Goldstone Bosons in the Gaussian Approximation

Anna Okopińska
Institute of Physics, Warsaw University, Białystok Branch, Lipowa 41, 15-424 Białystok, Poland
e-mail: rozynek@fuw.edu.pl

Abstract

The $O(N)$ symmetric scalar quantum field theory with $\lambda \Phi^{4}$ interaction is discussed in the Gaussian approximation. It is shown that the Goldstone theorem is fulfilled for arbitrary N.

1 Introduction

The theory of a real scalar field in n-dimensional Euclidean space-time with a classical action given by

$$
\begin{equation*}
S[\Phi]=\int\left[\frac{1}{2} \Phi(x)\left(-\partial^{2}+m^{2}\right) \Phi(x)+\lambda\left(\Phi^{2}(x)\right)^{2}\right] d^{n} x \tag{1}
\end{equation*}
$$

is the most mysterious part of the standard model. Althought experimentaly not observed, the scalar Higgs field with $m^{2}<0$ and internal $O(4)$ symmetry is necessary to give masses to interaction bosons in the Weinberg-Salam model of weak interactions without spoiling renormalizability. Moreover, the renormalized $\lambda \Phi^{4}$ theory has been almost rigorously proved [1] to be noninteracting, in contradiction to the perturbative renormalization, which can be performed order by order without any signal of triviality. Triviality shows up in the leading order of the $\frac{1}{N}$ expansion [2] in the $O(N)$ symmetric
theory of N-component scalar field, $\Phi(x)=\left(\Phi_{1}(x), \ldots, \Phi_{N}(x)\right)$. Other nonperturbative methods, like the Gaussian [3] and post-Gaussian [4, 5] approximations, have been therefore applied to study renormalization of the scalar theory in the case when the number of field components is not large. However, a serious drawback of the Gaussian approximation for N-component field was an observation $[6,7]$ that the Goldstone theorem is not respected exactly, only in the limit of $N \rightarrow \infty$ the would-be Goldstone bosons become massless. In this work we will show that this statement is not true, being a consequence of incorrect interpretation. The Gaussian approximation of the $O(N)$ symmetric theory contains one massive particle and ($N-1$) massless Goldstone bosons, in agreement with the exact result of Goldstone theorem [8].

It is convenient to formulate the approximation method for the effective action, $\Gamma[\varphi]$, since all the Green's functions can be obtained in a consistent way, through differentiation of the approximate expression. A full (inverse) propagator, required for one-particle states analysis, is given by the second derivative of the effective action at $\varphi(x)=\phi_{0}$. The vacuum expectation value of the scalar field, ϕ_{0}, can be obtained as a stationary point of the effective potential, $V(\phi)=-\left.\frac{1}{\int d^{n} x} \Gamma[\varphi]\right|_{\varphi(x)=\phi=\text { const }}$.

We shall calculate the effective action, using the optimized expansion (OE) [4]. The method consists in modifying the classical action of a scalar field (1) to the form

$$
\begin{align*}
& S_{\epsilon}[\Phi, G]=\int \frac{1}{2} \Phi(x) G^{-1}(x, y) \Phi(y) d^{n} x d^{n} y \\
& \left.\quad+\epsilon\left[\int \frac{1}{2} \Phi(x)\left[-\partial^{2}+m^{2}\right) \delta(x-y)-G^{-1}(x, y)\right] \Phi(y) d^{n} x d^{n} y+\int \lambda\left(\Phi^{2}(x)\right)^{2} d^{n} x\right] \tag{2}
\end{align*}
$$

with an arbitrary free propagator $G(x, y)$. The effective action, as a series in an artificial parameter ϵ, can be obtained as a sum of vacuum one-particleirreducible diagrams with Feynman rules of the modified theory. The given order expression for the effective action is optimized, choosing $G(x, y)$ which fulfills the gap equation

$$
\begin{equation*}
\frac{\delta \Gamma_{n}}{\delta G^{-1}(x, y)}=0 \tag{3}
\end{equation*}
$$

to make the dependence on the unphysical field as weak as possible.

