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Abstract

We introduce an algorithm for combinatorial search on quantum computers that is capable of significantly
concentrating amplitude into solutions for some NP search problems, on average. This is done by exploiting
the same aspects of problem structure as used by classical backtrack methods to avoid unproductive search
choices. This quantum algorithm is much more likely to find solutions than the simple direct use of
quantum parallelism. Furthermore, empirical evaluation on small problems shows this quantum algorithm
displays the same phase transition behavior, and at the same location, as seen in many previously studied
classical search methods. Specifically, difficult problem instances are concentrated near the abrupt change
from underconstrained to overconstrained problems.
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1. Introduction

Computation is ultimately a physical process [31]. That is, in practice the range
of physically realizable devices determines what is computable and the resources, such
as computer time, required to solve a given problem. Computing machines can exploit
a variety of physical processes and structures to provide distinct trade-offs in resource
requirements. An example is the development of parallel computers with their trade-off
of overall computation time against the number of processors employed. Effective use of
this trade-off can require algorithms that would be very inefficient if implemented serially.

Another example is given by hypothetical quantum computers [11]. They offer the
potential of exploiting quantum parallelism to trade computation time against the use
of coherent interference among very many different computational paths. However,
restrictions on physically realizable operations make this trade-off difficult to exploit for
search problems, resulting in algorithms essentially equivalent to the inefficient method of
generate-and-test. Fortunately, recent work on factoring [42] shows that better algorithms
are possible. Here we continue this line of work by introducing a new quantum algorithm,
motivated by classical backtrack search methods, for a class of particularly difficult
combinatorial search problems. Interestingly, while this algorithm represents a substantial
improvement for quantum computers, it is particularly inefficient as a classical search
method, both in memory and time requirements.

When evaluating algorithms, computational complexity theory usually focuses on the
scaling behavior in the worst case. Of particular theoretical concern is whether the search
cost grows exponentially or polynomially. However, in many practical situations, typical
or average behavior is of more interest. This is especially true because many instances
of search problems are much easier to solve than is suggested by worst case analyses. In
fact, recent studies have revealed a more detailed structure of the class of search problems.
Specifically, for a wide variety of classical search methods, the hard instances are not
only rare but also concentrated near abrupt transitions in problem behavior analogous to
physical phase transitions [25]. In order to exhibit this concentration of hard instances
a search algorithm must exploit the problem constraints to prune unproductive search
choices. Unfortunately, this is not easy to do within the range of allowable quantum
computational operations. It is thus of interest to see if these results generalize to
quantum search methods as well.

In this paper, the new algorithm is evaluated empirically to determine its average
behavior. The algorithm is also shown to exhibit the phase transition, indicating it is
indeed managing to, in effect, prune unproductive search. This leaves for future work
the analysis of its worst case performance.

This paper is organized as follows. First we discuss combinatorial search problems
and the phase transitions where hard problem instances are concentrated. Second, after
a brief summary of quantum computing, the new quantum search algorithm is motivated
and described. In fact, there are a number of natural variants of the general algorithm.
Two of these are evaluated empirically on a range of problems to exhibit the generality
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of the phase transition and their performance. Finally, some important caveats for the
implementation of quantum computers and open issues are presented.

2. Combinatorial Search

Combinatorial search is among the hardest of common computational problems: the
solution time can grow exponentially with the size of the problem [20]. Examples arise
in scheduling, planning, circuit layout and machine vision, to name a few areas. Many of
these examples can be viewed as constraint satisfaction problems [34]. Here we are given
a set ofn variables each of which can be assignedb possible values. The problem is to
find an assignment for each variable that together satisfy some specified constraints. For
instance, consider the small scheduling problem of selecting one of two periods in which
to teach each of two classes that are taught by the same person. We can regard each
class as a variable and its time slot as its value, i.e., heren = b = 2. The constraints
are that the two classes are not assigned to be at the same time. Note that having a
nontrivial search requires at least two possible values to assign to each variable, so we
restrict attention to cases whereb � 2.

Fundamentally, the combinatorial search problem consists of finding those combina-
tions of a discrete set of items that satisfy specified requirements. The number of possible
combinations to consider grows very rapidly (e.g., exponentially or factorially) with the
number of items, leading to potentially lengthy solution times and severely limiting the
feasible size of such problems. For example, the number of possible assignments in a
constraint problem isbn, which grows exponentially with the problem size (given by the
number of variablesn).

Because of the exponentially large number of possibilities it appears the time required
to solve such problems must grow exponentially, in the worst case. However for many
such problems it is easy to verify a solution is in fact correct. These problems form the
well-studied class of NP problems: informally we say they are hard to solve but easy to
check. One well-studied instance is graph coloring, where the variables represent nodes
in a graph, the values are colors for the nodes and the constraints are that each pair of
nodes linked by an edge in the graph must have different colors. Another example is
propositional satisfiability, where the variables take on logical values of true or false,
and the assignment must satisfy a specified propositional formula involving the variables.
Both these examples are instances of particularly difficult NP problems known as the
class of NP-complete search problems [20].

2.1. Phase Transitions

Much of the theoretical work on NP search problems examines their worst case
behavior. Although these search problems can be very hard, in the worst case, there
is a great deal of individual variation in these problems and among different search
methods. Recently there have been a number of studies of the structure of the class
of NP search problems focusing on regularities of the typical behavior [7, 36, 48, 25,
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23]. This work has identified a number of common behaviors. Specifically, for large
problems, a few parameters characterizing their structure determine the relative difficulty
for a wide variety of common search methods, on average. Moreover, changes in these
parameters give rise to transitions, becoming more abrupt for larger problems, that are
analogous to phase transitions in physical systems. In this case, the transition is from
underconstrained to overconstrained problems, with the hardest cases concentrated near
the transition region of critically constrained problems. One powerful result of this work
is that this concentration of hard cases occurs at the same parameter values for a wide
range of search methods. That is, this behavior is a property of the problems rather than
of the details of the search algorithm.

This can be understood by viewing a search as making a series of choices until a
solution is found. The overall search will usually be relatively easy (i.e., require few
steps) if either there are many choices leading to solutions or else choices that do not lead
to solutions can be recognized quickly as such, so that unproductive search is avoided.
Whether this condition holds is in turn determined by how tightly constrained the problem
is. When there are few constraints almost all choices are good ones, leading quickly to
a solution. With many constraints, on the other hand, there are few good choices but the
bad ones can be recognized very quickly as violating some constraints so that not much
time is wasted considering them. In between these two cases are the hard problems:
enough constraints so good choices are rare but few enough that bad choices are usually
recognized only with a lot of additional search.

A more detailed analysis suggests a series of transitions [26]. With very few
constraints, the average search cost scales polynomially. As more constraints are added,
there is a transition to exponential scaling. The rate of growth of this exponential
increases until the transition region described above is reached. Beyond that point, with
its concentration of hard problems, the growth rate decreases. Eventually, for very highly
constrained problems, the search cost again grows only polynomially with size.

2.2. The Combinatorial Search Space

A general view of the combinatorial search problem is that it consists of a number
N of items and a requirement to find a solution, i.e., a set ofL < N items that satisfies
specified requirements. These requirements in turn can be described as a collection of
nogoods, i.e., sets of items whose combination is not allowed. For the situation studied
here, the nogoods directly specified by the problem requirements will be small sets of
items, e.g., of size two or three. On the other hand, the number of items and the size of the
solutions will grow with the problem size. A key point that makes this set representation
conceptually useful is that if a set is nogood, so are all of its supersets.

For the case of constraint satisfaction, the items are just the possible assignments.
Thus there areN = nb items1. A solution consists of an assignment to each variable
that satisfies whatever constraints are given in the problem. Thus a solution consists
of a set ofL = n items. In terms of the general framework for combinatorial search
1 The lattice of sets can also represent problems where each variable can have a different number of assigned values.
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these constraint satisfaction problems will also contain a number of problem-independent
necessarynogoods, namely those corresponding to giving the same variable two different

values. There aren
�

b
2

�
such necessary nogoods. For a nontrivial search we must have

b � 2, so we restrict our attention to the case whereL � N=2. This requirement is
important in allowing the construction of the quantum search method described below.

