
he
p-

th
/9

50
80

80
   

17
 A

ug
 1

99
5

Boundary Yang-Baxter equation in the RSOS

representation

C. Ahn

Department of Physics

Ewha Women University

Seoul 120-750, Korea

and

W.M. Koo

Center for Theoretical Physics

Seoul National University

Seoul 151-742, Korea

July 1995�

Abstract

The boundary Yang-Baxter equation in the RSOS representation

is found to posses two classes of trigonometric solution; diagonal and

o�-diagonal. The diagonal solution is not a special limit of the o�-

diagonal one and is unique to the RSOS representation as it contains

p � 3 parameters where p � 1 is the number of allowed height. The

corresponding commuting transfer matrix is also constructed.
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1 Introduction

The boundary Yang-Baxter equation (BYBE) is relevant to integrable statist-

ical models[1, 2] and quantum �eld theories[3] in the present of a boundary; it

is the necessary condition for the integrability of these models. The equation

is also interesting in its own right; it is known for example that for some

special solution, the BYBE in the rational limit can be regarded as a de�ning

relation for the twisted Yangian[4] and is therefore related to deformation of

the orthogonal and simplectic Lie algebra.

To date, several solutions of the BYBE have appeared in the form of ver-

tex representation. Far less is known however for the solution in the SOS

or RSOS form[5, 6]. From a mathematical point of view, �nding solution in

the RSOS form will reveal the special mathematical structure associated with

the algebra de�ned by the boundary Yang-Baxter equation when the deform-

ation parameter is a root of unity. From a physical point view, the solutions

have applications in statistical mechanics and �eld theory. In the context of

statistical mechanics, the solutions give rise to integrable SOS/RSOS mod-

els with boundary, whose simplest case includes the Ising model, and the

study of integrable statistical model with boundary will shed light on the is-

sue of the dependence of the Casimir energy on the boundary and surface

properties[7, 8]. From the �eld theory point of view, the solutions are relev-

ant to the study of the restricted sine-Gordon model[13] and the perturbed

(coset[9, 10]) conformal �eld theory[11] with boundary. Besides, it is known

that the Kondo problem in the overscreened case has boundary scattering

matrix given in the RSOS form[12], hence our solutions may �nd application

in this problem.

2 Solutions to the boundary Yang-Baxter equation

2.1 Generalities

In this section we solve the boundary Yang-Baxter equation for the RSOS(p) ;

p = 3; 4 : : : scattering theory. The RSOS(p) scattering theory is based on a

p� 1 - fold degenerate vacuum structure, vacua can be associated with nodes

of the Ap�1 Dynkin diagram. The quasi particles in the scattering theory

are kinks that interpolate neighboring vacua, they can be denoted by non-

commutative symbols Kab(�) where ja � bj = 1 and � is the kink rapidity.

Formally, scattering between two kinks can be represented by the following
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equation (see Fig.(1))

Kda(�)Kab(�
0

) =
X
c

Sab
dc(� � �

0

)Kdc(�
0

)Kcb(�) (2.1.1)

where the S-matrix is given by

Sab
dc (�) = u(�)

�
[a][c]

[d][b]

���=2�i
W ab

dc (�) (2.1.2)

and

W ab
dc (�) =

 
sinh(�=p)�bd

�
[a][c]

[d][b]

�1=2
+ sinh((i�� �)=p)�ac

!
(2.1.3)

satis�es the Yang-Baxter equation in the RSOS representation. Here [a] de-

notes the usual q-number given by

[a] =
sin(a�=p)

sin(�=p)

and the overall factor u(�) is a product of Gamma functions which can be

found in [13] and satis�es the relations

u(�)u(��) sinh((i� � �)=p) sinh((i�+ �)=p) = 1

u(i� � �) = u(�) :

This factor, together with the overall q-number factor, ensures that the S-

matrix satis�es both crossing and unitarity constraints:

Sab
dc (�) = Sbc

ad(i� � �) (2.1.4)X
c
0

Sab
dc

0 (�)Sc
0

b
dc (��) = �ac : (2.1.5)