For one-component field the inverse of a free propagator can be taken in the form

$$
\begin{equation*}
\Gamma(x, y)=G^{-1}(x, y)=\left(-\partial^{2}+\Omega^{2}(x)\right) \delta(x-y) \tag{4}
\end{equation*}
$$

and the Gaussian effective action (GEA) is obtained the first order of the OE [4]. The effective potential, derived from the GEA for a constant background $\varphi(x)=\phi$, coincides with the Gaussian effective potential (GEP) [3], obtained before by applying the variational method with Gaussian trial functionals to the functional Schrödinger equation.

Here we shall calculate the effective action for N-component field to the first order of the OE. In this case, the inverse of a trial propagator can be chosen in the form of a symmetric matrix

$$
\begin{align*}
\Gamma_{i, i}(x, y) & =\left(-\partial^{2}+M_{i}^{2}(x)\right) \delta(x-y) \\
\Gamma_{i, j}(x, y) & =\Gamma_{j, i}(x, y)=M_{i j}^{2}(x) \delta(x-y) \tag{5}
\end{align*}
$$

where the functions $M_{i}^{2}(x)$ and $M_{i j}^{2}(x)$ are variational parameters. The calculation of the effective action can be simplified, using the observation of Stevenson at al. [7] that for an $O(N)$ symmetric theory only the shift $\varphi(x)=\left(\varphi_{1}(x), \ldots, \varphi_{N}(x)\right)$ of the field sets a direction in the $O(N)$ space. Thus, the eigendirection of a free propagator matrix will be radial and transverse, and the variational parameters for the transverse fields should be equal, because of the remaining $O(N-1)$ symmetry. In the coordinate system, in which the shift φ points in the $i=1$ direction, the (inverse) trial propagator can be chosen in the form of a diagonal matrix with

$$
\begin{align*}
\Gamma_{11}(x, y) & =G^{-1}(x, y)=\left(-\partial^{2}+\Omega^{2}(x)\right) \delta(x-y) \\
\Gamma_{i i}(x, y) & =g^{-1}(x, y)=\left(-\partial^{2}+\omega^{2}(x)\right) \delta(x-y) \quad \text { for } i \neq 1, \tag{6}
\end{align*}
$$

and the effective action in the first order of the OE is obtained in the form

$$
\begin{align*}
\Gamma[\varphi] & =-\int\left[\frac{1}{2} \varphi(x)\left(-\partial^{2}+m^{2}\right) \varphi(x)+\lambda\left(\varphi^{2}(x)\right)^{2}\right] d^{n} x-\frac{1}{2} \operatorname{Tr} L n G^{-1} \\
& -\frac{N-1}{2} \operatorname{Tr} L n g^{-1}+\frac{1}{2} \int\left(\Omega^{2}(x)-m^{2}-12 \lambda \varphi^{2}(x)\right) G(x, x) d^{n} x \\
& +\frac{(N-1)}{2} \int\left(\omega^{2}(x)-m^{2}-4 \lambda \varphi^{2}(x)\right) g(x, x) d^{n} x-3 \lambda \int G^{2}(x, x) d^{n} x \\
& -\left(N^{2}-1\right) \lambda \int g^{2}(x, x) d^{n} x-2(N-1) \lambda \int G(x, x) g(x, x) d^{n} x \tag{7}
\end{align*}
$$