In this context we define agood to be a set of items that is consistent with all the
constraints of the problem, while anogoodis an inconsistent set. We also say a set is
completeif it has L items, while smaller sets arepartial or incomplete. Thus a solution
corresponds to a complete good set. In addition, apartial solution is an incomplete good
set. These sets, grouped by size and with each set linked to its immediate supersets
and subsets, form a lattice structure. This structure forN = 4 is shown in Fig. 1. We
say that the

Ni =

�
N

i

�
(1)

sets of sizei are at leveli in the lattice.

{}

{1}

{1,2}

{2}

{2,3}

{1,2,3}

{1,3}

{3}

{3,4}

{1,3,4}

{1,2,3,4}

{2,3,4}

{2,4}

{1,2,4}

{1,4}

{4}

Fig. 1. Structure of the set lattice for a problem with four items. The subsets off1; 2; 3; 4g are grouped into levels
by size and lines drawn between each set and its immediate supersets and subsets. The bottom of the lattice, level 0,
represents the single set of size zero, the four points at level 1 represent the four singleton subsets, etc.

As an example, consider a problem withN = 4 and L = 2, and suppose the
constraints eliminate items 1 and 3. Then we have the sets {}, {2}, and {4} as partial
goods, while {1} and {3} are partial nogoods. Among the 6 complete sets, only {2,4}
is good as the others are supersets of {1} or {3} and hence nogood.

In fact, we generally do not expect to see search problems whose constraints explicitly
involve nogoods of size 0 or 1. This is because a nogood of size 0, i.e., the empty set,
immediately makes all sets inconsistent, giving a trivially insoluble problem. Similarly, a
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nogood of size 1 just eliminates the corresponding item from consideration hence easily
transforming the problem into a smaller one with that item removed from consideration.
Thus we restrict attention to cases where the problem requirements involve at least two
items at a time. On the other hand, if the problem requirements only involve large sets
of items, nogoods won’t appear until relatively close to the solution level in the lattice,
resulting is less opportunity to guide the search based on evaluating sets of intermediate
size. In this paper we focus on problems whose requirements explicitly involve only a
few items at a time, but at least two. This gives a number of small nogoods, i.e., near the
bottom of the lattice. Examples of such problems include binary constraint satisfaction,
graph coloring and propositional satisfiability mentioned above.

An example is given by a simple constraint satisfaction problem consisting ofn = 2

variables (v1 and v2) each of which can take on one ofb = 2 values (1 or 2) and the
single constraint that the two variables take on distinct values, i.e.v1 6= v2. Hence there
areN = nb = 4 assignments:v1 = 1; v1 = 2; v2 = 1; v2 = 2 which we denote as items
1; 2; 3; 4 respectively. The corresponding lattice is given in Fig. 1. What are the nogoods
for this problem? First there are those due to the explicit constraint that the two variables
have distinct values:fv1 = 1; v2 = 1g and fv1 = 2; v2 = 2g or f1; 3g andf2; 4g. In
addition, there are necessary nogoods implied by the requirement that a variable takes
on a unique value so that any set giving multiple assignments to the same variable is
necessarily nogood, namelyfv1 = 1; v1 = 2g andfv2 = 1; v2 = 2g or f1; 2gandf3; 4g.
Referring to Fig. 1, we see that these four nogoods force all sets of size 3 and 4 to be
nogood too. However, sets of size zero and one are goods as are the remaining two sets
of size two: f2; 3g andf1; 4g corresponding tofv1 = 2; v2 = 1g andfv1 = 1; v2 = 2g

which are the solutions to this problem.

Various search methods correspond to different strategies for examining the sets in
this lattice. For instance, methods such as simulated annealing [30], heuristic repair [35]
and GSAT [41] move among complete sets, attempting to find a solution by a series of
small changes to the sets. Generally these search techniques continue indefinitely if the
problem has no solution and thus they can never show that a problem is insoluble. Such
methods are calledincomplete. In these methods, the search is repeated over and over
again, from different initial conditions or making different random choices, until either
a solution is found or some specified limit on the number of trials is reached. In the
latter case, one cannot distinguish a problem with no solution at all from just a series of
unlucky choices for a soluble problem. Other search techniques attempt to build solutions
starting from smaller sets, often by a process of extending a consistent set until either
a solution is found or no further consistent extensions are possible. In the latter case
the search backtracks to a previous decision point and tries another possible extension
until no further choices remain. By recording the pending choices at each decision point,
these backtrack methods can determine a problem is insoluble, i.e., they arecompleteor
systematicsearch methods.

This description highlights two distinct aspects of the search procedure: a general
method for moving among sets, independent of any particular problem, and a testing
procedure that checks sets for consistency with the particular problem’s requirements.
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Often, heuristics are used to make the search decisions depend on the problem structure
hoping to identify changes most likely to lead to a solution. However, conceptually these
aspects can be separated, as in the case of the quantum search algorithm presented below.

For constraint satisfaction problems, a simple alternative representation to this lattice
structure is to use partial assignments, i.e., sets of assignments guaranteed to give at most
one value to each variable. At first sight this might seem better in that it removes from
consideration many sets guaranteed to be nogood (i.e., those with multiple assignments
to some variable) and hence increases the proportion of complete sets that are solutions.
However, in this case the number of sets as a function of level in the lattice would
decrease before reaching the solution level, precluding the simple form of a unitary
mapping described below for the quantum search algorithm. Another representation that
avoids this problem is to consider assignments in only a single arbitrary order. This
version of the set lattice has been previously used in theoretical analyses of search [48].
This may be useful to explore further for the quantum search, but is unlikely to be as
effective. This is because some sets will become nogood only at the last few steps in
a fixed ordering, resulting is less opportunity to use intermediate size nogoods to focus
on solutions.

3. Quantum Search Methods

This section briefly describes the capabilities of ideal quantum computers, why
some straightforward attempts to exploit these capabilities for search are not particularly
effective, then motivates and describes a new search algorithm

3.1. An Overview of Quantum Computers

The basic distinguishing feature of a quantum computer [3–5, 11, 12, 16, 17, 27,
29, 33, 42, 46] is its ability to operate simultaneously on a collection of classical states,
thus potentially performing very many operations in the time a classical computer would
do just one. Alternatively, this can be viewed as a large parallel computer but requiring
no more hardware than that needed for a single processor. More specifically, suppose
s1; . . . ; sN are possible states for a classical computer, e.g., these could represent the
possible states of a register consisting ofn bits with N = 2n. The corresponding state
of the quantum computer is described by a linear superposition of these classical states
jsi, each with an associated complex number called its amplitude, i.e.,jsi =

P
 ijsii.

Here we use the standard ket notation from quantum mechanics [13, section 6] to denote
various states, and to distinguish these states from the amplitudes2. These superpositions
can also be viewed as vectors in a space whose basis is the individual classical states
jsii and i is the component of the vector along the ith basis element of the space. Such
a vector can also be specified by its components as( 1; . . . ;  N).

Consider some reversible classical computation on these states, e.g.,f(si). When
applied to a superposition of states, the result isjf(s)i =

P
 ijf(si)i, that is, operations

2 The ket notation is conceptually similar to the use of boldface to denote vectors and distinguish them from scalars.
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behave linearly with respect to superpositions, a key principle of quantum mechanics. In
addition to this use of computations on individual states, there are two other processes.
First, it is possible to create new superpositions by operating on a given one with a
unitary matrix3, i.e., U jsi =

P
 iU jsii. Second, a measurement can be made on the

system to select out one of the states in the superposition. When a measurement is made
on the quantum computer, e.g., to determine the result of the computation represented
by a particular configuration of the bits in a register, one of the possible classical states
is obtained. Specifically, the statesi is obtained with probabilityj ij

2, thus giving the
physical interpretation of the amplitudes. The requirement for unitarity arises from the
physical requirement that the probabilities of any superposition of states must always sum
to one, i.e.,

P

i

j ij
2
= 1 (in particular, this means the mapping must be reversible). A

classical computer can then be viewed as a special case of a quantum computer in which
at all times exactly one of the i is equal to one and the rest are zero.

