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Abstract

The O(N) symmetric scalar quantum �eld theory with ��4 interaction

is discussed in the Gaussian approximation. It is shown that the

Goldstone theorem is ful�lled for arbitrary N .

1 Introduction

The theory of a real scalar �eld in n-dimensional Euclidean space-time with

a classical action given by

S[�] =
Z
[
1

2
�(x)(�@2+m2)�(x) + �(�2(x))2] dnx; (1)

is the most mysterious part of the standard model. Althought experimentaly

not observed, the scalar Higgs �eld with m2 < 0 and internal O(4) symme-

try is necessary to give masses to interaction bosons in the Weinberg-Salam

model of weak interactions without spoiling renormalizability. Moreover,

the renormalized ��4 theory has been almost rigorously proved [1] to be

noninteracting, in contradiction to the perturbative renormalization, which

can be performed order by order without any signal of triviality. Triviality

shows up in the leading order of the 1

N
expansion [2] in the O(N) symmetric
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theory of N�component scalar �eld, �(x) = (�1(x); :::;�N(x)). Other non-

perturbative methods, like the Gaussian [3] and post-Gaussian [4, 5] approx-

imations, have been therefore applied to study renormalization of the scalar

theory in the case when the number of �eld components is not large. How-

ever, a serious drawback of the Gaussian approximation for N -component

�eld was an observation [6, 7] that the Goldstone theorem is not respected

exactly, only in the limit of N !1 the would-be Goldstone bosons become

massless. In this work we will show that this statement is not true, be-

ing a consequence of incorrect interpretation. The Gaussian approximation

of the O(N) symmetric theory contains one massive particle and (N � 1)

massless Goldstone bosons, in agreement with the exact result of Goldstone

theorem [8].

It is convenient to formulate the approximation method for the e�ective

action, �['], since all the Green's functions can be obtained in a consistent

way, through di�erentiation of the approximate expression. A full (inverse)

propagator, required for one-particle states analysis, is given by the second

derivative of the e�ective action at '(x) = �0. The vacuum expectation value

of the scalar �eld, �0, can be obtained as a stationary point of the e�ective

potential, V (�) = � 1R
dnx

�[']j'(x)=�=const.

We shall calculate the e�ective action, using the optimized expansion

(OE) [4]. The method consists in modifying the classical action of a scalar

�eld (1) to the form

S�[�; G] =
Z
1

2
�(x)G�1(x; y)�(y) dnxdny

+�

�Z
1

2
�(x)[�@2+m2)�(x� y)�G�1(x; y)]�(y) dnxdny+

Z
�(�2(x))2 dnx

�
;(2)

with an arbitrary free propagator G(x; y). The e�ective action, as a series in

an arti�cial parameter �, can be obtained as a sum of vacuum one-particle-

irreducible diagrams with Feynman rules of the modi�ed theory. The given

order expression for the e�ective action is optimized, choosing G(x; y) which

ful�lls the gap equation
��n

�G�1(x; y)
= 0; (3)

to make the dependence on the unphysical �eld as weak as possible.
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For one-component �eld the inverse of a free propagator can be taken in

the form

�(x; y) = G�1(x; y) = (�@2 + 
2(x))�(x� y); (4)

and the Gaussian e�ective action (GEA) is obtained the �rst order of the

OE [4]. The e�ective potential, derived from the GEA for a constant back-

ground '(x) = �, coincides with the Gaussian e�ective potential (GEP) [3],

obtained before by applying the variational method with Gaussian trial func-

tionals to the functional Schr�odinger equation.

Here we shall calculate the e�ective action for N -component �eld to the

�rst order of the OE. In this case, the inverse of a trial propagator can be

chosen in the form of a symmetric matrix

�i;i(x; y) = (�@2 +M2

i (x))�(x� y)

�i;j(x; y) = �j;i(x; y) = M2

ij(x)�(x� y) (5)

where the functions M2

i (x) and M2

ij(x) are variational parameters. The

calculation of the e�ective action can be simpli�ed, using the observation

of Stevenson at al. [7] that for an O(N) symmetric theory only the shift

'(x) = ('1(x); :::; 'N(x)) of the �eld sets a direction in the O(N) space.

