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ABSTRACT

Using Lorentz force equation as an input a Hamiltonian mechanics on the

non-projective two twistor phase space TxT is formulated.

Such a construction automatically reproduces dynamics of the intrinsic clas-

sical relativistic spin.

The charge appears as a dynamical variable.

It is also shown that if the classical relativistic spin function on TxT vanishes,

the natural conformally invariant symplectic structure on TxT reduces to the

natural symplectic structure on the cotangent bundle of the Ka lu_za-Klein

space.
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1 INTRODUCTION.

The classical motion of a relativistic electrically charged massive and spin-

ning particle exposed to an external electromagnetic �eld is, in Minkowski

space, described by the Lorentz-Dirac (LD) force equation and by the so

called Bargmann, Michel, Telegdi (BMT) equation for the intrinsic angular

momentum (the spin).

If we by Xa, Pa, Sa, Fab, m
2 := P bPb, e and g denote the four-position, the

four-momentum, the Pauli-Luba�nski four-vector, the external electromag-

netic �eld tensor, the mass squared, the charge and the gyromagnetic ratio

of the particle then these Poincar�e covariant equations may be written as

follows:

_Xa = P a; (1:1)

_Pa = eFabP
b + Da; (1:2)

_Sa =
ge

2
FabS

b +
ge

2m2
(FikS

iP k)Pa �
1

m2
( _PkS

k)Pa (1:3)

where

PaS
a = 0 (1:4)

and

DaP
a = 0 (1:5):

Da is a small space-like correction four-vector (small compared with the
space-like four-vector eFabP

b) containing higher derivatives of the external
electromagnetic �eld Fkl, F

�

kl and terms nonlinear in the spin variable Si [1,2].

When the particle forms (a classical limit of) an electron and the radiation
damping e�ects are neglected the value of g equals 2 (the Dirac value).

The equations (1.1) - (1.5) are such that the mass squared and the spin

squared of the particle:

m2 := PaP
a s2 := � 1

m2
SaS

a (1:6)



are constants of the motion.

The dot in (1.1) - (1.3) denotes di�erentiation with respect to a real param-

eter l which is, by virtue of (1.1), linearly related to the proper time � of the

particle by:

� = �ml + �0 (1:7):

�0 is an arbitrary real number representing the freedom of choice of the origin

of the proper time.

Fab denotes the value of the external electromagnetic �eld evaluated at the

particle's four-position Xa. Consequently, the four-position coincides with
the location of the charge e.

In this paper we assume that Da = 0 in (1.2) and then examine (1.1) and
(1.2) using two distinct twistors as variables.

This analysis will automatically produce the BMT equation in (1.3) with

g = 2 [4].

In the next section we give a physical interpretation to the sixteen variables
corresponding to a point in the space of two twistors TxT [3,4].

In section three the free particle symplectic potential on TxT is expressed
using these physical variables. The non-uniqeness of choice of the free particle
Hamiltonian is disscused.

The free particle equations of motion given as a canonical ow in the phase
space of two twistors are presented in twistors' Weyl spinor coordinates as

well as in Poincar�e covariant physically interpretable coordinates. These has

been presented before [3] in a somewhat preliminary shape.

In section four a deformed Poincar�e covariant symplectic structure and a

deformed Poincar�e scalar Hamiltonian function on TxT are presented. The
new Poincar�e covariant ow in TxT canonical with respect to the deformed

symplectic structure and generated by the deformed Hamiltonian reproduces



(1.1) - (1.4) (with Da = 0 and g = 2) and also produces certain additional

equations of motion. The latter arise because TxT is sixteen dimensional

while the number of independent variables describing the particle according

to (1.1) - (1.4) is only twelve (the four-position, the four-momentum, the

Pauli-Luba�nski spin four-vector ful�lling (1.4) and the charge).

Our attempt to interpret physically the remaining four variables is presented

already in section two. However, a (partial) con�rmation of the correctness

of these tentative identi�cations is provided �rst when the interaction with

an external electromagnetic �eld is "switched" on. This is done in section

four.