A simple example of these ideas is given by considering a single bit. In this case
there are two possible classical statesj0i and j1i corresponding to the values 0 and 1,
respectively, for the bit. This defines a two dimensional vector space of superpositions
for a quantum bit. A simple computation on such a bit is the logical NOT operation,
i.e., NOT(j0i) = j1i and NOT(j1i) = j0i. This operator simply exchanges the vector’s
components:

NOT

�
 0

 1

�
� NOT( 0j0i +  1j1i) =  0j1i +  1j0i �

�
 1

 0

�
(2)

This operation can also be represented as multiplication by the permutation matrix�
0 1

1 0

�
. Another operator is given by the rotation matrix

U(�) =

�
cos � � sin �

sin � cos �

�
(3)

This can be used to create superpositions from single states, e.g.,

U
��
4

��
1

0

�
� U

��
4

�
j0i =

1
p
2
(j0i + j1i) �

1
p
2

�
1

1

�
(4)

This illustrates how a simple initial state can be converted into superpositions. Repeating
this operation onn bits, will give a superposition of all2n possible values for those
bits, requiring justn steps. This ability to mix states instead of just permuting them is
important in allowing amplitude to be concentrated into desired states. Although only the
magnitude of the amplitude matters in determining the probability of measurement, the
phase is important for this mixing process as it can result in constructive or destructive
interference.

A quantum computation consists of preparing an initial superposition of states,
operating on those states with a series of unitary matrices, and then making a measurement
3 A complex matrixU is said to be unitary whenUy

U = I , whereUy is the transpose ofU with all entries changed to their
complex conjugates.
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to obtain a definite final answer. The amplitudes determine the probability that this final
measurement produces a desired result. Using this as a search method, we obtain each
final state with some probability, and some of these states will be solutions. Thus this
is a probabilistic computation in which at each trial there is some probability to get a
solution, but no guarantee. This means the search method is incomplete: it can find a
solution if one exists but can never guarantee a solution doesn’t exist.

A useful conceptual view of these quantum maps is provided by the path integral
approach to quantum mechanics [18]. In this view, the final amplitude of a given state
is obtained by summing over all possible paths that produce that state, weighted by
suitable amplitudes. In this way, the various possibilities involved in a computation
can interfere with each other, either constructively or destructively. This differs from
the classical combination of probabilities of different ways to reach the same outcome:
the probabilities are simply added, giving no possibility for interference. As a simple
example, suppose we have a computation that depends on a single choice. The possible
choices can be represented as an input bit with value 0 or 1. Suppose the result of
the computation from a choice is also a single value, 1 or -1, representing, say, some
consequence of the choice. If one is interested in whether the two results are the same,
classically this requires evaluating each choice separately. With a quantum computer
we could instead prepare a superposition of the inputs,1p

2
(j0i + j1i) using the matrix

U
�
�

4

�
, then do the evaluation to give1p

2
(f0j0i+ f1j1i) wherefi is the evaluation from

input i, and equals 1 or -1. Finally we combine the states again usingU
�
�
�

4

�
to obtain

1

2
((f0 + f1)j0i+ (f0 � f1)j1i). Now if both choices give the same value forf, this result

is �j0i so the final measurement process will give 0. Conversely, if the values are
different this resulting state is�j1i and the measurement gives 1. Thus with the effort
required to compute one value classically, we are able to determine definitely whether
the two evaluations are the same or different. In this example, for the question of interest
we were able to arrange to be in a single state at the end of the computation and hence
have no probability for obtaining the wrong answer by the measurement. This result is
viewed as summing over the different paths. E.g., the final amplitude forj0i, was the
sum over the pathsj0i ! j0i ! j0i and j0i ! j1i ! j0i. The various formulations of
quantum mechanics, involving operators, matrices or sums over paths are equivalent but
suggest different intuitions about constructing possible quantum algorithms.

3.2. Some Approaches to Search

At first sight quantum computers would seem to be ideal for combinatorial search
problems that are in the class NP. In such problems, there is an efficient proceduref(s)
that takes a potential solution sets and determines whethers is in fact a solution, but
there are exponentially many potential solutions, very few of which are in fact solutions.
If s1; . . . ; sN are the potential sets to consider, we can quickly form the superposition
1p
N
(js1i+ . . . + jsNi) and then simultaneously evaluatef(s) for all these states, resulting

in a superposition of the sets and their evaluation, i.e.,1p
N

P
jsi; f(si)i. At this point

the quantum computer has, in a sense, evaluated all possible sets and determined which
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are solutions. Unfortunately, if we make a measurement of the system, we get each set
with equal probability1=N and so are very unlikely to observe a solution. This is thus no
better than the slow classical search method of random generate-and-test where sets are
randomly constructed and tested until a solution is found. Alternatively, we can obtain
a solution with high probability by repeating this operationO(N) times, either serially
(taking a long time) or with multiple copies of the device (requiring a large amount of
hardware or energy if, say, the computation is done by using multiple photons). This
shows a trade-off between time and energy (or other physical resources), conjectured to
apply more generally to solving these search problems [6], and also seen in the trade-off
of time and number of processors in parallel computers.

To be useful for combinatorial search, we can’t just evaluate the various sets but
instead must arrange for amplitude to be concentrated into the solution sets so as to
greatly increase the probability a solution will be observed. Ideally this would be
done with a mapping that gives constructive interference of amplitude in solutions and
destructive interference in nonsolutions. Designing such maps is made complicated by
the fact that they cannot be arbitrary functions. Rather, on physical grounds, they must be
linear unitary operators as described above. Beyond this physical restriction, there is an
algorithmic or computational requirement: the mapping should be efficiently computable.
For example, the map cannot requirea priori knowledge of the solutions (otherwise there
would be no point in using the map to do the search!). More generally the matrix elements
should be efficiently computable. This computational requirement is analogous to the
restriction on heuristics in standard search methods: to be useful, the heuristic itself must
not take a long time to compute. These requirements on the mapping trade off against
each other. Ideally one would like to find a way to satisfy them all so the map can be
computed in polynomial time and give, at worst, polynomially small probability to get a
solution if the problem is soluble. One approach is to arrange for constructive interference
in solutions while nonsolutions receive random contributions to their amplitude. While
such random contributions are not as effective as a complete destructive interference,
they are easier to construct and form the basis for a recent factoring algorithm [42] as
well as the method presented here.

One possible mapping is based on analogy with backtracking search methods. Instead
of examining just one path through the lattice of sets at a time, a superposition of states
allows for considering all paths simultaneously. As with the division of search methods
into a general strategy (e.g., backtrack) and problem specific choices, the quantum
mapping described below has a general matrix that corresponds to exploring all possible
changes to the partial sets, and a separate, particularly simple, matrix that incorporates
information on the problem specific constraints. More complex maps are certainly
possible, but this simple decomposition is easier to design and describe. Moreover,
it suggests the possibility of implementing a special purpose quantum device to perform
the general mapping, using the constraints of a specific problem only to adjust phases
as described below.
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3.3. Motivation

To motivate the mapping described below, we consider an idealized version of
it to describe the general intuition of why paths through the lattice tend to interfere
destructively for nonsolution states, provided the constraints are small.

The idealized map simply maps each set in the lattice equally to its supersets at
the next level, while introducing random phases for sets found to be nogood. Note that
for NP search problems, testing whether a particular set is nogood can be determined
rapidly. For this discussion we are concerned with the relative amplitude in solutions
and nogoods so we ignore the overall normalization. Thus for instance, withN = 6, the
statejf1;2gi will map to an unnormalized superposition of its four supersets of size 3,
namely the statejf1; 2; 3gi + . . . + jf1; 2; 6gi.

With this mapping, a good at leveli will receive equal contribution from each of itsi
subsets at the prior level. Starting with amplitude of 1 at level 0 then gives an amplitude
of i! for goods at leveli. In particular,L! for solutions.