Consider now the above scattering theory in the presence of a bound-

ary denoted formally by B, then the scattering between the a kink and the

boundary is described by the equation

Kab(�)B =
X
c

Rb
ac(�)Kbc(��)B (2.1.6)

which can be given a graphical representation shown in Fig.(2).
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Figure 1: The bulk RSOS scattering matrix

b

a � c

Figure 2: The boundary RSOS scattering matrix

The function Rb
ac is called the boundary scattering matrix and satis�es the

Boundary Yang-Baxter (BYB) equation, which in the RSOS representation

takes the formX
a
0

;b
0

Ra
bb
0 (�)Sac

b
0

a
0 (�

0

+ �)Ra0

b
0

b
00 (�

0

)Sa
0

c
b
00

a
00 (�

0 � �) =

X
a
0

;b
0

Sac
ba

0 (�
0 � �)Ra

0

bb
0 (�

0

)Sa
0

c
b
0

a
00 (�

0

+ �)Ra00

b
0

b
00 (�) : (2.1.7)

In general, the function Ra
bc(�) can be written as

Ra
bc(�) = R(�)

�
[b][c]

[a][a]

���=2�i
(�b6=cX

a
bc(�) + �bc(�b;a+1Ua(�) + �b;a�1Da(�)))

(2.1.8)

where R(�) has to be determined from the boundary crossing and unitar-

ity constraints, while Xa
bc and Ua; Da have to be determined from the BYB

equation. An overall q-number factor has also been multiplied to the above to

cancel that from the bulk S-matrix in order to simpli�es the BYB equation.

Note that due to the restriction that vacuum assumes value 1; : : : ; p�1, these

unknown functions are not de�ned for X1
bc; X

p�1
bc ; D1; Up�1. The case p = 3

has only diagonal scattering, so Xa
bc is taken to be zero.

3



2.2 Non-diagonal scattering

We consider the scattering where the o�-diagonal component Xa
bc is non-

vanishing. To start, consider the case b 6= c 6= b
00

in eqn.(2.1.7) where the

BYB equation gives

Xa
a�1;a+1(�

0

)Xa+2
a+1;a+3(�) = Xa

a�1;a+1(�)X
a+2
a+1;a+3(�

0

) ; 2 � a � p� 4 (2.2.1)

which implies that Xa
a�1;a�1 can be written as

Xa
a�1;a�1(�) = h�(�)X

a
� (2.2.2)

where the unknown functions h� only depends on � and Xa
� only on a.

On the other hand, the case c = b = b
00

; a = a
00

gives

Xa
a�1;a+1(�

0

)Xa
a+1;a�1(�) = Xa

a�1;a+1(�)X
a
a+1;a�1(�

0

) ; 2 � a � p� 2 (2.2.3)

which implies that

h+(�
0

)h�(�) = h+(�)h�(�
0

) ; (2.2.4)

from which we conclude that

h+(�) / h�(�) : (2.2.5)

Absorbing the constant of proportionality into Xa
� or Xa

+, we can regard h+
and h� to be identical, so we can absorb the common h(�)� into the overall

R(�) factor and treat Xa
bc as � independent from now on.

With this simpli�cation, the boundary Yang-Baxter equation can be broken

down into the following independent equations in addition to the above two

equations:

U
0

aDa+2f+ (1 + f�[a]=[a+ 1])+D
0

a+2Da+2f� (1 + f+[a+ 2]=[a+ 1])

+Xa+2
a+1;a+3X

a+2
a+3;a+1f� = UaD

0

a+2f+ (1 + f�[a+ 2]=[a+ 1])

+U
0

aUaf� (1 + f+[a]=[a+ 1]) +Xa
a�1;a+1X

a
a+1;a�1f� (2.2.6)

for 1 � a � p� 3, and

D
0

a+1f� (1 + f+[a+ 1]=[a])+ U
0

a�1f+ (1 + f�[a� 1]=[a])

= Ua�1f+ � Ua+1f� (2.2.7)

U
0

af� (1 + f+[a]=[a+ 1])+D
0

a+2f+ (1 + f�[a+ 2]=[a+ 1])

4



= Da+2f+ �Daf� (2.2.8)

U
0

a�1f+f�([a+ 1][a� 1])=([a]2) + Ua+1 (1 + f�[a+ 1]=[a])

+D
0

a+1 (1 + f�[a+ 1]=[a])(1 + f+[a+ 1]=[a])

= U
0

a+1 +Da+1 (1 + f+[a+ 1]=[a])] (2.2.9)

U
0

a+2f+f�([a][a+ 2])=([a+ 1]2) +Da (1 + f�[a]=[a+ 1])

