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Abstract

Using known mode properties, the functional determinant for mass-

less spin-half �elds on the Euclidean 4-ball is calculated and shown to

be di�erent for spectral (nonlocal) and mixed (local) boundary condi-

tions. The local result agrees with that from a conformal argument.

Some higher-spin results and a sum rule are also given.
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1. Introduction

The theory of spinors in spaces with boundaries is of interest physically in

connection with quantum cosmology and supergravity. (See D'Eath and Esposito

[1] and Esposito [2] for some history of these questions.) In mathematics it is

encountered in the spin-index theorem and the Atiyah, Patodi and Singer � spectral

asymmetry function, the standard reference being Gilkey's book, [3].

As explained in [1], for self-adjointness of the Dirac operator, there is a choice

between spectral and local (mixed) boundary conditions, the former being of rele-

vance for the spin-index and the latter having more physical signi�cance in connec-

tion with supersymmetry, string theory and quantum gravity, [4,5], although in the

guise of relative conditions they do have a cohomological importance, [3,6].

In the special case of the Euclidean 4-ball, it was shown [7{9] that the value

of �(0), which determines the scaling of the theory, was the same for both sets of

conditions. In this note we report on the same question for the one-loop e�ective

action, which is, up to factors, � 0(0). Our method will be that explained in [10].

2. Mode properties and calculation

The analysis of the modes of the massless Dirac equation on the 4-ball was

carried out by D'Eath and Esposito [1,7] and we will do no more here on this

matter than use their results. For local boundary conditions they found that the

eigenvalues, �2, are the roots of the equation

FL
p (�) = J2p�1(�)� J2p (�) = 0 (1)

with a degeneracy, for a given p, of p2 � p, p = 1; 2; : : :. For spectral conditions,

there is the simpler, scalar-like condition,

FS
p (�) = Jp(�) = 0 (2)

with degeneracy 2(p2 + p), p = 1; 2; : : :.

Our approach is based on the Mittag-Le�er decomposition,

z��Fp(z) = 

Y
�

�
1� z2

�2

�
; (3)

where

� = p; 
 =
1

2pp!
; spectral;

� = 2(p � 1); 
 =
1�

2p�1(p � 1)!
�2 ; local:
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This standard decomposition was earlier employed by Moss [11] and by D'Eath

and Esposito [1] when looking at the heat-kernel expansion and �(0). Here, when

�nding � 0(0), we need the normalising factor, 
, which follows from the small-z

behaviour of Fp(z).

A few details of the calculation will be given but, for brevity, some of our

previous work must be utilised.

Bypassing a number of steps, which are fully explained in [10,12], we de�ne the

quantities

GN �
1X
p=1

pN
��
p� 1

2

�
ln

2p

p+ �
+ (� � p) +

N+1X
n=1

�
En(t)

�n
� En(1)

pn

�
+ IN (p)

�
(4)

and

HN �
1X
p=1

pN
�
p ln

2p

p+ �
+ �� p� 1

2
ln

�

p
+

N+1X
n=1

�
Tn(t)

�n
� Tn(1)

pn

�
+ IN (p)

�
; (5)

with

IN (p) =

Z
1

0

�
1

2
� 1

�
+

[N=2]+1X
k=1

(�1)kB2k

�2k�1

(2k)!
+

1

e� � 1

�
e��p

�
d�;

in terms of which we can write the spin-half quantities,

�L1=2
0

(0) = 2
�
G2 �G1

�
;

�S1=2
0

(0) = 2
�
H2 +H1

�
:

(6)

The labels S and L refer to spectral and local boundary conditions respectively.

In equations (4) and (5) the � symbol signi�es that the mass-independent part

of the large-mass asymptotic limit is to be taken. The En(t) are the polynomials

in t = p=�, � = (m2 + p2)1=2, that occur in the asymptotic expansion of FL
p (im) of

(1) derived by D'Eath and Esposito (they call them An=2) from Olver's series. The

Tn(t) are the corresponding polynomials for the scalar case, [11,12]. The condition

that makes equation (4) possible is En(1) = Tn(1) which can be proved from the

explicit de�nition of the En. We note that Tn(1) is zero for n even and that

T2k�1(1) = (�1)kB2k=2k(2k � 1) in terms of Bernoulli numbers.