How does this compare with contribution to nogoods, on average? This will depend
on how many of the subsets are nogoods also. A simple case for comparison is when
all sets in the lattice are nogood (starting with those at levelk given by the size of the
constraints, e.g.,k = 2 for problems with binary constraints). Letri be the expected value
of the magnitude of the amplitude for sets at leveli. Each set at levelk will have rk = k!

(and a zero phase) because all smaller subsets will be goods. A sets at leveli > k will
be a sum ofi contributions from (nogood) subsets, giving a total contribution of

 (s) =

iX
m=1

 (sm)ei�m (5)

where thesm are the subsets ofs of sizei� 1 and the phases�m are randomly selected.
The  (sm) have expected magnituderi�1 and some phase that can be combined with
�m to give a new random phase�m. Ignoring the variation in the magnitude of the
amplitudes at each level this gives

ri = ri�1

*
iX

m=1

ei�m

+
= ri�1

p
i (6)

because the sum ofi random phases is equivalent to an unbiased random walk [28] with
i unit steps which has expected net distance of

p
i. Thus we getri = rk

p
i!=k! or

ri =
p
i!k! for i > k.

This crude argument gives a rough estimate of the relative probabilities for solutions
compared to complete nogoods. Suppose there is only one solution. Then its relative
probability isL!2. The nogoods have relative probability(NL � 1)r2L � NLL!k! with NL

given by Eq. 1. An interesting scaling regime isL = n=b with fixed b, corresponding to
a variety of well-studied constraint satisfaction problems. This gives

ln

�
Psoln

Pnogood

�
= ln

�
L!

NLk!

�
�
n

b
lnn+O(n) (7)
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This goes to infinity as problems get large so the enhancement of solutions is more than
enough to compensate for their rareness among sets at the solution level.

The main limitation of this argument is assuming that all subsets of a nogood are also
nogood. For many nogoods, this will not be the case, resulting in less opportunity for
cancellation of phases. The worst situation in this respect is when most subsets are goods.
This could be because the constraints are large, i.e., they don’t rule out states until many
items are included. Even with small constraints, this could happen occasionally due to a
poor ordering choice for adding items to the sets, hence suggesting that a lattice restricted
to assignments in a single order will be much less effective in canceling amplitude in
nogoods. For the problems considered here, with small constraints, a large nogood cannot
have too many good subsets because to be nogood means a small subset violates a (small)
constraint and hence most subsets obtained by removing one element will still contain
that bad subset giving a nogood. In fact, some numerical experiments (with the class of
random problems described below) show that this mapping is very effective in canceling
amplitude in the nogoods. Thus the assumptions made in this simplified argument seem
to provide the correct intuitive description of the behavior.

Still the assumption of many nogood subsets underlying the above argument does
suggest the extreme cancellation derived above willleast apply when the problem has
many large partial solutions. This gives a simple explanation for the difficulty encountered
with the full map described below at the phase transition point: this transition is associated
with problems with relatively many large partial solutions but few complete solutions.
Hence we can expect relatively less cancellation of at least some nogoods at the solution
level and a lower overall probability to find a solution.

This discussion suggests why a mapping of sets to supersets along with random phases
introduced at each inconsistent set can greatly decrease the contribution to nogoods at
the solution level. However, this mapping itself is not physically realizable because it is
not unitary. For example, the mapping from level 1 to 2 withN = 3 takes the states
jf1gi; jf2gi; jf3gi to jf1; 2gi; jf1; 3gi; jf2; 3gi with the matrix

M =

0
@
1 1 0

1 0 1

0 1 1

1
A (8)

Here, the first column means the statejf1gi contributes equally tojf1; 2gi and jf1; 3gi,
its supersets, and gives no contribution tojf2; 3gi. We see immediately that the columns
of this matrix are not orthogonal, though they can be easily normalized by dividing the
entries by

p
2. More generally, this mapping takes each set at leveli to theN�i sets with

one more element. The corresponding matrixM has one column for eachi–set and one
row for each (i+1)-set. In each column there will be exactlyN� i 1’s (corresponding to
the supersets of the giveni–set) and the remaining entries will be 0. Two columns will
have at most a single nonzero value in common (and only when the two corresponding
i–sets have all but one of their values in common: this is the only way they can share
a superset in common). This means that asN gets large, the columns of this matrix are
almost orthogonal (providedi < N=2, the case of interest here). This fact is used below
to obtain a unitary matrix that is fairly close toM.
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3.4. A Search Algorithm

The general idea of the mapping introduced here is to move as much amplitude as
possible to supersets (just as in classical backtracking, increments to partial sets give
supersets). This is combined with a problem specific adjustment of phases based on
testing partial states for consistency (this corresponds to a diagonal matrix and thus is
particularly simple in that it does not require any mixing of the amplitudes of different
states). The specific methods used are described in this section.

The Problem-Independent Mapping
To take advantage of the potential cancellation of amplitude in nogoods described

above we need a unitary mapping whose behavior is similar to the ideal mapping to
supersets. There are two general ways to adjust the ideal mapping of sets to supersets
(mixtures of these two approaches are possible as well). First, we can keep some
amplitude at the same level of the lattice instead of moving all the amplitude up to the next
level. This allows using the ideal map described above (with suitable normalization) and
so gives excellent discrimination between solutions and nonsolutions, but unfortunately
not much amplitude reaches solution level. This is not surprising: the use of random
phases cancel the amplitude in nogoods but this doesn’t add anything to solutions (because
solutions are not a superset of any nogood and hence cannot receive any amplitude
from them). Hence at best, even when all nogoods cancel completely, the amplitude
in solutions will be no more than their relative number among complete sets, i.e., very
small. Thus the random phases prevent much amplitude moving to nogoods high in the
lattice, but instead of contributing to solutions this amplitude simply remains at lower
levels of the lattice. Hence we have no better chance than random selection of finding a
solution (but, when a solution is not found, instead of getting a nogood at the solution
level, we are now likely to get a smaller set in the lattice). Thus we must arrange for
amplitude taken from nogoods to contribute instead to the goods. This requires the map
to take amplitude to sets other than just supersets, at least to some extent.

The second way to fix the nonunitary ideal map is to move amplitude also to non-
supersets. This can move all amplitude to the solution level. It allows some canceled
amplitude from nogoods to go to goods, but also vice versa, resulting in less effective
concentration into solutions. This can be done with a unitary matrix as close as possible
to the nonunitary ideal map to supersets, and that also has a relatively simple form. The
general question here is givenk linearly independent vectors inm dimensional space,
with k � m, find k orthonormal vectors in the space as close as possible to thek original
ones. Restricting attention to the subspace defined by the original vectors, this can be
obtained4 using the singular value decomposition [22] (SVD) of the matrixM whose
columns are thek given vectors. Specifically, this decomposition isM = A

y
�B, where

� is a diagonal matrix containing the singular values ofM and bothAy and B have
orthonormal columns. Then the matrixU = A

y
B has orthonormal columns and is the

closest set of orthogonal vectors according to the Frobenius matrix norm. For example,

4 I thank J. Gilbert for pointing out this technique, as a variant of the orthogonal Procrustes problem [22].
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the mapping from level 1 to 2 withN = 3 given in Eq. 8 produces

U =
1

3

0
@ 2 2 �1

2 �1 2

�1 2 2

1
A (9)

We should note that this construction fails ifk > m since anm–dimensional space cannot
have more thanm orthogonal vectors. Hence we restrict consideration to mappings in
the lattice at those levelsi where leveli + 1 has at least as many sets as leveli, i.e.,
Ni � Ni+1. Obtaining a solution requires mapping up to levelL so, from Eq. 1, this
restricts consideration to problems whereL � dN=2e.

While this gives a set of orthonormal vectors close to the original map, one might
be concerned about the requirement to compute the SVD of exponentially large matrices.
Fortunately, however, the resulting matrices have a particularly simple structure in that
the entries depend only on the overlap between the sets. Thus we haveUr� = ajr\�j (r
is an (i+1)-subset,� is an i-subset). The overlapjr \ �j ranges fromi when� � r to
0 when there is no overlap. Thus instead of exponentially many distinct values, there
are only i + 1, a linear number. This can be exploited to give a simpler method for
evaluating the entries of the matrix as follows.