A �rst version of the material contained in section four appeared in [5] where

the electric charge was not de�ned as a dynamical variable. This weakness
of the model is removed in section four of the present paper.

In the appendix the formal proof of the statements made in section four is

presented.

Upper case latin letters with lower case greek indices denote twistors.
Upper case latin letters with lower case latin indices denote four-vectors and

four-tensors.
Lower case greek letters with upper case latin indices (either primed or un-
primed) denote Weyl spinors.
The Minkowski metric has the signature +���.

2 PHYSICAL VARIABLES IDENTIFIED

AS FUNCTIONS ON T�T.

The symbol TxT usually denotes the direct product of two twistor spaces.

However, in our investigations, we will not be using the whole of TxT but
rather T�T which from now on will denote the space TxT less its diagonal

i.e. T�T := fTxT - f(t, t) � TxT; t � Tgg.

The twistor coordinates of a point in T�T will be expressed in terms of two

Weyl spinors:



Z� = (!A; �A0) and W � = (�A; �A0) (2:1)

or dually (complex conjugation):

Z� = (�A; !
A0

) and W � = (�A; �
A0

) (2:2):

Using these two twistors and their twistor conjugates four independent con-

formally (SU(2,2)) scalar functions may be formed on T�T [4,7,8]:

s1 = Z�Z� and s2 = W �W � (2:3)

a = Z�W � and a = W �Z� (2:4):

In addition, the following two Poincar�e scalar functions may also be de�ned
on T�T:

f = �A
0

�A0 and f = �A�A (2:5):

The scalar functions introduced above may be represented by six real valued
functions on T�T given by:

e = s1 + s2 and k = s1 � s2 (2:6)

j a j and # = arga = �arga (2:7)

j f j and ' = argf = �argf (2:8):

Below, Poincar�e covariant functions on T�T will be identi�ed as physical
quantities according to the following recipe [4,5] (we employ here the abstract

index notation according to Penrose [6]):

Pa := �A0�A + �A0�A (2:9)



will denote a massive particle's four-momentum expressed as a sum of the

four-momenta of its two massless parts.

Xa :=
1

2
(Za + Z

a
) where Za :=

i

f
(!A�A

0 � �A�A
0

) (2:10)

will denote a massive particle's four-position in Minkowski space time.

A massive particle's Pauli-Luba�nski spin four-vector will be given by:

Sa :=
k

2
(�A0�A � �A0�A) + a�A0�A + a�A0�A (2:11):

The de�nition in (2.11) is dictated by the assumption that a massive particle's
four angular momentum should be a sum of the four angular momenta of its
two massless parts (see e.g. [3]).

Note that Pa and Sa are automatically orthogonal to each other i.e. we
always have PaS

a = 0.

From the above it follows that the imaginary part of Za:

Y a =
1

2i
(Za � Z

a
) = (2:12)

may be written as:

=
1

2ff

h
(a�A

0

�A + a�A
0

�A)� s1�
A0

�A � s2�
A0

�A
i

= (2:13)

or as:

=
1

2ff
(Sa � e

2
P a) (2:14):

From the de�nitions above it also follows that on T�T the mass function of
the particle is given by



m =
p

2 j f j (2:15)

while its spinfunction by:

s =

s
1

4
k2 + j a j2 (2:16):

A space-like plane spanned by two mutually orthogonal unit four-vector val-

ued functions on T�T orthogonal to Sa and Pa:

Ea :=
i

(mj a j)(a�A0�A � a�A0�A) (2:17):

Fa :=
1

(smj a j) [
k

2
(a�A0�A + �a�A0�A)� aa(�A0�A � �A0�A)] (2:18)

may be thought of as a polarization plane rigidly attached to the massive

particle at its four-position Xa in Minkowski space [3,4].

In e�ect, all four four-vectors Pa=m, Sa=(sm), Ea and Fa span an orthonormal
tetrad rigidly attached to the particle at its four-position Xa in Minkowski

space. The number of variables represented by the functions de�ning this
tetrad is six, the number of variables represented by the scalar functions is
also six, while the four-position represents four variables; sixteen variables
altogether.