Thus, the eigendirection of a free propagator matrix will be radial and trans-

verse, and the variational parameters for the transverse �elds should be equal,

because of the remaining O(N � 1) symmetry. In the coordinate system, in

which the shift ' points in the i = 1 direction, the (inverse) trial propagator

can be chosen in the form of a diagonal matrix with

�11(x; y) = G�1(x; y) = (�@2 + 
2(x))�(x� y)

�ii(x; y) = g�1(x; y) = (�@2 + !2(x))�(x� y) for i 6= 1; (6)

and the e�ective action in the �rst order of the OE is obtained in the form

�['] = �
Z
[
1

2
'(x)(�@2 +m2)'(x) + �('2(x))2] dnx�

1

2
TrLnG�1

�
N � 1

2
TrLng�1 +

1

2

Z
(
2(x)�m2 � 12�'2(x))G(x; x) dnx

+
(N � 1)

2

Z
(!2(x)�m2 � 4�'2(x))g(x; x) dnx� 3�

Z
G2(x; x) dnx

� (N2 � 1)�
Z
g2(x; x) dnx� 2(N � 1)�

Z
G(x; x)g(x; x) dnx: (7)
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Requiring the e�ective action to be stationarity with respect to small changes

of variational parameters

��

�
2
=

��

�!2
= 0; (8)

results in gap equations


2(x)�m2 � 12�'2(x)� 12�G(x; x) � 4(N � 1)�g(x; x) = 0

!2(x)�m2 � 4�'2(x)� 4�G(x; x)� 4(N + 1)�g(x; x) = 0 (9)

which determine the functionals 
['] and ![']. When limited to a constant

background � = (�1; :::; �N), the the GEA for N -component �eld gives the

e�ective potential

V (�) =
m2

2
�2 + �(�2)2 + I1(
) + (N � 1)I1(!) +

1

2
(m2 � 
2 + 12��2)I0(
)

+
N � 1

2
(m2 � !2 + 4��2)I0(!) + 3�I0(
)

2 + (N2 � 1)�I0(!)
2

+ 2(N � 1)�I0(
)I0(!) (10)

with the functions 
(�) and !(�) determined by algebraic equations


2 �m2 � 12��2 � 12�I0(
)� 4�(N � 1)I0(!) = 0;

!2 �m2 � 4��2 � 4�I0(
)� 4(N + 1)�I0(!) = 0; (11)

where

I1(
) =
1

2

Z
dnp

(2�)n
ln(p2 + 
2)

I0(
) =
Z

dnp

(2�)n
1

p2 + 
2
: (12)

The same result for the O(N) symmetric GEP was obtained before in the

Schr�odinger approach [7]. In the OE, a generalisation of the GEP to space-

time dependent �elds, the GEA (7), has been obtained. It enables us to de-

rive not only the e�ective potential, but also one-particle-irreducible Green's

functions at arbitrary external momenta in the Gaussian approximation.
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The minimum of the GEP is at �0 ful�lling

@V

@�i

= (m2 + 4��2 + 12�I0(
) + 4(N � 1)�I0(!))�i = 0; (13)

therefore, in the unsymmetric minimum we have

B = m2 + 4��2 + 12�I0(
) + 4(N � 1)�I0(!) = 0: (14)

In the GEP analysis for N = 2, it was pointed out by Brihaye and Con-

soli [6] that ![�0] is not equal to zero, which was interpreted as a violation

of Goldstone theorem in the Gaussian approximation. For the same reason,

Stevenson, All�es and Tarrach [7] admitted that also for a general N the Gaus-

sian approximation does not respect the Goldstone theorem. We would like

to point out that this conclusion is unjusti�ed, for 
 and ! are only varia-

tional parameters in the free propagator, and do not correspond to physical

masses of scalar particles. The physical masses have to be determined as

poles of a full propagator in the discussed approximation. The inverse of

that propagator can be obtained as a second derivative of the GEA (7) with

an implicit dependence, 
2['] and !2['], taken into account by di�erentia-

tion of the gap equations (9). Upon performing the Fourier transform, the

two-point vertex is calculated to be

�11(p) =
d�2�
�'2

1

������
'(x)=�0

= p2 +m2 + 4��2 + 12�I0(
) + 4�I0(!) + 8��2
1
A(p)

�ii(p) =
d�2�
�'2

i

������
'(x)=�0

= p2 +m2 + 4��2 + 12�I0(
) + 4�I0(!) + 8��2iA(p)

�ij(p) = �ji(p) =
1

2

d�2�
�'i�'j

������
'(x)=�0

= 8��i�jA(p); (15)

where

A(p) = 1�
18�I

�1(
; p) + 2�(N � 1)I
�1(!; p) + 24�2(N + 2)I

�1(
; p)I�1(!; p)

1 + 6�I
�1(
; p) + 2�(N + 1)I

�1(!; p) + 32�2(N + 2)I
�1(
; p)I�1(!; p)

:(16)

and

I
�1(
; p) = 2

Z
dnq

(2�)n
1

(q2 + 
2)((p + q)2 + 
2)
: (17)
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Upon diagonalization we obtain an inverse propagator 1(p) = p2+B+A(p)�2
0

which corresponds to massive particle, and (N � 1) inverse propagators

i(p) = p2 + B of Goldstone particles, since B=0 in the unsymmetric min-

imum (14). Therefore, for any N the Gaussian approximation of the O(N)

symmetric theory does fully respect Goldstone theorem at the unrenormal-

ized level.
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