We can get expressions for thea values for a givenN and i since the resulting
column vectors are orthonormal. This gives

1 =

�
UyU

�
��

=

iX
k=0

nka
2
k (10)

where

nk =

�
i

k

��
N � i

i+ 1 � k

�
(11)

is the number of ways to pickr with the specified overlap. For the off-diagonal terms,
supposej� \ �j = p < i then

0 =

�
UyU

�
��

=

iX
j;k=0

n
(p)

jk
ajak (12)

where

n
(p)

jk
=

X
x

�
i� p

k � x

��p
x

�� i� p

j � x

��
N � 2i+ p

i+ 1� j � k + x

�
(13)

is the number of setsr with the required overlaps with� and�, i.e., jr \ �j = k � i

and jr \ �j = j � i. In this sum,x is the number of items the setr has in common with
both� and�. Together these givei+1 equations for the values ofa0; . . . ; ai, which are
readily solved numerically. Note in particular that the number of values and equations
grows only linearly with the level in the lattice, even though the number of sets at each
level grows exponentially. When necessary to distinguish the values at different levels
in the lattice, we usea(i)

k
to mean the value ofak for the mapping from leveli to i+ 1.
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There are multiple solutions for this system of quadratic equations, each representing
a possible unitary mapping. But there is a unique one closest to the ideal mapping to
supersets, as given by the SVD. It is this solution we use in the experiments, although
an interesting open question is whether some other solution, in conjunction with various
choices of phases, performs better.

A normalized version of the ideal map would havea(i)
i
=

1p
ni

=

1p
N�i

and all other

values equal to zero. The actual values fora
(i)
k

are fairly close to this (confirming that
the ideal map is close to orthogonal already), and alternate in sign. To illustrate their
behavior, it is useful to consider the scaled valuesb

(i)
k
� (�1)ka

(i)
i�k
p
ni�k, with ni�k

evaluated using Eq. 11. The behavior of these values forN = 10 is shown in Fig. 2.
Note thatb(i)0 is close to one, and decreases slightly as higher levels in the lattice (i.e.,
larger i values) are considered: the ideal mapping is closer to orthogonal at low levels
in the lattice.

0 1 2 3 4
k

0.05

0.1

0.2

0.5

1

Fig. 2. Behavior ofb(i)
k

vs. k on a log scale forN = 10. The three curves show the values fori = 4 (black), 3
(dashed) and 2 (gray).

Despite the simple values for the example of Eq. 9, theak values in general do not
appear to have a simple closed form expression. This is suggested by obtaining exact
solutions to Eqs. 10 and 12 using a symbolic algebra program [49]. In most cases this
gives complicated expressions involving nested roots. Since it is always possible such
expressions could simplify, theak values were also checked for being close to rational
numbers and whether they are roots of single variable polynomials of low degree5.
Neither simplification was found to apply.

Finally we should note that this mapping only describes how the sets at leveli are
mapped to the next level. The full quantum system will also perform some mapping on
the remaining sets in the lattice. By changing the map at each step, most of the other
sets can simply be left unchanged, but there will need to be a map of the sets at level
i + 1 other than the identity mapping to be orthogonal to the map from leveli. Any
orthogonal set mapping partly back to leveli and partly remaining in sets at leveli+ 1

will be suitable for this: in our application there is no amplitude at leveli + 1 when
the map is used and hence it doesn’t matter what mapping is used. However, the choice

5 Using the Mathematica function Rationalize and the package NumberTheory‘Recognize‘.
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of this part of the overall mapping remains a degree of freedom that could perhaps be
exploited to minimize errors introduced by external noise.

Phases for Nogoods
In addition to the general mapping from one level to the next, there is the problem-

specific aspect of the algorithm, namely the choice of phases for the nogood sets at each
level. In the ideal case described above, random phases were given to each nogood,
resulting in a great deal of cancellation for nogoods at the solution level. While this
is a reasonable choice for the unitary mapping, other policies are possible as well. For
example, one could simply invert the phase of each nogood6 (i.e., multiply its amplitude
by -1). This choice doesn’t work well for the idealized map to supersets only but, as
shown below, is helpful for the unitary map. It can be motivated by considering the
coefficients shown in Fig. 2. Specifically, when a nogood is encountered for the first
time on a path through the lattice, we would like to cancel phase to its supersets but at
the same time enhance amplitude in other sets likely to lead to solutions. Becausea

(i)
i�1 is

negative, inverting the phase will tend to add to sets that differ by one element from the
nogood. At least some of these will avoid violating the small constraint that produced
this nogood set, and hence may contribute eventually to sets that do lead to solutions.

Moreover, one could use information on the sets at the next level to decide what to
do with the phase: as currently described, the computation makes no use of testing the
consistency of sets at the solution level itself, and hence is completely ineffective for
problems where the test requires the complete set. Perhaps better would be to mark a
state as nogood if it has no consistent extensions with one more item (this is simple to
check since the number of extensions grows only linearly with problem size). Another
possibility is for the phase to be adjusted based on how many constraints are violated,
which could be particularly appropriate for partial constraint satisfaction problems [19]
or other optimization searches.

Summary
The search algorithm starts by evenly dividing amplitude among the goods at level 2

of the lattice (whose number is proportional toN2). Then for each level from 2 toL�1,
we adjust the phases of the states depending on whether they are good or nogood and then
map to the next level. Thus if (i)� represents the amplitude of the set� at leveli, we have

 
(i+1)
r =

X

�

Ur��� 
(i)
� =
X

k

a
(i)
k

X

jr\�j=k

�� 
(i)
� (14)

where�� is the phase assigned to the set� after testing whether it is nogood, and the final
inner sum is over all sets� that havek items in common withr. That is,�� = 1 when
� is a good set. For nogoods,�� = �1 when using the phase inversion method, and
�� = ei� with � uniformly selected from[0;2�) when using the random phase method.
Finally we measure the state, obtaining a complete set. This set will be a solution with
6 I thank J. Lamping for suggesting this.
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probabilitypsoln =
P

s

 
(L)
s , with the sum over solution sets, depending on the particular

problem and method for selecting the phases.

What computational resources are required for this algorithm? The storage require-
ments are quite modest:N bits can produce a superposition of2N states, enough to
represent all the possible sets in the lattice structure. Since each trial of this algorithm
gives a solution only with probabilitypsoln, on average it will need to be repeated1=psoln
times to find a solution. The cost of each trial consists of the time required to construct
the initial superposition and then evaluate the mapping on each step from the level 2 to
the solution levelL, a total ofL� 2 < N=2 mappings. Because the initial state consists
of sets of size 2, there are only a polynomial number of them (i.e.,O

�
N2

�
) and hence the

cost to construct the initial superposition will be relatively modest. The mapping from
one level to the next will need to be produced by a series of more elementary operations,
namely unitary matrices with only a fixed number of nonzero entries. Determining the
required number of such operations remains an open question, though the particularly
simple structure of the matrices should not require involved computations and should
also be able to exploit special purpose hardware. At any rate, this mapping is indepen-
dent of the structure of the problem and its cost does not affect the relative costs of
different problem structures. Finally, determining the phases to use for the nogood sets
involves testing the sets against the constraints, a relatively rapid operation for NP search
problems. Thus to examine how the cost of this search algorithm depends on problem
structure, the key quantity is the behavior ofpsoln.

3.5. An Example

To illustrate the algorithm’s operation and behavior, consider the small case of
N = 3 with the map starting from level 0 and going up to level 2. Suppose that
{3} and its supersets are the only nogoods. For the purposes of illustration, we begin
with all amplitude in the empty set, i.e., with the statej;i, rather than in the goods
at level 2. The map from level 0 to 1 gives equal amplitude to all singleton sets,
producing 1p

3
(jf1gi+ jf2gi + jf3gi). We then introduce a phase for the nogood set,

giving 1p
3

�
jf1gi+ jf2gi + ei�jf3gi

�
. Finally we use Eq. 9 to map this to the sets at

level 2, giving the final state

1

3
p
3

��
4 � ei�

�
jf1; 2gi +

�
1 + 2ei�

�
jf1; 3gi +

�
1 + 2ei�

�
jf2; 3gi

�
(15)

At this level, only set {1,2} is good, i.e., a solution. Note that the algorithm does not
make any use of testing the states at the solution level for consistency.