Requiring the effective action to be stationarity with respect to small changes of variational parameters

$$
\begin{equation*}
\frac{\delta \Gamma}{\delta \Omega^{2}}=\frac{\delta \Gamma}{\delta \omega^{2}}=\mathbf{0} \tag{8}
\end{equation*}
$$

results in gap equations

$$
\begin{align*}
\Omega^{2}(x)-m^{2}-12 \lambda \varphi^{2}(x)-12 \lambda G(x, x)-4(N-1) \lambda g(x, x) & =0 \\
\omega^{2}(x)-m^{2}-4 \lambda \varphi^{2}(x)-4 \lambda G(x, x)-4(N+1) \lambda g(x, x) & =0 \tag{9}
\end{align*}
$$

which determine the functionals $\Omega[\varphi]$ and $\omega[\varphi]$. When limited to a constant background $\phi=\left(\phi_{1}, \ldots, \phi_{N}\right)$, the the GEA for N-component field gives the effective potential

$$
\begin{align*}
V(\phi) & =\frac{m^{2}}{2} \phi^{2}+\lambda\left(\phi^{2}\right)^{2}+I_{1}(\Omega)+(N-1) I_{1}(\omega)+\frac{1}{2}\left(m^{2}-\Omega^{2}+12 \lambda \phi^{2}\right) I_{0}(\Omega) \\
& +\frac{N-1}{2}\left(m^{2}-\omega^{2}+4 \lambda \phi^{2}\right) I_{0}(\omega)+3 \lambda I_{0}(\Omega)^{2}+\left(N^{2}-1\right) \lambda I_{0}(\omega)^{2} \\
& +2(N-1) \lambda I_{0}(\Omega) I_{0}(\omega) \tag{10}
\end{align*}
$$

with the functions $\Omega(\phi)$ and $\omega(\phi)$ determined by algebraic equations

$$
\begin{align*}
\Omega^{2}-m^{2}-12 \lambda \phi^{2}-12 \lambda I_{0}(\Omega)-4 \lambda(N-1) I_{0}(\omega) & =0 \\
\omega^{2}-m^{2}-4 \lambda \phi^{2}-4 \lambda I_{0}(\Omega)-4(N+1) \lambda I_{0}(\omega) & =0 \tag{11}
\end{align*}
$$

where

$$
\begin{align*}
& I_{1}(\Omega)=\frac{1}{2} \int \frac{d^{n} p}{(2 \pi)^{n}} \ln \left(p^{2}+\Omega^{2}\right) \\
& I_{0}(\Omega)=\int \frac{d^{n} p}{(2 \pi)^{n}} \frac{1}{p^{2}+\Omega^{2}} \tag{12}
\end{align*}
$$

The same result for the $O(N)$ symmetric GEP was obtained before in the Schrödinger approach [7]. In the OE, a generalisation of the GEP to spacetime dependent fields, the GEA (7), has been obtained. It enables us to derive not only the effective potential, but also one-particle-irreducible Green's functions at arbitrary external momenta in the Gaussian approximation.

The minimum of the GEP is at ϕ_{0} fulfilling

$$
\begin{equation*}
\frac{\partial V}{\partial \phi_{i}}=\left(m^{2}+4 \lambda \phi^{2}+12 \lambda I_{0}(\Omega)+4(N-1) \lambda I_{0}(\omega)\right) \phi_{i}=0 \tag{13}
\end{equation*}
$$

therefore, in the unsymmetric minimum we have

$$
\begin{equation*}
B=m^{2}+4 \lambda \phi^{2}+12 \lambda I_{0}(\Omega)+4(N-1) \lambda I_{0}(\omega)=0 . \tag{14}
\end{equation*}
$$

