Schwinger Quantisation Condition and the Charge Lattice

The remaining difficulty, one that has been repeatedly deferred, concerns the dyon
spectrum. We know that there exist dyon solutions carrying magnetic charge, but we
do not know what values of the electric charge are allowed. The problem is that
the Dirac quantisation condition (7) does not determine this, nor does it respect the
electromagnetic duality rotation (6) which is apparently so fundamental.

It was Schwinger and Zwanziger who independently resolved the problem [39,24].
They saw that Dirac’s assumption that the monopole carried no electric charge was
unjustified, and responsible for the difficulties. Instead, they applied Dirac’s argument
to two dyons, carrying respective charges (¢1,¢1) and (g2, ¢2), and found

q192 — 291 = 27nh, n=0,%1,42,.... (17)
This is known (somewhat unfairly) as the Schwinger quantisation condition and it
does now respect the duality rotation symmetry (6) applied simultaneously to the two

dyons. Notice that it is significant that the group SO(2) has two invariant tensors, the
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Kronecker delta entering the mass formula (13) and the antisymmetric tensor entering
(17).

As mentioned earlier, the values of ¢ + 1¢ realised by localised states composed
of particles should lie at the points of a lattice in the complex plane. The origin of
this lattice structure are the conservation laws for charge and the TCP theorem. The
set of allowed values must be closed under both addition and reversal of sign as these
operations can be realised physically by combining states and by TCP conjugation.

Without loss of generality, it can be assumed that there exist a subset of states
carrying purely electric charge. As long as magnetic charge exists (17) implies that
there is a minimum positive value, ¢, say. Then the allowed values of pure electric
charge are nqy, n € Z, that is, a discrete one dimensional lattice. Now let us examine
the most general values of ¢ + g allowed by the Schwinger quantisation condition,
(17). By it, the smallest allowed positive magnetic charge, go satisfies

2mngh
go = ., (18)
qo0

where ngy is a positive integer dependent on the detailed theory considered. Now
consider two dyons with magnetic charge gy and electric charges ¢; and ¢, respectively.

By (17) and (18)

g0 ng

2rtnh  nq

However, as there must consequently be a state with pure electric charge g1 — ¢2, n
must be a multiple of ng. Hence for any dyon with magnetic charge gg, its electric

charge
+ i
— n R —
q qo 27 )

where 6 is a new parameter of the theory which is, in a sense, angular since increasing
it by 27 1s equivalent to increasing n by one unit. So

g+1i9 =qo(n+71),

where 0 o
r= 4 0 (19)
27 45
Repeating the argument for more general states with magnetic charge mgo
q+1i9g = qo(mr +n), m,n € Z. (20)

This is the charge lattice and it finally breaks the continuous symmetry (2) and (6)
in a spontaneous manner [40]. This lattice has periods ¢o and ¢o7 with ratio 7, (19).
Notice that 7 is a complex variable formed of dimensionless parameters dependent on
the detailed theory. Its imaginary part is positive, being essentially the inverse of the
fine structure constant.
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So far, this part of the argument has been very general, but, given a specific
theory, an important question for electromagnetic duality concerns the identification
of the subset of the charge lattice that can be realised by single particle states, rather
than multiparticle states.

It is easy to show that, if single particle states obey the universal mass formula
(13), and are stable with respect to any two-body decay into lighter particles permitted
by the conservation of electric and magnetic charge, then they must correspond to
points of the charge lattice which are “primitive vectors”.

A point P of the charge lattice is a primitive vector if the line O P contains no other
points of the lattice strictly between O, the origin, and P. Thus the only primitive
vectors on the real axis are (£¢o,0). Equivalently, a primitive vector is a point given
by (20) in which the integers m and n are coprime (in saying this we must agree that
0 is divisible by any integer).

The proof of the assertion is simple: it relies on the fact that the mass of a particle
at P is proportional to its Euclidean distance OP from the origin, by (13). So, by the
triangle inequality, any particle is stable unless its two decay products correspond to
points collinear with itself and the origin. This is impossible, providing the original
particle corresponds to a primitive vector.