The probability to obtain a solution when the final measurement is made is determined
by the amplitude of the solution set, so in this case

psoln =

����
1

3
p
3

�
4 � ei�

�����
2

=
1

27
(17 � 8 cos �) (16)
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From this we can see the effect of different methods for selecting the phase for nogoods.
If the phase is selected randomly,p

soln
=

17

27
= 0:63 because the average value ofcos �

is zero. Inverting the phase of the nogood, i.e., using� = �, givesp
soln

=
25

27
= 0:93.

These probabilities compare with the 1/3 chance of selecting a solution by random choice.
In this case, the optimal choice of phase is the same as that obtained by simple inversion.
However this is not true in general: picking phases optimally will require knowledge
about the solutions and hence is not a feasible mapping. Note also that even the optimal
choice of phase doesn’t guarantee a solution is found.

4. Average Behavior of the Algorithm

For classical simulation of this algorithm we explicitly compute the amplitude of all
sets in the lattice up to the solution level resulting in an exponential slowdown compared
to the quantum behavior, and even with respect to more efficient classical search methods
that halt after finding the first solution. Unfortunately, the requirements to evaluate all
sets in the lattice and the mappings between them severely limit the feasible size of these
classical simulations. Moreover, to simulate the expected behavior of the random phase
method, we must repeat the search a number of times on each problem (10 tries in the
experiments reported here) to estimate the average behavior with respect to the selection
of the random phases. This further limits the feasible problem size. By contrast, the
phase inversion method determines the probability to find a solution with a single trial
and hence allows exploration of somewhat larger problems.

As a simple check on the numerical errors of the calculation, we recorded the total
normalization in all sets at the solution level. With double precision calculations on a
Sun Sparc10, for the experiments reported here typically the norm was 1 to within a
few times10�11. As an indication of the execution time with unoptimized C++ code
for the experiments reported below, a single trial for a problem withN = 14 and 16,
with L = N=2, required about 70 and 1000 seconds, respectively. This uses a direct
evaluation of the map from one level to the next as given by Eq. 14. A substantial
reduction in compute time is possible by exploiting the simple structure of this matrix to
give a recursive evaluation7. Some additional improvement is possible by better coding
and exploiting the fact that all amplitudes are real when using the method that inverts
phases of nogoods.

4.1. A Class of Search Problems

To examine the typical behavior of this quantum search algorithm with respect to
problem structure, we need a suitable class of problems. This is particularly important
for average case analyses since one could inadvertently select a class of search problems
dominated by easy cases. Fortunately the observed concentration of hard cases near phase
transitions provides a method to generate hard test cases.

7 I thank S. Vavasis for suggesting this improvement in the classical simulation of the algorithm.
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The phase transition behavior has been seen in a variety of search problem classes.
Here we select a particularly simple class of problems by supposing the constraints
specify nogoods randomly at level 2 in the lattice. This corresponds to binary constraint
satisfaction problems [39, 45], but ignores the detailed structure of the nogoods imposed
by the requirement that variables have a unique assignment. By ignoring this additional
structure, we are able to test a wider range of the number of specified nogoods for the
problems than would be the case by considering only constraint satisfaction problems.
This lack of additional structure is also likely to make the asymptotic behavior more
readily apparent at the small problem sizes that are feasible with a classical simulation.

Furthermore, since the quantum search algorithm is appropriate only for soluble
problems, we restrict attention to random problems with a solution. These could be
obtained by randomly generating problems and rejecting any that have no solution (as
determined using a complete classical search method). However, for overconstrained
problems the soluble ones become quite rare and difficult to find by this method. Instead,
we generate problems with a prespecified solution. That is, when randomly selecting
nogoods to add to a problem, we do not pick any nogoods that are subsets of a prespecified
solution set. This always produces problems with at least one solution. Although
these problems tend to be a bit easier than randomly selected soluble problems, they
nevertheless exhibit the same concentration of hard problems and at about the same
location as general random problems [7, 48].

For our class of problems, this behavior is illustrated in Fig. 3. Specifically, this
shows the cost to solve the problem with a simple chronological backtrack search. The
cost is given in terms of the number of decision points considered until a solution is
found. The minimum cost, for a search that proceeds directly to a solution with no
backtrack isL+1. The parameter distinguishing underconstrained from overconstrained
problems is the ratio� of the number of nogoodsm at level 2 given by the constraints
to the number of itemsN.

1 2 3 4 5

5

10

15

20

25

Fig. 3. The solid curves show the classical backtrack search cost for randomly generated problems with a prespecified
solution as a function of� = m=N for N = 10 (gray) and 20 (black) andL = N=2. Here m is the number of
nogoods selected at level 2 of the search lattice. The cost is the average number of backtrack steps, starting from the
empty set, required to find the first solution to the problem, averaged over 1000 problems. The error bars indicate
the standard deviation of this estimate of the average value, and in most cases are smaller than the size of the plotted
points. For comparison, the dashed curves show the probability for having a solution in randomly generated problems
with the specified� value, ranging from 1 at the left to 0 at the right.
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Even for these relatively small problems, a peak in the average search cost is evident.
Moreover, this peak is near the critically constrained region where random problems
change from mostly soluble to mostly insoluble. A simple, but approximate, theoretical
value for the location of the transition region is given by the point where the expected
number of solutions is equal to one [45, 48]. Applying this to the class of problems
considered here is straightforward. Specifically, there areNL complete sets for the
problem, as given by Eq. 1. For a particular sets of size L, it will be good, i.e., a
solution, only if none of the nogoods selected for the problem are a subset ofs. Hence
the probability it will be a solution is given by

�L =

�
(N
2
)�(L

2
)

m

�
�
(N
2
)

m

� (17)

because there are
�
N
2

�
sets of size 2 from which to choose them nogoods specified

directly by the constraints. The average number of solutions is then justNsoln = NL�L.
If we setm = �N andL = N=b, for large N this becomes

lnNsoln � N

�
h

�
1

b

�
+ � ln

�
1 �

1

b2

��
(18)

whereh(x) � �x lnx� (1 � x) ln (1 � x). The predicted transition point8 is then given
by

�crit =
h(1=b)

ln (1 � 1=b2)
(19)

which is�crit = 2:41 for the case considered here (i.e.,b = 2). This closely matches the
location of the peak in the search cost for problems with prespecified solution, as shown in
Fig. 3, but is about 20% larger than the location of the step in solubility9. Furthermore,
the theory predicts there is a regime of polynomial average cost for sufficiently few
constraints [26]. This is determined by the condition that the expected number of goods
at each level in the lattice is monotonically increasing. Repeating the above argument
for smaller levels in the lattice, we find that this condition holds up to

�poly =
1 � b2

2b
ln

1

b� 1
(20)

which is �poly = 0 for b = 2.

While these estimates are only approximate, they do indicate that the class of random
soluble problems defined here behaves qualitatively and quantitatively the same with
respect to the transition behavior as a variety of other, perhaps more realistic, problem
classes. This close correspondence with the theory (derived for the limit of large
problems), suggests that we are observing the correct transition behavior even with these
8 This differs slightly from the results for problems with more specified structure on the nogoods, such as explicitly removing
the necessary nogoods from consideration [45, 48].
9 This is a particularly large error for this theory: it does better for problems with larger constraints or more allowed values per
variable.
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relatively small problems. Hence it is a reasonable basis for evaluating the behavior of
the quantum search algorithm. Moreover the above approximate theoretical argument
suggests that the average cost of general classical search methods scales exponentially
with the size of the problem over the full range of� > 0. Thus this provides a good
test case for the average behavior of the quantum algorithm. As a final observation, it is
important to obtain a sufficient number of samples especially near the transition region.
This is because there is considerable variation in problems near the transition, specifically
a highly skewed distribution in the number of solutions. In this region, most problems
have few solutions but a few have extremely many: enough in fact to give a substantial
contribution to the average number of solutions even though such problems are quite rare.