In the GEP analysis for $N=2$, it was pointed out by Brihaye and Consoli [6] that $\omega\left[\phi_{0}\right]$ is not equal to zero, which was interpreted as a violation of Goldstone theorem in the Gaussian approximation. For the same reason, Stevenson, Allès and Tarrach [7] admitted that also for a general N the Gaussian approximation does not respect the Goldstone theorem. We would like to point out that this conclusion is unjustified, for Ω and ω are only variational parameters in the free propagator, and do not correspond to physical masses of scalar particles. The physical masses have to be determined as poles of a full propagator in the discussed approximation. The inverse of that propagator can be obtained as a second derivative of the GEA (7) with an implicit dependence, $\Omega^{2}[\varphi]$ and $\omega^{2}[\varphi]$, taken into account by differentiation of the gap equations (9). Upon performing the Fourier transform, the two-point vertex is calculated to be
$\Gamma_{11}(p)=\left.\frac{\widehat{\delta^{2} \Gamma}}{\delta \varphi_{1}^{2}}\right|_{\varphi(x)=\phi_{0}}=p^{2}+m^{2}+4 \lambda \phi^{2}+12 \lambda I_{0}(\Omega)+4 \lambda I_{0}(\omega)+8 \lambda \phi_{1}^{2} A(p)$
$\Gamma_{i i}(p)=\left.\frac{\widehat{\delta^{2} \Gamma}}{\delta \varphi_{i}^{2}}\right|_{\varphi(x)=\phi_{0}}=p^{2}+m^{2}+4 \lambda \phi^{2}+12 \lambda I_{0}(\Omega)+4 \lambda I_{0}(\omega)+8 \lambda \phi_{i}^{2} A(p)$
$\Gamma_{i j}(p)=\Gamma_{j i}(p)=\left.\frac{1}{2} \frac{\widehat{\delta^{2} \Gamma}}{\delta \varphi_{i} \delta \varphi_{j}}\right|_{\varphi(x)=\phi_{0}}=8 \lambda \phi_{i} \phi_{j} A(p)$,
where
$A(p)=1-\frac{18 \lambda I_{-1}(\Omega, p)+2 \lambda(N-1) I_{-1}(\omega, p)+24 \lambda^{2}(N+2) I_{-1}(\Omega, p) I_{-1}(\omega, p)}{1+6 \lambda I_{-1}(\Omega, p)+2 \lambda(N+1) I_{-1}(\omega, p)+32 \lambda^{2}(N+2) I_{-1}(\Omega, p) I_{-1}(\omega, p)}$.
and

$$
\begin{equation*}
I_{-1}(\Omega, p)=2 \int \frac{d^{n} q}{(2 \pi)^{n}} \frac{1}{\left(q^{2}+\Omega^{2}\right)\left((p+q)^{2}+\Omega^{2}\right)} \tag{17}
\end{equation*}
$$

Upon diagonalization we obtain an inverse propagator $\gamma_{1}(p)=p^{2}+B+A(p) \phi_{0}^{2}$ which corresponds to massive particle, and $(N-1)$ inverse propagators $\gamma_{i}(p)=p^{2}+B$ of Goldstone particles, since $\mathrm{B}=0$ in the unsymmetric minimum (14). Therefore, for any N the Gaussian approximation of the $O(N)$ symmetric theory does fully respect Goldstone theorem at the unrenormalized level.

This work has been supported in part by Grant PB-2-0956-91-01 of the Committee for Scientific Research. I would like to acknowledge fruitful discussions with P. Stevenson and M. Consoli and the warm hospitality of Instituto Nazionale di Fisica Nucleare in Catania.

References

[1] R.Fernández, J.Fröhlich, and A.D.Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer-Verlag, Berlin, 1992).
[2] W.A.Bardeen and M.Moshe, Phys. Rev. D28 (1983) 1382.
[3] P.M.Stevenson, Phys. Rev. D32 (1985) 1389.
[4] A.Okopińska, Phys. Rev. D35 (1987) 1835; Ann. Phys. (N.Y.) 228 (1993) 19.
[5] I.Stancu and P.M.Stevenson, Phys. Rev. D42 (1990) 2710.
[6] Y.Brihaye and M.Consoli, Phys. Lett. 157B (1985) 48.
[7] P.M.Stevenson, B.Allès, and R.Tarrach, Phys. Rev. D35 (1987) 2407.
[8] J.Goldstone, Nuovo Cimento 19 (1961) 15; J.Goldstone, A.Salam, S.Weinberg, Phys.Rev. 127 (1962) 925.