+U
0

a (1 + f�[a]=[a+ 1]) (1 + f+[a]=[a+ 1])

= D
0

a + Ua (1 + f+[a]=[a+ 1]) (2.2.10)

which are de�ned for 2 � a � p � 3, and are valid only if the o�-diagonal

weight Xa
bc is nonvanishing. In the above equations, we used a more compact

notation de�ned below

Ua = Ua(�) Da = Da(�)

U
0

a = Ua(�
0

) D
0

a = Da(�
0

)

and

f� = sinh((�
0 � �)=p)= sinh((i� � �

0 � �)=p) :

It should also be mentioned that the last term in the rhs (lhs) of eqn.(2.2.6)

is present only when a 6= 1(p� 3). So one has to impose the conditions

X1
0;2X

1
2;0 = 0

X
p�1
p�2;pX

p�1
p;p�2 = 0 ;

(2.2.11)

while no such "boundary" conditions have to be satis�ed by Ua; Da. Notice

also that most of the above equations do not apply to the case p = 4, so we

shall consider this case separately.

From the above it is clear that these equations can be divided into two

sets; eqns.(2.2.7)-(2.2.10) determine Ua and Da, while eqns.(2.2.6),(2.2.11)

determines Xa
bc. To proceed, we try to construct from these equations some

recursion relations for the unknown functions. Indeed, comparing eqn.(2.2.7)

with eqn.(2.2.9) and similarly eqn.(2.2.8) with eqn.(2.2.10), we deduce that

(D
0

a �Da)(1 + f+[a]=[a� 1]) = (U
0

a�2 � Ua�2)f+[a]=[a� 1]

+ (U
0

a � Ua) (2.2.12)

(U
0

a � Ua)(1 + f+[a]=[a+ 1]) = (D
0

a+2 �Da+2)f+[a]=[a+ 1]

+ (D
0

a �Da) : (2.2.13)
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Substituting one into another, we get

(U
0

a+2 � Ua+2)� (U
0

a � Ua)

(U
0

a � Ua)� (U
0

a�2 � Ua�2)
=

sinh(((a+ 1)i� + �
0

+ �)=p)

sinh(((a� 1)i� + �
0

+ �)=p)
(2.2.14)

(D
0

a+2 �Da+2)� (D
0

a �Da)

(D
0

a �Da)� (D
0

a�2 �Da�2)
=

sinh(((a+ 1)i� � �
0 � �)=p)

sinh(((a� 1)i� � �
0 � �)=p)

(2.2.15)

and writing the rhs respectively as

cosh((2�
0

+ (a+ 1)i�)=p)� cosh((2�+ (a+ 1)i�)=p)

cosh((2�
0

+ (a� 1)i�)=p)� cosh((2�+ (a� 1)i�)=p)

cosh((2�
0 � (a+ 1)i�)=p)� cosh((2�� (a+ 1)i�)=p)

cosh((2�
0 � (a� 1)i�)=p)� cosh((2�� (a� 1)i�)=p)

;

it is clear that

Ua+2(�)� Ua(�) = cosh((2�+ (a+ 1)i�)=p)+ �
0

a

Da+2(�)�Da(�) = cosh((2�� (a+ 1)i�)=p)+ �
0

a

where �
0

a; �
0

a are unknown functions that depend only on a. Iterating the

above, one �nds

Ua(�) / sinh((2�+ ai�)=p) + �(�) + �a (2.2.16)

Da(�) / sinh((2�� ai�)=p) + 
(�) + �a (2.2.17)

where �(�); 
(�) are unknown functions of �, and �a; �a depend only on

a. Furthermore, from eqns.(2.2.6)-(2.2.10), one can establish the following

symmetry property

Ua(�) = �Da(��) ; (2.2.18)

which reduces the number of unknown functions to two; �(�); �a. To de-

termine them, we have to substitute the above expressions for Ua; Da back

into eqns.(2.2.7)-(2.2.10). Notice, however that these equations are linear

in Ua; Da, so it su�ces to consider each unknown �(�); �a separately. Doing

this amounts to �nding special solutions to eqns.(2.2.7)-(2.2.10) where Ua; Da

have only � or a dependence. The solutions are given by

�(�) = 0 �a / 1= sinh(ai�=p) (2.2.19)

respectively.
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In summary, the general non-diagonal solution to the four linear equations

is given by

Ua(�) =
k sinh((2�+ ai�)=p)

