
Large Scale Velocity Fields

Present and Future:

Making Sense of the datay

Hume A. Feldmanz

Department of Physics, Princeton University

Princeton, NJ 08544

Abstract

The large scale velocity �eld was sampled recently by two independent methods: the super-

novae type Ia light curve shapes (Riess, Press & Kirshner) and the Abell Cluster Catalog brightest

cluster galaxy metric luminosity (Lauer & Postman). The results of these investigations seem to be

contradictory. We analyze these samples, compare them and investigate whether standard structure

formation models and other deep surveys are compatible with them. We also make suggestions as

to how to improve the samples so we can actually resolve the bulk 
ow vectors. We show that

although these two samples seem to cover the same volume, their window functions are su�ciently

di�erent so that they are only weakly correlated. Further, since both samples are sparse, they are

noise dominated and in order to improve the signal to noise they need to either increase their sample

size (RPK) or decrease the measurement errors (LP) signi�cantly.

I. Introduction

The large scale velocity �eld probes the matter distribution in the Universe directly and not

merely the light distribution as redshift surveys do. However, to measure the velocity �eld one needs

to make accurate distance measurements which is quite di�cult. The errors in these estimates are

typically some fraction of the redshift of the sample points. In the case of distant objects, the errors

are larger than the velocity vector one wants to measure. This is partially recti�ed by measuring

the lowest moment of the velocity �eld, namely the bulk 
ow, where the noise in the measurement

is reduced by the square root of the number of objects in the sample.

There were two recent e�orts to measure the bulk velocities of large volumes. One was done

by Lauer & Postman (1994, hereafter LP) who used as their distance measure the brightest cluster

galaxy (BCG) metric luminousities of the complete sample of 119 Abell clusters up to 15; 000 km/s

(median redshift � 7; 500 km/s). Their distance estimates are accurate to about 17% of the redshift.
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They found that the Abell cluster inertial frame (ACIF) exhibits a bulk velocity of � 700 km/s with

respect to the cosmic microwave background (CMB) rest frame. More recently Riess, Press &

Kirshner (1995, hereafter RPK) developed a distance measurement based on the light curve shapes

of 13 type Ia supernovae (SNIa), with distance errors reported to be about 5% of the redshift (median

redshift � 5; 500 km/s). RPK found that the local group's velocity with respect to the frame de�ned

by their sample was consistent with that of the CMB rest frame. In recent analyses (Feldman &

Watkins 1994, Strauss et al. 1995, Ja�e & Kaiser 1995, Watkins & Feldman 1995) it was shown

that power spectra from popular structure formation models (CDM, CHDM and PIB) as well as

the IRAS{QDOT redshift survey are inconsistent with the LP measurement to 2�3� level, whereas

they are highly consistent with the RPK result to better than 1�. Further, the RPK and LP results

seem to be inconsistent with each other at a high con�dence level (� 99%). We will see below that

this high level of disagreement is not surprising given standard models of structure formation. For

these models, both measurements are expected to be noise dominated and may have large signal

because of incomplete cancellation of small scale 
ows. This, in turn leads to the samples being

nearly uncorrelated, although they seem to probe similar volumes.

Here we explore the implications of both measurements, we calculate the �2 statistic for the

RPK and LP results taken independently and together for a variety of power spectra. We also present

the expected correlations between the two results. Finally we discuss the expected sensitivity of the

samples for determining the underlying bulk 
ow of the volumes in which they are embedded. We

examine how this sensitivity will improve by increasing the sample size in RPK case or decreasing

the measurement errors in the LP case.

II. Analysis

The analysis here follows closely the analyses presented in two previous papers (Feldman &

Watkins 1994, Watkins & Feldman 1995). Given a bulk 
ow vector Ui, the covariance matrix for

the estimated bulk 
ow of a sample of galaxies is the sum of two statistically independent parts,

Rij � hUiUji = R
(v)
ij +R

(")
ij (1)

The �rst part arising from the sampling of the underlying velocity �eld and the second arising due

to the noise in the distance estimates.
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r̂n;j is the jth component of the unit vector of the nth galaxy, �� is the dispersion in the line{of{sight

velocity due to random velocities (which we take to be 400 km/s), �n is the estimated uncertainty

in the line{of{sight peculiar velocity.
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The velocity part of the covariance matrix is the convolution of the squared tensor window function

and the velocity power spectrum

R
(v)
ij =

Z
d3k

(2�)3
W2

ij(
~k) Pv(~k) (4)

where the velocity power spectrum is de�ned in terms of the power spectrum:

Pv(k) � hjv(~k)j2i =
H2a2

k2
P (k) : (5)

and the squared tensor window function is

W2

ij(
~k) = Wil(~k) Wjm(~k) k̂l k̂m (6)

where Wij is the tensor window function for the sample in Fourier space.
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We de�ne a �2 statistic for the three degrees of freedom of the measured bulk 
ow vector ~V

where Vi is the ith component of ~V .

