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Abstract

We summarise the recent theoretical progress in few-body descriptions of the �NN

system. Previous descriptions, both three- and four-dimensional, are shown to possess

serious theoretical de�ciencies. We illustrate how three-dimensional approaches su�er

from renormalisation problems, and how four-dimensional descriptions contain both

overcounting and undercounting of diagrams. We then show how such theoretical

problems have been recently overcome, leading to new practical few-body equations

for the �NN system.

1. Introduction

In the absence of three-body forces, Faddeev equations provide the theoretically exact
way to describe three-body systems. It is this fact that has enabled models of the three-
nucleon system where the e�ect of the missing three-body forces can be accurately studied.
It may at �rst seem that the system consisting of one pion and two nucleons can be similarly
described in an accurate way with Faddeev equations. This, however, is not the case. The

problem, of course, is that a pion can get absorbed by one nucleon and then emitted by
the other nucleon, thus making the standard three-body description inappropriate. Indeed
any number of pions can get created and absorbed by nucleons, and it is clear that �eld
theory must be used to describe the �NN system, and not the standard three-body theory
of quantum mechanics. The problem of formulating a few-body description for the �NN

system, that is the analogue of the Faddeev description for three nucleons, has by now a long
history.[1] Yet until very recently, both three- and four-dimensional formulations have had
serious theoretical inconsistencies. Here we would like to summarise these inconsistencies,
and to describe our recently developed few-body descriptions that appear to overcome all
these theoretical problems. The new descriptions give rise to �NN scattering equation that
can be written in various equivalent forms. Here we present our equations in a form that is

most easily compared with previous works, while at the same time being especially convenient

for numerical solution.

2. Three-dimensional formulation

Quantum �eld theory requires the use of four dimensions to assure manifestly covariant
descriptions. However, solving four-dimensional equations presents an enormous numerical

task, and consequently three-dimensional formulations of the �NN system are most desirable
and indeed have been the most numerous.
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For the last �fteen years or so, the most sophisticated few-body description of the �NN

system has been the \unitary NN��NN model".[2]-[5] This is a �eld-theoretic model based

on time-ordered perturbation theory, it takes into account pion absorpion, and has the

desirable properties of two- and three-body unitarity. The essential feature of the model

is that it describes all the processes �d ! �d, �d ! �NN , NN ! �NN , NN ! �d, and

NN ! NN all within the one set of coupled equations.

The derivation of the unitary NN��NN equations is based upon truncating Hilbert space

to states of at most one pion. In practise, this means retaining all diagrams contributing

to subsystem �N and NN potentials, but neglecting all other diagrams having two or more

pions in an intermediate state. Many calculations have been performed with the NN��NN

model.[6]-[11] In general, one can say that the model can account for an extensive amount

of data, albeit only in a qualitative way.

2.1 The renormalization problem

Despite the modest successes of the NN � �NN model, it has become clear that the

model itself has a serious theoretical inconsistency.[12] The origin of the problem lies in the

truncation of Hilbert space used to derive the NN� �NN equations. This truncation has

serious consequences for the renormalization of both the two-nucleon propagator and the
�NN vertex. In Fig. 1(a) we show the �N nucleon pole diagram where the intermediate
state nucleon is dressed by one-pion loops; however, the initial and �nal state nucleons do
not include dressing since two-pion states are neglected in the truncation. Since close to the
nucleon pole the dressed one-nucleon propagator is of the form g(E) � Z=(E �m), where
Z is the residue at the pole, Fig. 1(a) illustrates how each �NN vertex f(E) gets e�ectively

renormalized by a factor of Z1=2. Thus f�NN = Z1=2f(m) is essentially the �NN coupling
constant, and this fact is used to �x the strength parameter in the form factor f(E). With
all other parameters of f(E) �xed to reproduce experimental �N phase shifts, this form
factor then enters the unitary NN��NN equations as an input. As illustrated in Fig. 1(b),
when the NN one pion exchange (OPE) amplitude is calculated in the unitary NN� �NN

