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Abstract

The O(N) symmetric scalar quantum field theory with A®* interaction
is discussed in the Gaussian approximation. It is shown that the
Goldstone theorem is fulfilled for arbitrary V.

1 Introduction

The theory of a real scalar field in n-dimensional Euclidean space-time with
a classical action given by

519] = [[L8(2)(~0" + m)B(2) + A(#*(2))] ", 1)
is the most mysterious part of the standard model. Althought experimentaly
not observed, the scalar Higgs field with m? < 0 and internal O(4) symme-
try is necessary to give masses to interaction bosons in the Weinberg-Salam
model of weak interactions without spoiling renormalizability. Moreover,
the renormalized A®* theory has been almost rigorously proved [1] to be
noninteracting, in contradiction to the perturbative renormalization, which
can be performed order by order without any signal of triviality. Triviality
shows up in the leading order of the 3 expansion [2] in the O(N) symmetric
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theory of N—component scalar field, ®(z) = (®:(z),..., ®x(z)). Other non-
perturbative methods, like the Gaussian [3] and post-Gaussian [4, 5] approx-
imations, have been therefore applied to study renormalization of the scalar
theory in the case when the number of field components is not large. How-
ever, a serious drawback of the Gaussian approximation for N-component
field was an observation [6, 7] that the Goldstone theorem is not respected
exactly, only in the limit of N — oo the would-be Goldstone bosons become
massless. In this work we will show that this statement is not true, be-
ing a consequence of incorrect interpretation. The Gaussian approximation
of the O(N) symmetric theory contains one massive particle and (N — 1)
massless Goldstone bosons, in agreement with the exact result of Goldstone
theorem [8].

It is convenient to formulate the approximation method for the effective
action, I'[¢], since all the Green’s functions can be obtained in a consistent
way, through differentiation of the approximate expression. A full (inverse)
propagator, required for one-particle states analysis, is given by the second
derivative of the effective action at ¢(z) = ¢o. The vacuum expectation value
of the scalar field, ¢g, can be obtained as a stationary point of the effective
potential, V(¢) = —ﬁ 1]l o(z)=g=const-

We shall calculate the effective action, using the optimized expansion

(OE) [4]. The method consists in modifying the classical action of a scalar
field (1) to the form

5.18,6] = [8(2)67 (2,9)8(y) d"d'y
1

ve[[50@1-5" £ m2)o(a —y) -0 o)) o) dady+ (M@ (@) 072 (2)

with an arbitrary free propagator G(z,y). The effective action, as a series in
an artificial parameter ¢, can be obtained as a sum of vacuum one-particle-
irreducible diagrams with Feynman rules of the modified theory. The given
order expression for the effective action is optimized, choosing G(z,y) which

fulfills the gap equation
T,

6G™(z,y)

to make the dependence on the unphysical field as weak as possible.

=0, (3)



For one-component field the inverse of a free propagator can be taken in

the form
T(z,y) = G ' (z,y) = (0" + Q*(z))é(z — v), (4)

and the Gaussian effective action (GEA) is obtained the first order of the
OE [4]. The effective potential, derived from the GEA for a constant back-
ground ¢(z) = ¢, coincides with the Gaussian effective potential (GEP) [3],
obtained before by applying the variational method with Gaussian trial func-
tionals to the functional Schrodinger equation.

Here we shall calculate the effective action for N-component field to the
first order of the OE. In this case, the inverse of a trial propagator can be
chosen in the form of a symmetric matrix

Lii(z,y) = (=0 + M} (z))6(z —y)
Tij(z,y) = Tji(e,y) = Mj(z)6(z —y) (5)

where the functions M7?(z) and Mj(z) are variational parameters. The
calculation of the effective action can be simplified, using the observation
of Stevenson at al. [7] that for an O(N) symmetric theory only the shift
o(z) = (p1(z),...,on(2z)) of the field sets a direction in the O(N) space.
Thus, the eigendirection of a free propagator matrix will be radial and trans-
verse, and the variational parameters for the transverse fields should be equal,
because of the remaining O(N — 1) symmetry. In the coordinate system, in
which the shift ¢ points in the ¢ = 1 direction, the (inverse) trial propagator
can be chosen in the form of a diagonal matrix with