�2
V
� Vi R

�1

ij Vj : (8)

Rij can also be used to calculate an expectation value for the magnitude of the bulk 
ow �.

To get an idea of how much correlation we expect between ~ULP and ~URPK for a given power

spectrum by calculating the normalized expectation value for their dot product, which should be

close to 1 for highly correlated vectors, zero for vectors that are completely uncorrelated, and �1 if

there is a high degree of anti-correlation.
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The covariance matrix Rij can also be used to calculate an expectation value for the magnitude of

the bulk 
ow, a convenient number with which to compare di�erent spectra and catalogs. First,



we diagonalize Rij to �nd the lengths of the axes of the covariance ellipsoid, �1, �2, and �3. The

theoretical expectation value for the magnitude of the bulk 
ow in a given sample is then given by

� =
(�1�2�3)
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We also calculate the expectation value for the 'noise-free' case, �(v), by using R
(v)
ij instead of Rij.

To study the likelihood that a given power spectrum could have produced both the LP and

RPK results, we construct a 6-dimensional vector ~U
T

= (~U
LP

; ~U
RPK

). Using a similar analysis to

that described above, we calculate a covariance matrix R
T

ij � hU
T

i U
T

j i and a corresponding �2 for 6

degrees of freedom given by �2
T
� U

T

i R
T
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We consider power spectra from the IRAS{QDOT survey (Feldman, Kaiser & Peacock 1994),

the BBKS standard CDM (�8 = 1, 
h = 0:5) model (Bardeen et al. 1986), a CDM spectrum

using the maximum likelihood parameters calculated by Ja�e & Kaiser (1995) for the LP survey

(
h = 0:075, �8 = 0:9), CHDM simulations (normalized to COBE Q2 = 17�K, Klypin et al. 1993),

and PIB generated power spectrum ( 
 = 0:1, � = 0:9, Peebles 1994).

In Figure 1 a we show the power spectra we use to analyze and compare the data.

In Figure 1 b we show the trace of the squared tensor window function for the RPK and LP

samples. For comparison we show the window function for the IRAS{QDOT sample (1824 galaxies)

which probes a similar volume. From this �gure it is clear that, except on the largest scales, the

RPK and LP samples probe the power spectrum in very di�erent ways. This implies that while

both vectors will have similar contributions from the very largest scales, contributions from smaller

scales will in general not be correlated.

In Figure 1 c we show the trace of the squared tensor window function for mock surveys with

the same distribution in redshift as the RPK sample. As the sample size increases, the small scale

contributions decrease.

III. Results

In table 1, we show �2 for the RPK result, the LP result, and both results taken together using

a variety of power spectra. We also include the measure C of the expected correlation. Note that

the RPK result is quite consistent with all the power spectra we have considered.

If there were no overlap between the RPK and LP window function, then the resulting bulk 
ow

vectors would be expected to be uncorrelated and �2
T
would be the sum of �2

RPK
and �2

LP
. Window

function overlap gives cross{terms which tend to favor agreement between the two vectors; i.e. if

the window functions are similar then the vectors should be too. Here, since the RPK and LP bulk


ow vectors point in almost opposite directions, overlap will increase �2
T
so that the probability of



getting both vectors decreases. Power spectra with lots of power on large scales, where the overlap is

greatest, will be more strongly disfavored due to the higher expectation for correlation between the

two results. As we see from table 1, this e�ect is greatest for the CDMML spectrum (which has the

most power on large scales, see Figure 1). However, even here the probability that both the RPK

and LP results could be obtained is not small. For the other spectra, the large value of �2
T
can be

attributed to the large value of �2
LP
; indeed, the inclusion of the RPK data increases the likelihood

for the IRAS{QDOT, CDM, and CHDM spectra.