2 � 1
2k sinh(ai�=p)

Da+1(�) =
k sinh((2�� (a+ 1)i�)=p)

2 + 1
2k sinh((a+ 1)i�=p)

(2.2.20)

where k is a free parameter and 1 � a � p � 2. Having found Ua; Da, the

unknown function Xa
bc can be easily obtained from eqn.(2.2.6), which can

be further simpli�ed with the symmetry properties given in eqn.(2.2.18) and

taking �
0

to be �� since Xa
bc does not depend on the rapidity. This gives

Xa+2
a+1;a+3X

a+2
a+3;a+1 �Xa

a�1;a+1X
a
a+1;a�1 = Da+2(�)Ua+2(�)�Da(�)Ua(�) :

(2.2.21)

Substituting Ua; Da into the rhs, we get

( 1
2k sinh(ai�=p)

� k sinh(ai�=p)
2 )2

�( 1
2k sinh((a+ 2)i�=p)

� k sinh((a+ 2)i�=p)
2 )2 :

Clearly, we have

Xa
a�1;a+1X

a
a+1;a�1 = (

1

2k sinh(i�=p)
� k sinh(i�=p)

2
)2

� (
1

2k sinh(ai�=p)
� k sinh(ai�=p)

2
)2(2.2.22)

where used has been made of eqn.(2.2.11) to determine the �rst term. Hence,

Xa
bc is determined up to the above product, but we shall see later that in

general the di�erence between Xa
a�1;a+1 and Xa

a+1;a�1 has no physical con-

sequence in the sense that only the above product a�ects the determination

of the overall R(�) factor. These solutions have the property that

Up�a(�) = �Da(�) ; X
p�a
p�a�1;p�a+1X

p�a
p�a+1;p�a�1 = Xa

a�1;a+1X
a
a+1;a�1 :

(2.2.23)

Next, we consider the boundary Yang-Baxter equation for p = 4. The

functions U1; D3 are diagonal scattering components and do not couple to

the rest of the unknown functions, so we shall defer to next section for their

computation. While the rest of the unknown functions U2; D2 and X
2
13; X

2
31
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satisfy the following equations

X2
13(�

0

)X2
31(�) = X2

13(�)X
2
31(�

0

) (2.2.24)

U2

�
1 +

p
2f�

�
+D

0

2

�
1 +

p
2f+

� �
1 +

p
2f�

�
= U

0

2 +D2

�
1 +

p
2f+

�
(2.2.25)

D2

�
1 +

p
2f�

�
+ U

0

2

�
1 +

p
2f+

� �
1 +

p
2f�

�
= D

0

2 + U2

�
1 +

p
2f+

�
: (2.2.26)

Here we have used the compact notation introduced earlier for the unknown

Ua; Da, and written out explicitly the rapidity dependence of Xa
bc. As be-

fore, the last two equations have been derived based on the assumption that

X2
13; X

2
31 are nonvanishing. From eqn.(2.2.24), we deduce that

X2
13(�) / X2

31(�) : (2.2.27)

The rest of the equations can be turned into ordinary di�erential equations

in the limit �
0 ! �, giving�
_U2(�) + _D2(�)

�
tanh(�=2) + 2 (U2(�) +D2(�)) = 0 (2.2.28)�

_U2(�)� _D2(�)
�
tanh(�=2)� 2 (U2(�)�D2(�)) = 0 ; (2.2.29)

which can be integrated to give

U2(�) = B= sinh(�=2) + C cosh(�=2) (2.2.30)

D2(�) = B= sinh(�=2)� C cosh(�=2) ; (2.2.31)

with B;C being the free parameters.

This completes the determination of the non-diagonal solutions to the

BYBE.

2.3 Diagonal scattering

For the diagonal scattering, we take

Ra
bc(�) = ([b]=[a])��=�iR(�)�bc (�b;a+1Ua(�) + �b;a�1Da(�)) ; (2.3.1)

and the BYB equation is equivalent to a single equation

Ua(�
0

)Da+2(�) sinh((�
0

+ �)=p) sinh(((a+ 1)i�� �
0

+ �)=p)

+Da+2(�
0

)Da+2(�) sinh((�
0 � �)=p) sinh(((a+ 1)i�+ �

0

+ �)=p) =

Ua(�)Da+2(�
0

) sinh((�
0

+ �)=p) sinh(((a+ 1)i�+ �
0 � �)=p)