model, the initial and �nal nucleons are dressed by pions and consequently each external
nucleon obtains a renormalization factor of ~Z1=2. The �rst renormalization problem is the
fact that ~Z 6= Z. This arises because two nucleons cannot be dressed at the same time in
the truncated Hilbert space; thus, each nucleon in a two-nucleon state cannot obtain its full
dressing. This, however, may not be such a serious problem since, in practice, the di�erence

between Z and ~Z turns out to be quite small. The serious problem, instead, is the size of

the e�ective �NN coupling constant in the NN� �NN equations. Taking Z � ~Z, Fig. 1(b)
illustrates that each vertex gets renormalized by a factor of Z, so that the e�ective �NN
coupling constant here becomes Zf(m); this is a factor Z1=2 times the physical coupling

constant. With Z being typically between 0:6 and 0:8, we come to the disturbing conclusion

that the e�ective �NN coupling constant in the NN� �NN equations is smaller than the
one used in constructing the input. This observation helps explain why one typically obtains

Figure 1: Allowed dressing in the unitary NN� �NN model, with associated Z renormal-

ization factors. (a) �N nucleon pole graph, (b) NN OPE graph.
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much too small pp!�+d cross sections using this model.[7]-[10].

These important observations about the renormalization problem in the unitary NN�

�NN model were already made in 1985 by Sauer et al.,[13] yet they seem to have gone

largely unnoticed. Perhaps this is partly because one could �nd less "fatal" reasons for the

low cross sections; for example, it was legitimately argued that o�-shell e�ects and the lack

of a "backward-going pion" in the NN !N� amplitude can lead to the underestimation

of pp!�+d cross sections[10]. However, with the advent of calculations where the nucleon

and � are treated on an equal footing in the NN� �NN model (the so-called BB� �BB

equations[12]), the e�ective �NN coupling constant is lowered by yet a further factor of Z1=2

in the most important NN ! N� amplitude, and it has become very apparent that the

renormalization problem is indeed fatal to this type of approach to the �NN system.

It may seem that one can �x the renormalization problem "by hand" by strategically

including extra Z1=2 factors in either �NN propagators or �NN form factors, or both. But

it soon becomes apparent that there is no easy way of doing this without destroying the

three-body unitarity of the equations.

2.2 The �NN convolution equations

Here we describe a new formulation of the �NN problem where unitary equations are
obtained without having to truncate the Hilbert space to some maximum number of pions.
Consequently, all possible dressings of one-particle propagators and vertices are retained in
our model. The essential technique that enables the calculation of all such dressings is a
novel use of convolution integrals. In this way we overcome the renormalization problems
discussed above.

As an explicit derivation of the new �NN equations can be found in Ref.[14], here we
prefer to simply state the �nal equations, and to describe their essential features. The
new �NN equations can be expressed in many di�erent forms, all of which are equivalent.
The form we shall choose here is the one that most closely resembles the unitary NN �
�NN equations as given by Afnan and Blankleider[5] (AB). Choosing this AB form has two

essential advantages: �rstly, we are able to directly compare the di�erences between our
�NN convolution equations and the unitary NN� �NN equations, and secondly, this form
is ideal for numerical solution, especially since advantage may be taken of existing codes for
the unitary NN� �NN equations where essentially the AB form has been used.

The �NN convolution equations may be expressed as a set of coupled equations for the

reactions NN!NN , NN!�d, �d!NN , and �d!�d using the following (4 � 4) matrix

form:  
TNN �TN

TN T

!
=

 
VNN �F
F G�1

0 I

!(
I +

 
GNN 0
0 G0w

0G0

! 
TNN �TN

TN T

!)
: (1)

Before explaining the symbols in this equation, let us de�ne what we mean by a product

of two symbols. For any two quantities B and A, describing processes m ! k and k ! n,
respectively, we de�ne the product symbol AB to mean the the integral

AB �
Z
dp001 : : : dp

00

k A(p
0

1 : : :p
0

n;p
00

1 : : :p
00

k;E)B(p
00

1 : : :p
00

k;p1 : : :pm;E) (2)

where pi is the three-momentum of particle i and E is the total energy. Although, momentum

conserving �-functions are assumed to be contained in both A and B, it is easy to see that
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Figure 2: The vertices F1 and �F1. The dark circles represent all possible intermediate states.