With these identi�cations the inverse relations expressing twistor coordinates
in (2.1) - (2.2) as functions of the introduced Poincar�e covariant physical
variables and the scalars in (2.6) - (2.8) (note that according to (2.15) and
(2.16) two of these scalars have a clear physical interpretation) are almost

immediate.

The spinor �A0 up to its phase is given by:

�A0�A =
1

2
(Pa +

k

2s2
Sa �

mj a j
s

Fa) (2:19);



the spinor �A0 up to its phase is given by:

�A0�A =
1

2
(Pa �

k

2s2
Sa +

mj a j
s

Fa) (2:20);

while the phase � of the spinor �A0 is given by:

� =
1

2
(argf + arga) =

1

2
(' + #) (2:21);

and the phase � of the spinor �A0 by:

� =
1

2
(argf � arga) =

1

2
('� #) (2:22):

The relations in (2.21) and (2.22) follow from (2.5) and from the fact that
the conformal complex valued scalar a in (2.4) may be written as:

a = �2Y AA0

�A�A0 (2:23)

where Y a is a real four-vector valued function on T�T introduced in (2.12).

The remaining spinors are given by (see (2.14) and (2.15)):

!A = iXAA0

�A0 � 1

m2
(SAA0

�A0 � e

2
PAA0

�A0) (2:24)

and

�A = iXAA0

�A0 � 1

m2
(SAA0

�A0 � e

2
PAA0

�A0) (2:25):

3 THE FREE PARTICLE MOTION.

The two twistor space T�T possesses a natural (free particle) symplectic

structure given by [7,8]:


0 = i(dZ� ^ dZ� + dW � ^ dW �) (3:1):




0 may be regarded as exterior derivative of a one-form 0 (
0 = d0) given

by:

0 =
i

2
(Z�dZ� � Z�dZ

� + W �dW � �W �dW
�) (3:2):

Using the introduced Poincar�e covariant physical functions on T�T, 0 may

also be written as:

0 = PjdX
j +

1

2
ed'� 1

2
kd# + (

k2

4s
Fj +

j a jk
2ms2

Sj +
j a j
m

Pj)dE
j (3:3)

or equivalently

0 = PjdX
j +

1

2
ed'� 1

2
kd# +

k

2m
(iMjd �M j � i �MjdM

j)+

+
i�a

m2
MjdP

j � ia

m2
�MjdP

j (3:4)

where Mj is a complex null four-vector valued function on T�T given by:

Ma := �A0 ��A (3:4a):

From (3.3) or (3.4) we notice a remarkable fact that for a = k = 0 i.e. for
the vanishing value of the spin function on T�T, the conformally invariant
symplectic potential 0 in (3.2) (and thereby also the symplectic structure 
0

in (3.1)) reduces to the natural symplectic potential (while 
0 reduces to the
natural symplectic structure) on the cotangent bundle of the Ka lu_za-Klein

space. This suggests that e should be identi�ed with the electric charge of
the particle.

To generate the free motion of a massive particle built up of the two twistors

we used in [3] a Hamiltonian:

H01 = m2 + s2 (3:5)

and a somewhat modi�ed one in [4]:



H02 =
1

2
(m2 + s2) (3:6):

Any such a change is of no importance as long as H0 is a function on T�T

such that:

H0 = H0(m; s) (3:7):

The ow will always correspond to a free particle motion in Minkowski space.

In fact any function such that:

H0 = H0(m; s; k; e) (3:8)

describes a free particle. As m, s, k and e are mutually (Poisson) commuting

functions the di�erent choices of H0 may correspond to di�erent motions of
the internal physical variables represented by ' and #.

But in most cases di�erent choices of H0 simply correspond to a reparametri-

zation of the canonical ow lines.

At this non-quantum level there is thus quite a large freedom of choice of
the free particle Hamiltonian H0. On the quantum level of this approach
one should, on the other hand, expect essential di�erences depending on the

choice of Ĥ0.