+ Ua(�
0

)Ua(�) sinh((�
0 � �)=p) sinh(((a+ 1)i�� �

0 � �)=p) ; (2.3.2)
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which holds only for 1 � a � p� 3. So the functions Up�2 and D2 can not be

determined from the BYB relation. The above can be recast into an ordinary

di�erential equation as

_R(�) (cosh((2�+ (a+ 1)i�)=p)� cosh((2� � (a+ 1)i�)=p))

+ 2R(�) (sinh((2�+ (a+ 1)i�)=p)+ sinh((2�� (a+ 1)i�)=p))

= 2R(�)2 sinh((2�+ (a+ 1)i�)=p)+ sinh((2�� (a+ 1)i�)=p)(2.3.3)

where

R(�) � Da+2(�)=Ua(�)

and _ denotes di�erentiation with respect to �. This di�erential equation

can be integrated to give

Da+2(�)

Ua(�)
=

(cos �a � cosh((2�� (a+ 1)i�)=p))

(cos �a � cosh((2� + (a+ 1)i�)=p))
(2.3.4)

where �a is a free parameter.

Thus for the diagonal solution, there are p�3 parameters �a. This solution
includes a particular case of p = 4 which has been omitted earlier.

Further relations from boundary unitarity and crossing symmetry will be

required to disentangle Ua and Da+2, and determine U2 and Dp�2, see later.

2.4 Boundary unitarity and crossing symmetry

The boundary unitarity and crossing symmetry conditions of the scattering

matrix Ra
bc(�) determine to some extend the overall factor R(�). These con-

ditions can be written respectively as

Ra
bc(�)R

a
cd(��) = �bd (2.4.1)X

d

Sac
bd (2�)R

d
bc(i� � �) = Ra

bc(�) : (2.4.2)

As before, we treat the general case of the non-diagonal scattering (p > 4)

�rst. Substituting the expression for Ra
bc into the unitarity condition, we get

the following

R(�)R(��) (Xa
bdX

a
db�b6=d � Ua(�)Da(�)) = 1

where used has been made of the symmetry eqn.(2.2.18). Applying the results

eqns.(2.2.20),(2.2.22) to the above leads to

R(�)R(��)((1+ k2) sinh2(�=p) + k2 sinh4(�=p)

�
�

1

2k sinh(i�=p)
� k sinh(i�=p)

2

�2
) = 1 : (2.4.3)
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While for crossing symmetry condition we get

u(2�)R(i�� �) sinh((2�)=p) = R(�)

where used has been made of the relations

Da+2(i� � �)[a+ 2]=[a+ 1]� Ua(i� � �)[a]=[a+ 1]

= f(2�)(Ua(�)� Ua(i� � �)) (2.4.4)

Ua(i� � �)[a]=[a+ 1]�Da+2(i� � �)[a+ 2]=[a+ 1]

= f(2�)(Da(�)�Da(i� � �)) (2.4.5)

which can be obtained from taking the limit �
0 ! i��� in eqns.(2.2.7),(2.2.8).

Here f(�) = sinh(�=p)= sinh((i�� �)=p).

The factor R(�) can be determined from eqns.(2.4.3),(2.4) up to the

usual CDD ambiguity following the method used in [3] by writing R(�) =

R0(�)R1(�) where R0 satis�es

R0(�)R0(��) = 1

u(2�)R0(i� � �) sinh((2�)=p) = R0(�) ;
(2.4.6)

whose minimal solution can be found in eqn.(8.3) of [14], and R1 satis�es

R1(�)R1(��)((1 + k2) sinh2(�=p) + k2 sinh4(�=p)

� (1=2k sinh(i�=p)� k sinh(i�=p)=2)2) = 1 (2.4.7)

R1(�) = R1(i�� �) (2.4.8)

which can be mapped into eqn.(5.20) of [3] with � and cos(�) of [3] correspond

respectively to

i=p and

�
1

2k sinh(i�=p)
� k sinh(i�=p)

2

�2

here. The solution can then be read o� easily.

It is intriguing that the RSOS restriction imposes a relation between the

two free parameters �; k (or �o;M) in [3], it would be interesting to explore

the implication of this relation.