Vertices F2 and �F2 are obtained by interchanging 1 and 2.

such �-functions can be factored out without a�ecting the symbolic equations. In Eq. (1)

the unknown quantities are TNN , together with T�N , TN�, and T�� which are elements of the

matrices TN , �TN , and T , respectively (here indices � and � take on values 1, 2, and 3). The

physical amplitudes for NN!NN , NN!�d, �d!NN , and �d!�d, are then given by

XNN = TNN ; XNd = TN3	d ; XdN = �	dT3N ; Xdd = �	dT33	d; (3)

respectively, where 	d is the deuteron wave function in the presence of a spectator pion. On

the r.h.s. of Eq. (1) G0 is the fully dressed �NN propagator, GNN is the fully dressed NN

propagator, I is a 3 � 3 matrix whose elements are ���� = 1 � ���, and VNN is the dressed

one-pion exchange potential given by

VNN =
2X

i;j=1

�Fi��ijG0Fj (4)

where Fi and �Fi are fully dressed �NN vertices in the two-nucleon sector as illustrated in

Fig. 2. Finally we have the matrices

F =
�P2

j=1
���jFj

�
; �F =

�P2
i=1

�Fi��i�
�

; w0 =

0
B@
w0
1 w0

4 0
w0
5 w0

2 0

0 0 w0
3

1
CA (5)

where the w0
� (� = 1 : : : 5) are the disconnected NN -irreducible amplitudes for �NN!�NN ,

to be discussed shortly.

By form, Eq. (1) is very similar to the unitary NN � �NN equations as given in Eq.
(59) of AB. However, the essential feature of Eq. (1) that distinguishes it from the NN�
�NN equations, is that all input quantities in Eq. (1) are fully dressed. In this way the
renormalisation problems of the NN� �NN equations have been overcome. However this
would only be a formal solution to the renormalisation problem if it were not for the fact that
all the necessary dressings can be calculated exactly using convolution integrals. That this

is so follows from Ref.[15] where we showed that any disconnected Green function is equal

to the convolution of all its disconnected parts; thus for example, the dressed two-nucleon
propagator GNN is expressed in terms of the dressed one-nucleon propagators g1 and g2 as

GNN (E) = �
1

2�i

Z
1

�1

dz g1(E � z)g2(z) (6)

where, for the sake of simplicity, we have set the momenta of the nucleons to zero. To further

save on notation, we introduce the shorthand GNN = g1
g2 to mean the convolution integral

of Eq. (6). Giving labels 1 and 2 to the two nucleons, and label 3 to the pion, in the same

way we have that the fully dressed �NN propagator G0 is given by the double convolution

G0 = g1 
 g2 
 g3: (7)
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Figure 3: The amplitudes w�. The dark circles represent all possible intermediate states.

Amplitudes w2 and w5 are obtained by interchanging the two nucleons in w1 and w4 respec-

tively.

To see how the amplitudes w0
� are calculated, we �rst de�ne the amplitudes w� to be

the disconnected �NN ! �NN amplitudes, illustrated in Fig. 3, each corresponding to a

di�erent type of disconnectedness, and containing all possible contributing diagrams. It is

just because the w� contain all possible contributions that one can express them through

convolution integrals as

~w1 = ~t1 
 g2 ; ~w2 = ~t2 
 g1 ; ~w3 = ~t3 
 g3 ; ~w4 = ~f1 

~�f2 ; ~w5 = ~f2 


~�f1 (8)

where the \tilde" denotes a Green function quantity consisting of the corresponding ampli-

tude with additional initial and �nal-state propagators; thus, for example, ~w� = G0w�G0,

and ~t1 = g�N1
t1g�N1

where t1 is the t-matrix and g�N1
the dressed propagator for scattering

of a pion o� nucleon 1. As we have shown in Ref.[15], the convolution integrals e�ectively
sum over all the relative time orderings of one subamplitude of a disconnected diagram with
respect to another.

Once the w� are calculated, we may then write them as

w� = w0
� + wP

� (9)

where wP
� is the part of w� that is two-nucleon reducible, while w

0
i is two-nucleon irreducible.