We have made use of the algebraic results of D'Eath and Esposito, [1] section

IV, in deriving (4).
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Expression (5) is identical to one occurring for scalar �elds on the even ball,

except that N , there being the power of p in the expansion of the degeneracy, is

even. Hence for N = 2, our previous result in [12,13] for the 4-ball (see also [14])

could be used without change.

From the technique outlined in [10] the following useful limits can be deduced,

1X
p=1

pN (�� p) � ��R(�N � 1) +O(lnm);

1X
p=1

pN ln
� 2p

p+ �

�
� �� 0R(�N) + ln 2 �R(�N) +O(lnm);

1X
p=1

pN ln
� �
p

�
� � 0R(�N) +O(lnm):

(7)

It is necessary to state that a hidden regularisation has been employed to render

the summations �nite. This consists of removing su�cient of the Taylor expansion

of the summand and will not be indicated. Since the entire expression is �nite, the

divergent terms so introduced must all cancel.

These limits enable some of the terms in (4) and (5) to be dealt with quickly.

The rest, i.e. the polynomial and integral contributions, need a little more work.

We write them as in [12,10],

1X
p=1

pN
� N+1X
n=1;3;:::

Pn(1)

�
1

�n
� 1

pn

�
+

N+1X
n=1

P 0n(t)

�n

�

+ lim
s!0

Z
1

0

�
1

2
� 1

�
+

[N=2]+1X
k=1

(�1)kB2k

�2k�1

(2k)!
+

1

e� � 1

�
� s�1(�1)N dN

d�N
1

e��1d�;

(8)

where Pn stands for either En or Tn and P 0n(t) = Pn(t) � Pn(1).

A recursion is developed for the multiple derivative in (8) and the contribution

from the integral found to be, after some algebra,

� 0R(�N � 1) +
1

2
� 0R(�N) + �R(�N � 1) +

N+1X
k=1

M
(N)
k � 0R(�k); (9)

where the coe�cient matrix M is de�ned by

M
(N)
k =

N+1X
l=k

A
(N)
l

S
(k+1)
l+1

l!

3



in terms of easily evaluated recursion constants A
(j)
l and Stirling numbers S

(k)
l ,

[12,10].

Assembling the various pieces, and using special values for the M
(N)
k , we �nd

GN =
� 0R(�N)

2
+
� 0R(�N � 1)

N + 1
+

N�1X
k=1

M
(N)
k � 0R(�k)

+
�1
2
�R(�N) � �R(�N� 1)

�
ln 2 +

Z 1

0

tNE00N+1(t) dt + LN ; N � 1;

(10)

where P 00n (t) = P 0n(t)=(1 � t2) and

LN = TN+1(1)

�
ln 2 +

NX
k=1

1

k
+

N=2X
q=1

(�1)q
p
� (N=2)!

2q(N=2� q)!�(q + 1=2)

�
:

The last two terms in (10) come from the �rst line of (8).

Explicitly for N = 0, a case needed later,

G0 = �
1

24
+

1

12
ln2 + � 0R(�1): (11)

For spectral conditions,

HN = ��
0

R(�N)

2
+
� 0R(�N � 1)

N + 1
+

N�1X
k=1

M
(N)
k � 0R(�k)

+ �R(�N � 1) ln 2 +

Z 1

0

tNT 00N+1(t) dt + LN ; N � 1;

(12)

and

H0 =
5

24
� 1

6
ln 2 + � 0R(�1) � � 0R(0): (13)

Making the constructions (6), one �nds for local spin-half,

�L1=2
0

(0) =
251

15120
� 11

180
ln 2 +

2

3

�
� 0R(�3) � � 0R(�1)

�
� 0:088108 (14)

and for spectral,

�S1=2
0

(0) = � 2489

30240
+

1

45
ln2 +

2

3

�
� 0R(�3) � � 0R(�1)

�
� 0:046962 (15)

which are the main results of this note.

The speci�c forms of the En polynomials given in [1], have been used to eval-

uate the integrals in (10). We remark that in the corresponding evaluation of �(0)

(=11=360), one needs only the particular value PN(1), which equals �R(�N)=N , a

non-transcendental, local quantity.
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3. Higher spins

The eigenvalue conditions for some higher-spin theories are summarised in [7]

section VI. A mechanical application of the present technique yields the following

results.