For p = 4, the crossing symmetry condition is the same as eqn.(2.4), but

unitarity now requires that

R(�)R(��)(X2
13(�)X

2
31(�) + C2 cosh2(�=2)� B2= sinh2(�=2)) = 1 (2.4.9)
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The factor X2
13(�)X

2
31(�) is actually redundant and can be absorbed into

R(�). So setting it as �1, we can rewrite the above as

R(�)

sinh(�=2)

R(�)

sinh(��=2)(B
2 + (1� C2) sinh2(�=2)� C2 sinh4(�=2)) = 1 ;

(2.4.10)

which can again be mapped into eqn.(5.20) of [3] and read o� the solution.

It should be remarked that in this case, there are two parameters instead of

one for the higher p cases.

Finally, we consider the diagonal case. Unitarity relation gives

R(�)R(��)Ua(�)Ua(��) = 1

R(�)R(��)Da+1(�)Da+1(��) = 1
; 1 � a � p� 2 (2.4.11)

The crossing symmetry on the other hand gives

u(2�)R(i�� �)(Ua(i�� �) sinh(i�=p) sinh((2�+ ai�)=p)

+Da+2(i� � �) sinh((i� � 2�)=p) sinh((a+ 2)i�))

= R(�)Ua(�) sinh(2�=p) sinh((a+ 1)i�=p) (2.4.12)

u(2�)R(i�� �)(Da+2(i� � �) sinh(i�=p) sinh((ai�� 2�)=p)

+Ua(i� � �) sinh((i�� 2�)=p) sinh(ai�))

= R(�)Da+2(�) sinh(2�=p) sinh((a+ 1)i�=p) (2.4.13)

for 1 � a � p� 3, and

u(2�)R(i�� �)Up�2(i�� �) sinh((2i�� 2�)=p) = R(�)Up�2(�)

(2.4.14)

u(2�)R(i�� �)D2(i�� �) sinh((2i�� 2�)=p) = R(�)D2(�)

for the remaining D2; Up�2.

These equations can be solved separately, we set

R(�)R(��) = 1

u(2�)R(i�� �) sinh(2�=p) = R(�) ;
(2.4.15)

so that R(�) has exactly the same solution as that of R0(�) considered earlier.

While Ua; Da satisfy

Ua(�)Ua(��) = 1

Da+1(�)Da+1(��) = 1
; 1 � a � p� 2 (2.4.16)
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and

Ua(i� � �) sinh(i�=p) sinh((2�+ ai�)=p)

+Da+2(i� � �) sinh((i� � 2�)=p) sinh((a+ 2)i�=p)

= Ua(�) sinh(2�=p) sinh((a+ 1)i�=p) (2.4.17)

Da+2(i� � �) sinh(i�=p) sinh((ai�� 2�)=p)

+Ua(i� � �) sinh((i�� 2�)=p) sinh(ai�=p)

= Da+2(�) sinh(2�=p) sinh((a+ 1)i�=p) : (2.4.18)

for 1 � a � p� 3,

D2(i� � �) sinh(2(i�� �)=p) = D2(�) sinh(2�=p)

Up�2(i�� �) sinh(2(i�� �)=p) = Up�2(�) sinh(2�=p)
: (2.4.19)

Substituting eqn.(2.3.4) into the abovewe get a relation betweenUa(�) ((Da�))

and Ua(i� � �) (Ua(i� � �));

Ua(�)
Ua(i� � �)

=
sinh(2(i�� �)=p)(cos �a � cosh((2�+ (a+ 1)i�)=p))
sinh(2�=p)(cos�a � cosh((2(i�� �) + (a+ 1)i�)=p))

Da+2(�)
Da+2(i� � �)

=
sinh(2(i�� �)=p)(cos �a � cosh((2�� (a+ 1)i�)=p))
sinh(2�=p)(cos�a � cosh((2(i�� �)� (a+ 1)i�)=p))

(2.4.20)

for 1 � a � p� 3. These relations together with eqns.(2.4.16),(2.4.19) should

allow the determination of Ua(�) (Da(�)) up to CDD factor.

To summarize, there are two classes of solutions to the BYB equation;

diagonal and non-diagonal. Unlike the solution in vertex representation, the

former is not a special limit of the later. In fact, the diagonal solution carries

p� 3 parameters and is unique to the RSOS representation.

3 Commuting transfer matrix

Following the technique proposed in [1], one can similarly construct a family

of commuting transfer matrix for the RSOS model with boundary.