Since we consider all possible contributions, it is clear that

wP
i = FiGNN

�Fi ; wP
3 = 0 ; wP

4 = F1GNN
�F2 ; wP

5 = F2GNN
�F1: (10)

In this way, all the essential input to Eq. (1) has been speci�ed.
We may �nally note a second major di�erence between Eq. (1) and the unitary NN��NN

equations. The input matrix w0 in Eq. (1) has o�-diagonal elements, while the corresponding
matrix for the NN� �NN equations is diagonal. Recalling that the amplitudes of w0 are

two-nucleon irreducible, we can see from Fig. 3, that the o�-diagonal elements w0
4 and w0

5

correspond to what has been called the Jennings terms. As pointed out by Jennings[16], these

terms may be important for the understanding of �d scattering. In our case, the Jennings
terms are also fully dressed, and form an essential part of the convolution equations. Indeed,
since our NN propagator GNN is fully dressed, it contains two-pion states coming from

intermediate Jennings-like terms. It is then necessary to retain w0
4 and w

0
5 in the convolution

equations because they combine with GNN in just the right way to guarantee three-body

unitarity.
We recall, that the only approximation made in deriving the convolution equations of Eq.

(1) is the neglect of all connected �NN -irreducible diagrams for the �NN!�NN process[14].

Yet it is very easy to include some types of connected contributions. One such contribution

would involve intermediate state potentials V
(1)

NN that are �NN -irreducible. Then Eq. (1)

would be modi�ed simply by replacing VNN with VNN+V
(1)

NN . This observation suggests that a
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Figure 4: Example of overcounting in NN!�d. (a) The NN!�d Feynman diagram where

dark circles represent all possible contributions. (b) One of the contributions included in

(a). (c) Another way of drawing diagram (b) showing how overcounting arises.

way to include heavy meson exchange into our NN potential would be as a phenomenological

model for V
(1)
NN .

3. Four-dimensional formulation

Although three-dimensional equations may be easier to solve than those in four-dimensions,

there are important reasons why the formulation of four-dimensional equations is necessary.

Firstly, such equations are based on relativistic quantum �eld theory, and retain the fun-

damental property of o�-shell covariance. Secondly, having the correct four-dimensional

equations, one can then do a three-dimensional reduction using one of the well-known re-

duction schemes. We may also add, that with the ever increasing power of computers, the

numerical solution of four-dimensional equations becomes ever more feasible.
The �rst attempts to formulate few-body equations using relativistic quantum �eld theory

were made already in the early 1960's.[17]-[19] Both such general formulations and ones

more speci�c to the �NN system have been pursued until the present time.[20]-[23] Yet as
in the three-dimensional case, all these attempts have had theoretical inconsistencies. In
particular, all previous attempts have contained either overcounting or undercounting of
Feynman diagrams.

3.1 Overcounting and undercounting problems

Perhaps the easiest way to illustrate the overcounting problem in the �NN system is
with an example. Consider the \triangle" diagram of Fig. 4(a) for the process NN ! �d,
where the dark circles represent the full �N!�N amplitude, the dressed �NN vertex, and

the dressed deuteron vertex. If one were to calculate this diagram in four dimensions, as is,
using covariant forms for the o�-shell �N t-matrix, �NN vertex, and the deuteron vertex,
then one would have the mistake of overcounting of diagrams. This is illustrated in Fig. 4(b)
where we consider just the crossed-pion graph contribution to the input �N t-matrix. As
these are Feynman graphs, there is no meaning associated with the slope of the lines, and

one could just as well have drawn Fig. 4(c). However Fig. 4(c) clearly illustrates that this

contribution corresponds to the dressing of the already fully dressed deuteron vertex.
This type of overcounting arises in four-dimensional approaches whenever one tries to

formulate multiple-scattering graphs in terms of fully dressed vertices and full amplitudes

for all subprocesses. In once-o� cases, like that of Fig. 4(a), one can easily �x the overcounting

problem by making a necessary subtraction (here one would subtract the graph of Fig. 4(b)
from the calculation of Fig. 4(a)). However, the way to solve the overcounting problem for the

case of coupled integral equations is highly non-trivial as an in�nite number of overcounted
contributions are involved.