There are an infinite number of primitive vectors on the charge lattice, for ex-
ample, all the points with m = £1 or n = +1. The corresponding masses can be
indefinitely large. If m = 2, every second point is a primitive vector. If m = 3, every
third point fails to be a primitive vector, and so on.

This result tells us what to expect for the spectrum of dyons, namely that they
correspond to the primitive vectors off the real axis. Since the mass formula used in
this argument is characteristic of supersymmetric gauge theories as discussed above, it
ought to be possible to recover this result from consideration of the Bogomolny moduli
spaces governing the static soliton solutions. This is what Sen achieved in 1994, [28],
and a simplified explanation follows.

For m = +1, the dyons relate to points in the m = 4+1 moduli space since the
single monopoles are solutions to the Bogomolny equations. However, as discussed
earlier, the points of the m = +2 moduli space correspond to configurations of a pair
of like monopoles in static equilibrium. Thus the m = +2 single particle states cannot
be Bogomolny solutions. Instead they must be regarded as quantum mechanical bound
states, with zero binding energy (in order to satisfy the mass formula). Remembering
Manton’s treatment of moving monopoles following geodesics on the moduli space
determined by the hyperkahler metric thereon, it is clear that it is crucial to examine
the spectrum of the Laplacian determined by this metric, as this is proportional to
the quantum mechanical Hamiltonian [41]. In particular, zero modes in the discrete
spectrum are sought. There is some subtlety, treated by Sen, concerning the fact
that the quantum mechanics possesses N = 4 supersymmetry because the metric is
hyperkahler, but using the Atiyah-Hitchin metric, Sen was able to solve for the zero
modes, and show that only every other permitted value of the electric charge could
occur. Thus the dyons with magnetic charge 2¢¢ do indeed correspond precisely to the
primitive vectors on the charge lattice. For higher values of |m/|, the explicit metric
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is not known, but Hodge’s theorem relates the counting of the zero modes of the
Laplacian on the moduli space to its cohomology, which can be determined without
knowledge of the metric. (This argument is said to be due to Segal, unpublished).

These are the results that finally clear up the dyon problem and leave the elec-
tromagnetic duality conjecture in good shape, though a reassessment will be in order.
Before discussing this, we ask whether the angle 6, occurring in (19), appears explicitly
as a parameter in the action of the spontaneously broken gauge theory. Witten found
the answer in 1979 [40]. Because the gauge group is non abelian, SU(2), a term pro-
portional to the instanton number, k& can be added to the action, so that the Feynman
weighting factor becomes:

tAction tAction . i k (21)
Y st Y ‘
exrp ; exrp ; -

As k is proportional to an integral of FF over space time, it is a surface term which
cannot affect the classical equations of motion, but it does affect the quantum theory.
Note that, like 6, 8 is an angular variable as the theory is unaffected if it is increased
by 27. In fact the two angles are indeed equal as Witten showed by an elementary
calculation of the electric and magnetic charges using Noether’s theorem. Thus 6 is
what i1s known as the instanton or vacuum angle.

The above result has another consequence, yet again singling out the N = 4 su-
persymmetric theory as the only viable one for exact electromagnetic duality. This
is because an application of the chiral rotation (16) to the fermion fields alters the
Lagrangian density by an anomalous term proportional to the axial anomaly BFF.
This means that the instanton angle can be altered by a redefinition of the fermion
field, and so has no physical meaning, unless 3, and hence the axial anomaly, vanishes.
This forces us back to the N = 4 theory, with the conclusion that only in this theory
does the charge lattice really make sense. Finally note that in this theory the integer
ng occurring in (19) equals 2. This is because the N = 4 theory has only one super-
multiplet which includes the gauge particle and hence must be an SU(2) triplet. No
doublets are allowed in N = 4, unlike N = 2.