To start, it can be shown that if Ra
bc is a solution to the BYB in the RSOS

form then the following

X
a

S
fe
ba (� � �1)S

ae
cd (� + �1)R

a
bc(�) (3.1)
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a

b c

f

e

d
� � �1

�

� + �1

Figure 3: \Decorated" boundary scattering matrix I

also satis�es the BYBE, where S
fe
ba (�) is the bulk YBE solution given in

(2.1.2) and �1 is an arbitrary parameter. The proof is essentially the same as

that of the vertex representation given in [1] and we shall not repeat it here.

It is convenient to think of the BYBE as de�ning relation of some associative

algebra generated by the symbol Ra
bc. So the solutions given in the previous

section correspond to particular representations of this algebra where the

"quantum space" is trivial and the auxiliary space is the space of a one step

path P1 on a truncated Bratteli diagram with ab and ac being respectively

the in and out state. In this context, the above "decorated" solution then

corresponds to a representation whose quantum space is isomorphic to P1
that is formed by the nodes f; b (d; c). Clearly, the above construction can be

repeated for an arbitrary number of time (say N + 1) giving a boundary R-

matrix that acts on PN the collection of N -step paths on a truncated Bratteli

diagram. We shall denote such solution as �Ra
bc which should be regarded as

an operator on PN . Explicitly, it's matrix element is given by

�Ra
bc(�)�1;���;�N+1;�

00

1
;���;�

00

N+1

= �
a�

0

1

�b�1�c�00
1

NY
i=1

X
�
0

i+1

�
S
�i�

0

i

�i+1�
0

i+1

(� � �i)

� S
�
0

i+1
�
0

i

�
00

i+1
�
00

i

(� + �i)

�
R

�
0

N+1

�N+1�
00

N+1

(�) (3.2)

which has the graphical representation given in Fig.(4). It carries N para-

meters �i from the bulk S matrix and additional parameters from Ra
bc. To

form a commuting transfer matrix out of �Ra
bc, like in the vertex case, one has

13



a
0

1

a
0

N

a
0

N+1

a1 a
00

1

a
00

2a2

a
0

2 � + �1

�� �1

a
00

N

a
00

N+1aN+1

aN
� � �N

� + �N

�

� + �N�1

Figure 4: \Decorated" boundary scattering matrix II
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to combine it with another BYBE solution (denoted here as ~R) as follows

T (�)
�1;���;�N+1;�

00

1
;���;�

00

N+1

�
X
a;b;c

~Ra
cb(�)

�Ra
b;c(�)�1;���;�N+1;�

00

1
;���;�

00

N+1

: (3.3)

Hence the transfer matrix T (�) is again an operator that acts on PN .

Since the bulk S-matrix is symmetric and satis�es the unitarity conditionX
�

Sac
b�(�)S

�c
bd (��) / �ac ; (3.4)

as well as the crossing unitarity condition given byX
�

Sb�
cd (�)S

d�
ab (2i� � �) / �ac ; (3.5)

it su�ces to choose
~Ra
bc(�) � Ra

bc(i�� �) : (3.6)

The proof has been given in [1]in the vertex language. Essentially, to show

that

[T (�); T (�
0

)] = 0 ;

one inserts four bulk S-matrices using eqns.(3.4),(3.5) (where the �'s are

replaced respectively by �
0 � � and �

0

+ �) into T (�)T (�
0

) and then uses the

BYBE to permute the �R's, and the ~R's. Because of the argument 2i�����0
that appears in eqn.(3.5), the corresponding BYBE to permute the two ~R's

contains spectral parameters i� � � and i� � �
0

, hence one can take ~R to be

given in eqn.(3.6).

4 Discussion and open problems

So far, we managed to obtain solutions to the BYBE and the corresponding

commuting transfer matrix. It would be necessary to diagonalize the trans-

fer matrix in order to study the statistical models given by these solutions.

For application to �eld theory, diagonalization of the transfer matrix is also

needed in order to write down the Bethe anatz equation. For this purpose,

a systematic approach generalizing the algebraic Bethe anatz for the periodic

boundary condition has been devised in [1]. However, the method relies upon

the conservation of the Sz in the vertex language and is thus applicable only

to diagonal boundary scattering theory. Moreover, the method also needs to

be modi�ed to be used for the RSOS models[15]. An alternative approach

perhaps is given by functional method[16]. We hope to report on this in the

near future.
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Note added in proof

After we �nished this work, we learned that some of our results have also

been independently obtained in [6] in the trigonometric limit.
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