In a similar way, let us illustrate how undercounting arises in the covariant �NN problem.
As in the three-dimensional formulation, one neglects three-body forces also in the four-

dimensional case. Only in this way can one obtain few-body equations where (in the c.m.)
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Figure 5: Example of undercounting in NN ! �NN . (a) A �NN ! �NN graph that has

usually been neglected since it corresponds to a three-body force. (b) The coupling of the

graph in (a) to the NN channel. (c) Another way of drawing diagram (b) reveals a two-body

process.

no more than two independent momenta are involved. However, one does need to be very

careful about neglecting three-body forces in the four-dimensional theory. Consider, for

example the Feynman diagram of Fig. 5(a). This is a graph for the process �NN! �NN

that is both connected and �NN -irreducible. It therefore corresponds precisely to what is

meant by a three-body force. However, neglecting this contribution from a few-body theory

of the �NN system would be a bad mistake. This is illustrated in Fig. 5(b) where we allow

the graph of Fig. 5(a) to couple to the NN channel. Again no meaning can be attached

to the slope of the propagator lines, and we can equally well draw this diagram as in Fig.

5(c). This, however, reveals that the three-body force of the �NN!�NN process has now

become a two-body rescattering contribution in the NN ! �NN process. Thus neglecting
the three-body force of Fig. 5(a) would lead to an undercounting of important two-body
contributions.

3.2 Four-dimensional �NN equations

In a recent paper, we have solved both the overcounting and undercounting problems
in the formulation of few-body equations in �eld theory[24]. The few-body equations for
the �NN system then follow as a particular case. The method used to derive the equations

involves the classi�cation of Feynman diagrams according to their irreducibility. The over-
counting problem is handled by a procedure where, in formally identical cases like that of
Figs. 4(b) and (c), one of the two right-most vertices is \pulled out" further to the right.
The undercounting of diagrams is handled simply by retaining all three-body forces until the
end of the derivation where the ones that did not lead to two-body interactions are safely

neglected. It is gratifying that Phillips and Afnan[25] have recently con�rmed our equations
using a modi�ed version of Taylor's original classi�cation of diagram scheme.[17, 26]

As before, the four-dimensional equations for the �NN system can be written in any
number of equivalent forms, and for reasons already outlined, we choose here the form

closest to Eq. (59) of AB.

With three-body forces neglected as described, one might still �nd it useful to retain, as

in the three-dimensional case, the NN!NN �NN -irreducible potential V
(1)

NN , as well as the
simultaneously NN - and �NN -irreducible connected NN!�NN amplitide F (1)

c . However,

let us at �rst consider the simplest case where these contributions are neglected (they are in
fact completely absent in the usual case of a � �  interaction).

In this case the four-dimensional �NN equations can be written as Eq. (1), but with the

following modi�cations: (1) The product of two quantities A and B is now de�ned as in Eq.

(2), but with all momenta and integrations being four-dimensional, (2) All convolutions of

Green functions are replaced by usual products, (3) the matrix �w0 is now diagonal, and (4)
the following replacements are made,
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Figure 6: The subtraction terms in the four-dimensional �NN equation: (a) W��, (b) W1,

(c) WNN , (d) X, (e) Y1, and (f) B1. The dark circles represent the following two-body

amplitudes: (a) full �� t-matrix, (b) one-nucleon irreducible �N t-matrix, and (c) full

NN t-matrix minus the NN one-pion-exchange potential. Amplitudes W2, Y2, and B2 are

obtained by exchanging the 1 and 2 labels.

Fi ! Fi �
1
2
B ; �Fi ! �Fi �

1
2
�B ; VNN ! VNN �� (11)

where the terms B and � are subtraction terms that exactly compensate all the overcounting
due to the use of full o�-shell amplitudes and fully dressed vertices in the coupled scattering
equations. To specify these subtraction terms, we express them as

� = W�� +W1 +W2 +WNN + Y1 + Y2 ; B = B1 +B2 (12)

and illustrate each of these terms in Fig. 6.
In the more general case where V

(1)

NN and F (1)
c are retained, it turns out that only the

subtraction terms of Eq. (12) need be modi�ed. In particular, we only need to do the

replacements �! �� V
(1)

NN and B ! B � F (1).

y Permanent address: Mathematical Institute of Georgian Academy of Sciences,
Z. Rukhadze 1, 380093 Tbilisi, Georgia.
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