Table 1: �2 for RPK, LP and Total

QDOT CDM CHDM CDM
ML

PIB

�2
LP

10.40 10.41 10.43 5.52 11.33

P (�2 > �2
LP
) 0.015 0.015 0.015 0.137 0.010

�2
RPK

2.82 2.58 2.73 1.28 3.43

P (�2 > �2
RPK

) 0.420 0.461 0.435 0.734 0.323

�2
T

14.11 13.81 14.11 10.84 16.81

P (�2 > �2
T
) 0.028 0.032 0.028 0.093 0.010

C 0.08 0.07 0.08 0.35 0.11

The �2 and Probability for the LP and RPK surveys and the total quan-

tities. Note that the quantity P (�2 > �2
T
) is calculated for six degrees of

freedom whereas P (�2 > �2
LP
) and P (�2 > �2

RPK
) are calculated for three

degrees of freedom. Also, the correlations of the two vectors are shown.

Comparison of the results of the RPK and LP studies assumes that they are mea-

suring the same quantity. However, an examination of Figure 1b and Table 1 shows that

this is not necessarily the case. The RPK and LP bulk 
ow vectors contain signi�cant

contributions due to noise and incomplete cancelation of small scale 
ows. Both of these

contributions depend on the details of the survey and of the power spectrum and would

not be expected to correlate across di�erent samples. As we have discussed above, the

e�ect of the disagreement between the RPK and LP results is to disfavor models with

large amounts of power on large scales, although not at a level that provides signi�cant

constraints.

Clearly, if RPK type measurements are to constrain the power spectrum, many

more objects will be needed. If we assume that the power spectrum on large scales is

not too far di�erent from those considered in this Letter (excluding CDM
ML
), then from



Figure 2 we can estimate that the signal to noise should become � 1 when the number

of SN Ia's in the sample is of order 100. When the number of objects reaches 200, one

should have a fairly precise value for the bulk 
ow of the sample. Given the greater

sensitivity in the z direction, it is likely that the SN Ia estimate for the z component

of the bulk 
ow could be reasonably accurate with just 60 or so objects. Between the

Cal�an/Tololo survey and the CfA collection of supernovae, the RPK sample size should

reach 40 by the end of 1995. However, the ending of the Cal�an/Tololo search e�ort

makes the prospects dim for signi�cantly increasing this number in the near future.

In contrast, for an LP type survey, with typical distance errors of approximately

15%, a sample size of the order of 300 is needed to get a a signal to noise of about one for

our power spectra, or about 200 data points for the z component Vz. Of course, if the

actual bulk velocity is larger than the expectation values we have calculated, then it will

show in a sparser survey; indeed, LP may have already detected a large z component

for the bulk 
ow.

Lauer and Postman in collaboration with Strauss have begun to take data for a

survey similar to that of LP, but deeper (Rmax = 24; 000km/s). In addition to the

BCG distance indicators that were used in the LP survey, they will use some velocity

dispersion measurements that may tighten the errors down to about 10% of the distance.

The survey will have about 600 clusters. To get the noise to be below the signal for a

volume limited sample of this depth one would need at least 1200 data points for 15%

error, (800 for a 10% error). However, to resolve the z component, 800 points (550

for 10% error) would su�ce. Thus, if the bulk 
ow is indeed large, or the error in the

distance indicators is reduced to < 10%, then the Lauer, Postman and Strauss survey

may indeed see it. Given that the number density of objects in these surveys cannot be

increased (it is a fairly complete sample), the only thing that can be done to improve the

resolution of the bulk 
ow vector is to decrease the error in the distance measurements.

In Figure 3 we show the e�ect of reducing the errors on an LP type survey. Here

S/N becomes 1 when the errors are � 5%, for the Z direction it is enough to have errors

of � 8%.
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Figure Captions

Figure 1 a The redshift corrected power spectra used in the analysis.

Figure 1 b The trace of the squared tensor window functions for the RPK survey, as

well as the LP ones.For comparison we show the window function for the IRAS{QDOT

sample (1824 galaxies) which probes a similar volume. It is clear that, except on the

largest scales, the RPK and LP samples probe the power spectrum in very di�erent

ways. This implies that while both vectors will have similar contributions from the very

largest scales, contributions from smaller scales will in general not be correlated.

Figure 1 c Window functions for RPK type surveys of di�erent sizes. The contribu-

tions from large k fall as the number of data points increase.

Figure 2 The noise{free expectation values for the z component of �(v) and its mag-

nitude for the four power spectra considered as a function of the size of the survey for

an RPK{type sample. We also show the expected magnitude of the noise, �("), which

falls with the number of data points.

Figure 3 The noise{free expectation values for the z component of �(v) and its mag-

nitude for the four power spectra considered as a function of the measurement errors

for an LP{type survey. We also show the expected magnitude of the noise, �("), which

increases with increasing measurement errors.