In this paper, for simplicity, we choose H0 as:

H0 :=
1

2
m2 + (s2 � 1

4
e2) (3:9)

which written out in terms of the introduced scalar functions yields:

H0 := ff +
1

4
k2 + aa� 1

4
e2 = ff � s1s2 + aa (3:10):

The chosen H0 and 
0 in (3.1) generate the following equations of motion in

T�T:



_!A = �if�A + ia�A � is2!
A (3:11)

_�A0 = ia�A0 � is2�A0 (3:12)

_�A = if�A + ia!A � is1�
A (3:13)

_�A0 = ia�A0 � is1�A0 (3:14)

and their complex conjugates (c.c.).

The above equations, written out using functions representing the physical
variables as previously identi�ed, read:

_e = 0 and _k = 0 (3:15)

_' = �e and _# = 0 (3:16)

_Xa = P a (3:17)

_Pa = 0 and _Sa = 0 (3:18)

_Ea = 2sFa (3:19)

_Fa = �2sEa (3:20):

From (3.19), (3.20) and (1.7) it follows that, with our choice of H0, the
introduced polarization plane rigidly attached to the particle rotates with an
angular velocity equal to (2s=m) [3].



4 MOTION IN AN EXTERNAL ELECTRO

MAGNETIC FIELD.

In this section we identify the function e on T�T with the electric charge of

the particle. The deformed Poincar�e covariant symplectic potential on T�T

we de�ne as:

 = 0 + eAjdX
j (4:1)

where Xa is a four vector-valued function on T�T given by (2.10) and where

Aj = Aj(X
a) denotes an external electromagnetic four-potential. Aj is in this

way a four-vector valued function de�ned on T�T. 0 is given by (3.3) (or

equivalently by (3.2) or (3.4)).

The external derivative of  gives us the deformed symplectic structure on

T�T:


 = 
0 + de ^ dXjAj +
1

2
eFjkdX

j ^ dXk (4:2)

where Fjk = Fjk(X
a) denotes the electromagnetic �eld tensor formed from

Aj. 
0 = d0.

Note that for a = k = 0,  and thereby 
 may be regarded as a deformation

of the natural symplectic potential and natural symplectic structure on the
cotangent bundle of the Ka lu_za-Klein space.

As the deformed Hamiltonian function on T�T we take:

H = H0 +
e

m2
F �

jkS
jP k (4:3)

where F �

jk = F �

jk(X
a) represents on T�T the dual of the external electro-

magnetic tensor �eld.

It is shown in the appendix that, with respect to 
, H generates a Poincar�e

covariant canonical ow in T�T provided Maxwell's empty space equations
are ful�lled at the location of the particle:



F �

[jk;n] = 0 (4:4):

For future reference we note that using (2.12), (2.14), (2.15) and the skew

symmetry of the dual of the external electro-magnetic �eld tensor the gener-

ating function H may also be written as:

H = H0 + eF �

ikY
iP k (4:5):

Expressed in twistor coordinates the ow canonical with respect to 
 and

generated by H is given by the following equations of motion (see proof in

the appendix):

_!A = �if�A + ia�A � is2!
A+

+e�ABY
BB0

�B0 + ieXAA0

�A0

B0

�B0 + iC!A (4:6)

_�A0 = ia�A0 � is2�A0 + e�A0

B0

�B0 + iC�A0 (4:7)

_�A = if�A + ia!A � is1�
A+

+e�ABY
BB0

�B0 + ieXAA0

�A0

B0

�B0 + iC�A (4:8)

_�A0 = ia�A0 � is1�A0 + e�A0

B0

�B0 + iC�A0 (4:9)

where

C = (F �

ikY
iP k �AiPi) (4:10)

and where �AB = �AB(Xc) is a spinor �eld corresponding to Fab = Fab(X
c)

[6]:

�AB =
1

2
FAA0B

A0

(4:11):



Conversely one has [6]:

Fab = �AB�A0B0 + �A0B0�AB (4:12)