4.2. Phase Transition

To see how problem structure affects this search algorithm, we evaluatepsoln,
the probability to find a solution for problems with different structures, ranging from
underconstrained to overconstrained. Low values for this probability indicate relatively
harder problems. The expected number of repetitions of the search required to find a
solution is then given by1=psoln. The results are shown in Figs. 4 and 5 for different
ways of introducing phases for nogood sets. We see the general easy-hard-easy pattern
in both cases.
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Fig. 4. Expected number of trials to find a solution vs.� for random problems with prespecified solution with binary
constraints, using random phases for nogoods. The solid curve is forN = 10, with 100 samples per point. The gray
curve is forN = 20 with 10 samples per point (except that additional samples were used around the peak). The error
bars indicate the standard error in the estimate ofh1=psolni.

Another common feature of phase transitions is an increased variance around the
transition region. For this method we see a peak in the variance as well, shown in
Fig. 6. Furthermore, there is no indication of the rare hard cases in the easy region
of underconstrained problems [21, 26, 44]. While this could be due to the small cases
examined here, it is more likely that this method, by considering simultaneously all
ways for constructing sets moving up the lattice, cannot get stuck with a poor initial
choice leading to thrashing (i.e., in classical backtrack methods, when the initial choices
happen to leave many large partial solutions but most other choices do not). Hence this
provides another example of a distinct class of algorithms, as with more sophisticated
backtracking [1], that appears to avoid hard problems in the underconstrained region.
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Fig. 5. Expected number of trials to find a solution vs.� for random problems with prespecified solution with binary
constraints, using inverted phases for nogoods. The solid curve is forN = 10, with 1000 samples per point. The gray
curve is forN = 20 with 100 samples per point (except that additional samples were used around the peak). The
error bars indicate the standard error in the estimate ofh1=psolni.
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Fig. 6. Standard deviation in the number of trials to find a solution forN = 20 as a function of�. The black curve
is for random phases assigned to nogoods, and the gray one for inverting phases.

4.3. Scaling

An important question in the behavior of this search method is how its average
performance scales with problem size. To examine this question, we consider the scaling
with fixed �. This is shown in Figs. 7 and 8 for algorithms using random and inverted
phases for nogoods, respectively. We show the results on both a log plot (where straight
lines correspond to exponential scaling) and a log-log plot (where straight lines correspond
to power-law or polynomial scaling).

It is difficult to make definite conclusions from these results for two reasons. First, the
variation in behavior of different problems gives a statistical uncertainty to the estimates
of the average values, particularly for the larger sizes where fewer samples are available.
The standard errors in the estimates of the averages are indicated by the error bars in
the figures (though in most cases, the errors are smaller than the size of the plotted
points). Second, the scaling behavior could change as larger cases are considered.
With these caveats in mind, the figures suggest thatpsoln remains nearly constant for
underconstrained problems, even though the fraction of complete sets that are solutions
is decreasing exponentially. This behavior is also seen in the overlap of the curves for
small � in Figs. 4 and 5. For problems with more constraints,psoln appears to decrease
polynomially with the size of the problem. An interesting observation in comparing the
two phase choices is that the scaling is qualitatively similar. This suggests the detailed
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values of the phase choices are not critical to the scaling behavior, and in particular
high precision evaluation of the phases is not required. Finally we should note that this
illustration of the average scaling leaves open the behavior for the worst case instances.
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Fig. 7. Scaling of the probability to find a solution using the random phase method, for� of 1 (solid), 2 (dashed), 3
(gray) and 4 (dashed gray). This is shown on log and log-log scales (left and right plots, respectively).
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Fig. 8. Scaling of the probability to find a solution using the phase inversion method, for� of 1 (solid), 2 (dashed),
3 (gray) and 4 (dashed gray). This is shown on log and log-log scales (left and right plots, respectively).

Another scaling comparison is to see how much this algorithm enhances the prob-
ability to find a solution beyond the simple quantum algorithm of evaluating all the
complete sets and then making a measurement. As shown in Fig. 9, this appears to give
an exponential improvement in the concentration of amplitude into solutions.

4.4. Random 3SAT

These experiments leave open the question of how additional problem structure might
affect the scaling behaviors. While the universality of the phase transition behavior
suggests that the average behavior of this algorithm will also be the same for a wide
range of problems, it is useful to check this empirically. To this end the algorithm was
applied to the satisfiability (SAT) problem. This constraint satisfaction problem consists
of a propositional formula withn variables and the requirement to find an assignment (true
or false) to each variable that makes the formula true. Thus there areb = 2 assignments
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Fig. 9. Scaling of the ratio of the probability to find a solution using the quantum algorithm to the probability to find
a solution by random selection at the solution level, using the phase inversion method, for� of 1 (solid), 2 (dashed),
3 (gray) and 4 (dashed gray). The curves are close to linear on this log scale indicating exponential improvement over
the direct selection from among complete sets, with a higher enhancement for problems with more constraints.

for each variable andN = 2n possible assignments. We consider the well-studied NP-
complete 3SAT problem where the formula is a conjunction ofc clauses, each of which
is a disjunction of 3 (possibly negated) variables.

The SAT problem is readily represented in terms of nogoods in the lattice of sets [48].
As described in Sec. 2.2, there will ben necessary nogoods, each of size 2. In addition,
each distinct clause in the proposition gives a single nogood of size 3. This case is
thus of additional interest in having specified nogoods of two sizes. For evaluating the
quantum algorithm, we start at level 3 in the lattice. Thus the smallest case for which
the phase choices will matter is forn = 5.

We generate random problems with a given number of clauses by selecting that
number of different nogoods of size 3 from among those not already excluded by the
necessary nogoods10. For random 3SAT, the hard problems are concentrated near the
transition [36] atc = 4:2n. We investigated a range of values forc=n: 2, 4, 6 and 8.
Finally, from among these randomly generated problems, we use only those that do in fact
have a solution11. Using randomly selected soluble problems, rather than a prespecified
solution results in somewhat harder problems. Like other studies that need to examine
many goods and nogoods in the lattice [40], these results are restricted to much smaller
problems than in most studies of random SAT. Consequently, the transition region is
rather spread out. Furthermore, the additional structure of the necessary nogoods and
the larger size of the constraints, compared with the previous set of problems, makes it
more likely that larger problems will be required to see the asymptotic scaling behavior.
However, at least some asymptotic behaviors have been observed [10] to persist quite
accurately even for problems as small asn = 3, so some indication of the scaling behavior
is not out of the question for the small problems considered here.

The resulting scaling of the probability to find a solution is shown in Fig. 10 using
the phase inversion method. More limited experiments with the random phase method
showed the same behavior as seen with the previous set of problems: somewhat worse
performance but similar scaling behavior. The results here are less clear cut than those
10 This differs slightly from other studies of random 3SAT in not allowing duplicate clauses in the propositional formula.
11 For the ratios ofc=n and small problems examined here, there are many soluble instances. Thus, there is no need to rely on a
prespecified solution in order to efficiently find soluble test problems.
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of Fig. 8. Forc=n = 2 the results are consistent with either polynomial or exponential
scaling. For problems with more constraints, exponential scaling is a somewhat better fit.