For real spin-0 with Dirichlet conditions,

2�D0
0

(0) = 2H2

=
173

15120
+

1

45
ln 2 +

2

3
� 0R(�3) � � 0R(�2) +

1

3
� 0R(�1)

� 0:005738:

For spin-1 (Maxwell) with Dirichlet (magnetic) conditions,

� 0TV(0) = 2(H2 � 2H0)

= � 6127

15120
+

16

45
ln 2 +

2

3
� 0R(�3) � � 0R(�2) �

5

3
� 0R(�1) + 2� 0R(0)

� �1:68691:

(16)

For spin-3/2 physical degrees of freedom with spectral conditions,

�S3=2
0

(0) = 2(H2 +H1 �H0)

= �27689

30240
+

31

45
ln 2 +

2

3
� 0R(�3)�

14

3
� 0R(�1) + 4� 0R(0)

� �3:33834:

(17)

These results imply, rather trivially, the sum rule,

�S3=2
0

(0) � �S1=2
0

(0) = 2
�
� 0TV(0) � 2�D0

0

(0)
�
: (18)

The same relation holds also for �(0),

�S3=2(0) � �S1=2(0) = 2
�
�TV(0) � 2�D0 (0)

�
; (19)

and, in fact, for all coe�cients in the heat-kernel expansion, as can be checked

numerically from the tables provided in [15] and [16].

The speci�c values,

�S3=2(0) = �
289

360
; �S1=2(0) =

11

360
; �TV(0) = �

77

180
; �D0 (0) = �

1

180
; (20)
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were computed in references [1,7,17], see also [18,16,19]. The spectral label, S, can

be replaced by the local one, L, in (20).

The sum rules are only special cases of the general relation

�S3=2(s) � �S1=2(s) = 2
�
�TV(s) � 2�D0 (s)

�
; (21)

which is a consequence of the eigenvalue condition, (2), and the various quadratic

degeneracies.

For spin-2 transverse-traceless modes with Dirichlet conditions, [20], i.e.

FTT
p = Jp(�) = 0

and degeneracy 2(p2 � 4), p � 3, we �nd

� 0TT(0) = 2(H2 � 4H0) = 2(H2 �H0) + 6
�
� 0R(0) + ln 2

�
= �25027

15120
+

331

45
ln 2 +

2

3
� 0R(�3) � � 0R(�2)�

23

3
� 0R(�1) + 14� 0R(0)

� �8:119619;

(22)

where the bar signi�es that the p = 1 term has been left out in (5). (The easiest

way of doing this is to remove the overall p = 1 term at the outset.)

For the record, the local spin-3/2 expression is

�L3=2
0

(0) = 2(G2 �G1 � 2G0)

=
2771

15120
+

289

180
ln 2 +

2

3
� 0R(�3)�

14

3
� 0R(�1) + 4� 0R(0)

� �1:60405;

(23)

which exhibits the anomaly value of �289=360.
Arbitrary-spin �elds can be treated in exactly the same way, most easily using

the mode analysis given in [21,22], and will be discussed in a later communication.

4. Comments

The above expressions for the � 0(0) have also been obtained by Kirsten and

Cognola [16] using the method of Bordag et al, [14].

The local result, (14), agrees with that of Apps, reported in [13] and found using

a conformal transformation from the 4-hemisphere. In fact, the �nal expression in
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(14) is � 0S(0) on the hemisphere, the rest coming from the cocycle function obtained

from an integration of the conformal anomaly, as in [23,24] for example.

Spectral conditions are also conformally invariant and it seems that (15) can

be interpreted in a similar way. The same structure is also apparent in (17) and

(23) for spin 3/2.

This suggests that the eigenvalue problem on the hemisphere is the same, or

is equivalent, for spectral and local boundary conditions. This is con�rmed by,

and may explain, the equality of �(0) for these conditions found by D'Eath and

Esposito in 
at space and by Kamenshchik and Mishakov on the bounded sphere.

To the author's knowledge, the cocycle function has not been calculated for spectral

conditions.

The extension to higher, even-dimensional spaces is straightforward and sim-

ply consists of substituting (10) or (12) into the appropriate polynomial form of

the spinor degeneracy. For odd dimensions the major di�erence is that the p-sums

run over half odd-integers and presents no problem [10]. For example, the Maxwell

modes on the 3-ball are classic, e.g. [25], and it is soon shown that the magnetic de-

terminant is obtained by doubling the scalar Dirichlet value and subtracting �2 ln 2
to allow for the di�erent starting point of the mode sum. Similarly, the electric

determinant is the double the scalar Robin one, with � = 1=2, again minus �2 ln 2.
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