F �

ab = i�A0B0�AB � i�AB�A0B0 (4:13):

Written out in terms of the introduced Poincar�e covariant physical variables

the above equations of motion read:

_Xj = P j and _Pj = eFjkP
k (4:14)

_Sj = eFjkS
k (4:15)

_e = 0 and _k = 0 (4:16)

_# = 0 (4:17)

_' = �e� 2PjA
j +

2

m2
F �

jkS
jP k (4:18)

_Ej = 2sFj + eFkjE
k (4:19)

_Fj = �2sEj + eFkjF
k (4:20):

As may be seen the equations in (4.14) and (4.15) are the same as those
in (1.1) - (1.3) (with Dj = 0 and g = 2) while the relation in (1.4) is

automatically ful�lled because of the way Sj and Pj were de�ned in (2.9)

and (2.11).

The charge function e appears as a dynamical variable and according to

(4.16) is a constant of motion.

Conformally scalar functions k and # in (4.16) and (4.17) do not yet have

any clear physical interpretation. They form two ((Poisson) non-commuting)
constants of motion.



The �rst two terms in (4.18) correspond to the Aharonov-Bohm e�ect while

the third term arises because of the non-vanishing intrinsic spin of the par-

ticle.

The motion of the polarization plane is given by (4.19) and (4.20).

Finally we note that the equations of motion in (4.6) - (4.9) may also be

written in a twistor covariant way i.e. entirely in terms of Z� and W �:

_Z� = (if + l1f)I�� �W� + (ia� �c2)W
� � (is2 + iC + �c3)Z

� � bI�� �Z� (4:21)

_W � = (if + l2f)I�� �Z� + (i�a+ �c1)Z
� � (is1 + iC � �c3)W

�� �bI�� �W� (4:22)

where I�� is the so called in�nity twistor and where c1, c2, c3 are certain,
conveniently chosen, complex valued Poincar�e scalar functions on T�T de-
scribing the external electromagnetic �eld (e and �f are de�ned in (2.5) -
(2.6)):

c1 =
e�AB��A��B

�f
(4:23)

c2 =
e�AB��A��B

�f
(4:24)

c3 = �e�AB��A��B
�f

(4:25):

In (4.21) - (4.22) l1 and l2 are real valued Poincar�e scalar functions on T�T

while b is a complex valued Poincar�e scalar function on T�T given by (see
(2.3) and (2.4)):

l1 = � 1

m2
[ac2 + �a�c2 + s1(c3 + �c3)] (4:26);

l2 =
1

m2
[�ac1 + a�c1 + s2(c3 + �c3)] (4:27);



b =
1

m2
[a(�c3 � c3)� (�c2s2 + c1s1)] (4:28):

The deformed symplectic potential in (4.1), the corresponding symplectic

structure in (4.2), the deformed Hamiltonian in (4.3) (or (4.5)) may all be

written in a twistor covariant way i.e. entirely in terms of Z� and W � and the

in�nity twistor I��. The arising expressions are, however, quite complicated

and not especially illuminating from the physical point of view. In this paper

we therefore omit their presentation.

5 CONCLUSIONS AND REMARKS.

In this paper we describe the dynamics of a relativistic charged particle with
spin in an external electro-magnetic �eld using two-twistor phase space T�T.
We have shown that there exists a Hamiltonian dynamics on T�T which after
passing to space-time coordinates reproduces the Lorentz force dynamics

and Bargmann-Michel-Telegdi dynamics (with g = 2) and also indicates
connection to the Ka lu_za-Klein space dynamics. Conversely, one can say
that there exists a sort of the square root of the Lorentz force dynamics
which is realized as a Hamiltonian dynamics on T�T.