More definite results are obtained for the improvement over random selection.
Specifically, Fig. 11 shows an exponential improvement for both the phase inversion and
random phase methods, corresponding to the behavior for random problems in Fig. 9.
Similar improvement is seen for other values ofc=n as well: as in Fig. 9 the more
highly constrained problems give larger improvements. A more stringent comparison
is with random selection from among valid assignments (i.e., each variable given a
single value) rather than from among general sets of assignments. This is also shown in
Fig. 11, appearing to grow exponentially as well. This is particularly significant because
the quantum algorithm makes no use of the possibility of explicitly removing from
consideration those sets that give multiple assignments to the same variable. We conclude
from these results that the additional structure of necessary nogoods and constraints of
different sizes is qualitatively similar to that for unstructured random problems but a
detailed comparison of the scaling behaviors requires examining larger problem sizes.
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Fig. 10. Scaling of the probability to find a solution, using the phase inversion method, as a function of the number
of variables for random 3SAT problems. The curves correspond to different clause to variable ratios: 2 (dashed), 4
(solid), 6 (gray) and 8 (gray, dashed). This is shown on log and log-log scales (left and right plots, respectively).
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Fig. 11. Scaling of the ratio of the probability to find a solution using the quantum algorithm to the probability to
find a solution by random selection at the solution level as a function of the number of variables for random 3SAT
problems with clause to variable ratio equal to 4. The solid and dashed curves correspond to using the phase inversion
and random phase methods, respectively. The black curves compare to random selection among complete sets, while
the gray compare to selection only from among complete assignments. The curves are close to linear on this log scale
indicating exponential improvement over the direct selection from among complete sets.

24



5. Discussion

In summary, we have introduced a quantum search algorithm and evaluated its
average behavior on a range of small search problems. It appears to increase the
amplitude into solution states exponentially compared to evaluating and measuring a
quantum superposition of potential solutions directly. Moreover, this method exhibits
the same transition behavior, with its associated concentration of hard problems, as seen
with many classical search methods. It thus extends the range of methods to which
this phenomenon applies. More importantly, this indicates the algorithm is effectively
exploiting the same structure of search problems as, say, classical backtrack methods, to
prune unproductive search directions. It is thus a major improvement over the simple
applications of quantum computing to search problems that behave essentially the same
as classical generate-and-test, a method that completely ignores the possibility of pruning
and hence doesn’t exhibit the phase transition.

The transition behavior is readily understood because problems near the transition
point have many large partial goods that do not lead to solutions [48]. Thus there will be
a relatively high proportion of paths through the lattice that appear good for quite a while
but eventually give deadends. A choice of phases based on detecting nogoods will not
be able to work on these paths until near the solution level and hence give less chance
to cancel out or move amplitude to those paths that do in fact lead to solutions. Hence
problems with many large partial goods are likely to prove relatively difficult for any
quantum algorithms that operate by distinguishing goods from nogoods of various sizes.

There remain a large number of open questions. In the algorithm, the division
between a problem–independent mapping through the lattice and a simple problem-
specific adjustment to phases allows for a range of policies for selecting the phases.
It would be useful to understand the effect of different policies in the hope of improving
the concentration of amplitude into solutions. For example, the use of phases has two
distinct jobs: first, to keep amplitude moving up along good sets rather than diffusing
out to nogoods, and second, when a deadend is reached (i.e., a good set that has no good
supersets) to send the amplitude at this deadend to a promising region of the search space,
possibly very far from where the deadend occurred. These goals, of keeping amplitude
concentrated on the one hand and sending it away on the other, are to some extent
contradictory. Thus it may prove worthwhile to consider different phase choice policies
for these two situations. Furthermore, the mapping through the lattice is motivated by
classical backtrack methods, which move from sets to supersets in the lattice. It may
also prove fruitful to consider another type of mapping based on local repair methods
moving among neighbors of complete sets. In this case, sets are evaluated based on the
number of constraints they violate so an appropriate phase selection policy could depend
on this number, rather than just whether the set is inconsistent or not. These possibilities
may also suggest new probabilistic classical algorithms that might be competitive with
existing heuristic search methods (which are exponentially slow).

As a new example of a search method exhibiting the transition behavior, this work
raises the same issues as prior studies of this phenomenon. For instance, to what extent
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does this behavior apply to more realistic classes of problems? For instance including the
structure due to prohibiting multiple assignments in constraint satisfaction problems [39,
45] or clustering inherent in situations involving localized interactions [24]. This will
be difficult to check empirically due to the limitation to small problems that are feasible
for a classical simulation of this algorithm. However the observation that this behavior
persists for many classes of problems with other search methods suggests it will be
widely applicable. It is also of interest to see if other phase transition phenomena appear
in these quantum search algorithms, such as observed in optimization searches [7, 38,
50]. There may also be transitions unique to quantum algorithms, for example in the
required coherence time or sensitivity to environmental noise.

For the specific instances of the algorithm presented here, there are also some
remaining issues. An important one is the cost of the mapping from one level to the
next in terms of more basic operations that might potentially be realized in hardware,
although the simple structure of the matrices involved suggest this should not be too
costly. The scaling behavior of the algorithm for larger cases is also of interest, which
can perhaps be approached by examining the asymptotic nature of the matrix coefficients
of Eqs. 10 and 12.

An important practical question is the physical implementation of quantum computers
in general [2, 43, 9], and the requirements imposed by the algorithm described here.
Any implementation of a quantum computer will need to deal with two important
difficulties [32]. First, there will be defects in the construction of the device. Thus
even if an ideal design exactly produces the desired mapping, occasional manufacturing
defects and environmental noise will introduce errors. We thus need to understand the
sensitivity of the algorithm’s behavior to errors in the mappings. Here the main difficulty
is likely to be in the problem-independent mapping from one level of the lattice to the
next, since the choice of phases in the problem-specific part doesn’t require high precision.
In this context we should note that standard error correction methods cannot be used with
quantum computers in light of the requirement that all operations are reversible. We also
need to address the extent to which such errors can be minimized in the first place, thus
placing less severe requirements on the algorithm. Particularly relevant in this respect
is the possibility of drastically reducing defects in manufactured devices by atomically
precise control of the hardware [14, 15, 37]. This could substantially extend the range
of ideal quantum algorithms that will be possible to implement.

The second major difficulty with constructing quantum computers is maintaining
coherence of the superposition of states long enough to complete the computation.
Environmental noise gradually couples to the state of the device, reducing the coherence
and eventually limiting the time over which a coherent superposition can perform useful
computations [47, 8]. In effect, the coupling to the environment can be viewed as
performing a measurement on the quantum system, destroying the superposition of states.
This problem is particularly severe for proposed universal quantum computers that need
to maintain superpositions for arbitrarily long times. Decoherence is, in principle, less
of an issue for algorithms whose execution time can be specified in advance. This is the
case for the method presented here since it involves a fixed number of maps to move
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up the lattice structure, and could be implemented as a special purpose search device
(for problems of a given size) rather than as a program running on a universal computer.
Thus a given achievable coherence time would translate into a limit on feasible problem
size. To the extent that this limit can be made larger than feasible for alternative classical
search methods, the quantum search could be useful.

The open question of greatest theoretical interest is whether this algorithm or simple
variants of it can concentrate amplitude into solutions sufficiently to give a polynomial,
rather than exponential, decrease in the probability to find a solution ofany NP search
problem with small constraints. This is especially interesting since this class of problems
includes many well-studied NP-complete problems such as graph coloring and proposi-
tional satisfiability. Even if this is not so in the worst case, it may be so on average
for some classes of otherwise difficult real-world problems. While it is by no means
clear to what extent quantum coherence provides more powerful computational behav-
ior than classical machines, a recent proposal for rapid factoring [42] is an encouraging
indication of its capabilities.

A more subtle question along these lines is how the average scaling behaves away
from the transition region of hard problems. In particular, can such quantum algorithms
expand the range of the polynomially scaling problems seen for highly underconstrained
or overconstrained instances? If so, this would provide a class of problems of intermediate
difficulty for which the quantum search is exponentially faster than classical methods,
on average. This highlights the importance of broadening theoretical discussions of
quantum algorithms to include typical or average behaviors in addition to worst case
analyses. More generally, are there any differences in the phase transition behaviors or
their location compared with the usual classical methods? These questions, involving
the precise location of transition points, are not currently well understood even for
standard classical search algorithms. Thus a comparison with the behavior of this quantum
algorithm may help shed light on the nature of the various phase transitions that seem to
be associated with the intrinsic structure of the search problems rather than with specific
search algorithms.
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