Exact Electromagnetic Duality and the Modular Group

Armed with the new insight that the spectrum of single particle states correspond
to the primitive vectors of the charge lattice, augmented by the origin, rather than
the five points previously considered, we can see that the original Montonen-Olive
conjecture was too modest. Instead of possessing two equivalent choices of action, the
N = 4 supersymmetric gauge theory apparently possesses an infinite number of them,
all with an isomorphic structure, but with different values of the parameters [28].

Roughly speaking, the reason is that it is the charge lattice that describes the
physical reality. Choices of action correspond to choices of basis in the lattice, that is
a pair of non collinear primitive vectors (or, a pair of periods). As the charge lattice
is two dimensional, these choices are related by the action of the modular group, an
infinite discrete group containing the previous transformation (14).
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Let us choose a primitive vector in the charge lattice, represented by a complex
number, ¢, say. Then we may ascribe short N = 4 supermultiplets of quantum
fields to each of the three points +¢; and 0. The particles corresponding to the
origin are massless and neutral whereas the particles corresponding to +¢; possess
complex charge +¢{ and mass alg)|. We may form an N = 4 supersymmetric action
with these fields. It is unique, given the coupling |¢)|, apart from the vacuum angle
whose specification requires a second primitive vector, ¢,7', say, non-collinear with ¢{.
The remaining single particle states are expected to arise as monopole solitons or as
quantum bound states of them as discussed above.

Since the two non-collinear primitive vectors ¢, and ¢, 7' form an alternative basis
for the charge lattice, they can be expressed as integer linear combinations of the
original basis, ¢p and ¢o7:

Q7" = aqoT + bgo, (22a)
gy = cqoT + dqo, (220)

where
a,bye,d € Z. (22¢)

Equally, ¢o7 and ¢y can be expressed as integer linear combinations of ¢{7' and ¢j.
This requires that the matrix of coefficients in (22a) and (22b) has determinant equal
to +1,

ad — be = +1. (23)

By changing a sign we can take this to be plus one. Then the matrices

a b
c d
form a group, SL(2,Z), whose quotient by its centre is called the modular group.

Equation (22a) divided by (22b) yields

,_aT—I—b
ct+d’

These transformations form the modular group and preserve the sign of the imaginary
part of 7. This gives the relation between the values of the dimensionless parameters
in the two choices of action corresponding to the two choices of basis. It is customary
to think of the modular group as being generated by elements T' and S where

1
T:7—-714+1 S:r——-=

T

According to (19), T increases the vacuum angle by 27. This is obviously a symmetry
of (21). If the vacuum angle vanishes, S precisely yields the transformation (14)
previously considered.

Proof of the quantum equivalence of all the actions associated with each choice
of basis in the charge lattice would presumably require a generalised vertex operator
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transformation relating the corresponding quantum fields. Since these transformations
would represent the modular group the prospect is challenging.

Meanwhile it has been possible to evaluate the partition function of the theory
on certain space-time manifolds, provided that the theory is simplified by a “twisting
procedure” that renders it “topological”. Vafa and Witten verified that the results
indeed possessed modular symmetry [42].

Conclusion

According to the new results reviewed above, it now appears increasingly plausible
that electromagnetic duality is realised exactly in the N = 4 supersymmetric SU(2)
gauge theory in which the Higgs field acquires a non-zero vacuum expectation value.
This theory is a deformation of one of the very few exact conformal field theories in
Minkowski space time. The supporting analysis involves an array of almost all the
previously advanced ideas particular to quantum field theories in four dimensions, but
awaits definitive proof.

Despite its remarkable quantum symmetry this theory is apparently not physical
unless further deformed. Seiberg and Witten have proposed deformations such that
enough structure remains as to offer an explanation of quark confinement, perhaps the
outstanding riddle in quantum field theory [1,43].

More generally, the potential validity of exact electromagnetic duality in at least
one theory means that quantum field theory in four dimensions is much richer than the
sum of its parts, quantum mechanics and classical field theory. This is because the new
symmetry is essentially quantum in nature with no classical counterpart. Moreover it
relates strong to weak coupling regimes of the theory. Consequently, the new insight
opens a veritable Pandora’s box whose contents are now subject to urgent study.
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