1-‘11(58,3/) = G_l(w7y) = (_62 —I_ QZ(CC))CS(CC - y)
Ti(z,y) = g '(z,y) = (=0 + w*(z))é(z — y) for i #£ 1, (6)

and the effective action in the first order of the OFE is obtained in the form

Tly] = — / ~ 8% 1+ m?)p(e) + M@ (e))?] d"e — %TanG‘l

Tang_1 + = / (Q*(z) — m? — 120¢*(2))G(z, z) d =

+ (N2— 1) /(wZ(w) —m? = 4)\902(53))9(:3,:3) d"x — 3)\/ GZ(w,w) e

(V- l)A/gZ(w,w)d"w _9(N — 1))\/ Gz, 2)g(z,2)d"z.  (7)

3



Requiring the effective action to be stationarity with respect to small changes
of variational parameters

6T 6T
502 a2 = O (8)

results in gap equations
Q*(z) —m? — 122p*(z) — 12)G(z,z) — 4(N — 1)Ag(z,z) =
wiz) —m? — Dp*(z) — G(z,z) — 4(N + 1)Ag(z,z) = 0 (9)
which determine the functionals Q[¢] and w]p]. When limited to a constant
background ¢ = (¢1, ..., ¢n), the the GEA for N-component field gives the

effective potential

V(6) = T M) + R + (N — Dh(w) + x(m® - 0F + 12062)(9)
N -1

—|— T(mZ — (.02 —|— 4:)\¢)2)I()((.U) —|— 3)\]0(9)2 —|— (N2 — 1))\]0((.0)2

+ 2(N — D)AL(2)Ip(w) (10)
with the functions Q(¢) and w(¢) determined by algebraic equations

0 —m® — 120¢% — 1201(Q) — 4NN — 1)Ip(w) = 0,

w? —m? —4Ap® — AL(Q) — 4(N + DALh(w) = 0, (11)
where
Q) = % / (;lgn In(p® + ©2)
Q) = [ (;Z%Z))W +1 o (12)

The same result for the O(N) symmetric GEP was obtained before in the
Schrodinger approach [7]. In the OE, a generalisation of the GEP to space-
time dependent fields, the GEA (7), has been obtained. It enables us to de-
rive not only the effective potential, but also one-particle-irreducible Green’s
functions at arbitrary external momenta in the Gaussian approximation.



The minimum of the GEP is at ¢ fulfilling

ov
d¢i

therefore, in the unsymmetric minimum we have

(m? + 42¢* + 120 1(Q) + 4(N — D)AIo(w))¢; = 0; (13)

B =m® +4X¢* + 12X (Q) + 4(N — 1)Mp(w) = 0. (14)

In the GEP analysis for N = 2, it was pointed out by Brihaye and Con-
soli [6] that w[¢o] is not equal to zero, which was interpreted as a violation
of Goldstone theorem in the Gaussian approximation. For the same reason,
Stevenson, Allés and Tarrach [7] admitted that also for a general N the Gaus-
sian approximation does not respect the Goldstone theorem. We would like
to point out that this conclusion is unjustified, for €2 and w are only varia-
tional parameters in the free propagator, and do not correspond to physical
masses of scalar particles. The physical masses have to be determined as
poles of a full propagator in the discussed approximation. The inverse of
that propagator can be obtained as a second derivative of the GEA (7) with
an implicit dependence, Q%[p] and w?[p], taken into account by differentia-
tion of the gap equations (9). Upon performing the Fourier transform, the
two-point vertex is calculated to be

52T
I'a(p) = 52 = p? + m? + 4Xp% + 120 15(Q) + 4Xo(w) + 812 A(p)
P o (2)=so
82T 2 2 2 2
Liu(p) = 507 = p* + m* 4+ 4Xp” + 12X1(Q) + 4 [p(w) + 8¢ A(p)
i e(x)=do
1 &
Lij(p) = Tiilp) = 55— = 8)¢i9; A(p), (15)
Pi0P; _
e(x)=do
where
Alp)=1— 18AI_1(Q,p) + 2M(N — DI _1(w,p) + 240*(N + 2)I_1(Q, p)I_1(w, p) (16)
1+ 6M_1(2,p) + 2MN + DI_1(w,p) + 32X2(N + 2)I_1(Q,p)I_1(w,p)
and o )
q
1.4(9,p) =2 / . 17
(02) =2 oy (@ + 90)((p + 0 + ) (1)
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Upon diagonalization we obtain an inverse propagator v:(p) = p*+B+A(p)$3
which corresponds to massive particle, and (N — 1) inverse propagators
v:(p) = p* + B of Goldstone particles, since B=0 in the unsymmetric min-
imum (14). Therefore, for any N the Gaussian approximation of the O(N)
symmetric theory does fully respect Goldstone theorem at the unrenormal-
ized level.
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