It will be interesting to see how the quantized version of the above formalism
corresponds to the Dirac equation coupled to an external electromagnetic
�eld. It seems that the approach developed by A. Odzijewicz and his group
[9-12] would be of great value here.
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7 APPENDIX; A FORMAL PROOF OF

THE MAIN RESULT OF SECT. 4

In order to prove that the Hamiltonian in (4.5) and the symplectic structure

 in (4.2) generate equations (4.6) - (4.9) which, in turn, imply (4.14) - (4.20)
we have to prove that:

V j
 = �dH (A:1)

where H is that in (4.5) 
 is that in (4.2) and where

V = V0 + V1 (A:2)

where the vector-�eld V0 according to (3.12)-(3.15) is given by:

V0 = (�if�A + ia�A � is2!
A)

@

@!A
+ (ia�A0 � is2�A0)

@

@�A0

+



+(if�A + ia!A � is1�
A)

@

@�A
+ (ia�A0 � is1�A0)

@

@�A0

+ c:c: (A:3);

or using the introduced four-vector variables (see (3.16)-(3.21)):

V0 = P j @

@Xj
� e

@

@'
� 2sEj @

@F j
+ 2sF j @

@Ej
(A:3a):

The vector �eld V1 is according to (4.6)-(4.9) given by:

V1 = (e�ABY
BB0

�B0 + ieXAA0

�A0

B0

�B0 + iC!A)
@

@!A
+ c:c:+

+(e�A0

B0

�B0 + iC�A0)
@

@�A0

+ c:c:+

+(e�ABY
BB0

�B0 + ieXAA0

�A0

B0

�B0 + iC�A)
@

@�A
+ c:c:+

+(e�A0

B0

�B0 + iC�A0)
@

@�A0

+ c:c: (A:4):

or using the introduced four-vector variables (see (4.14)-(4.20)):

V1 = eFjkP
k @

@P j
+ 2C

@

@'
+ F kjFk

@

@F j
+ F kjEk

@

@Ej
(A:4a):

To facilitate the caculations the inner product on the left hand side of (A.1)
may be split into a sum of partial inner products:

V j
 = V0 j
0 + V0 j
1 + V1 j
0 + V1 j
1 (A:5)

where


 = 
0 + 
1 (A:6)


0 = i(dZ� ^ dZ� + dW � ^ dW �) (A:7)



and


1 = de ^ dX iAi +
1

2
eFikdX

i ^ dXk (A:8):

By assumption, which may be checked by direct calculations, one has:

V0 j
0 = �d(
1

2
m2 + s2 � 1

4
e2) (A:9):

Using the fact (see (3.16)-(3.21)) that:

V0 = P i @

@X i
+ (A:10)

+ terms in directions linearly independent of @

@Xi

and that V0 has no component along @

@e
one obtains by direct calculations:

V0 j
1 = �AiP
ide + eFikP

idXk (A:11):

Further, tedious spinor algebra manipulations yield:

V1 j
0 = �Cde+ eFikP
kdX i � eF �

ikd(Y iP k) = �Cde+ eFikP
kdX i

�d(eF �

ikY
iP k) + eY iP kdF �

ik + (Y iP kF �

ik)de (A:12):

Using the fact that according to the equations of motion the vector compo-
nents of V1 in the direction of @

@Xi and in the direction of @

@e
are equal to zero

one gets automatically:

V1 j
1 = 0 (A:13):

Putting together (A:9), (A:11), (A:12), (A:13) and inserting C = (Y iP kF �

ik)�
AiP

i yields:

V j
 = �d(
1

2
m2 + s2 � 1

4
e2)� d(eF �

ikY
iP k) + eY iP kdF �

ik = (A:14)



= �d(
1

2
m2 + s2 � 1

4
e2)� d(eF �

ikY
iP k) = �dH (A:15)

provided the last term in (A.14) vanishes for all choices of Pi and Yi. That

will always happen if the empty space Maxwell's equations:

F �

[ik;n] = 0 (A:16)

are ful�lled at the location of the particle i.e. at its four-position in Minkowski

space.

This completes the proof of our assertion.

Note that the �rst pair of Maxwell's equations is satis�ed by virtue of the fact

that the external electromagnetic �eld is given by means of a four-potential
Aj in the expression for the symplectic one-form . This automatically en-
sures that the symplectic structure 
 is a closed two-form on T�T.


