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Abstract

A �rst attempt to understand hadron dynamics at low energies in

terms of the fundamental quark and gluon degrees of freedom incor-

porates the e�ects of the gluonic �eld into a potential depending only

on the spatial positions of the quarks, which are considered in the in-

�nite mass limit. A suitable framework for calculating such potentials

between static quarks, i.e. a generalization of the Wilson loop will be

discussed.

Making a connection with recent Monte Carlo lattice simulations

for the lowest two energies of a system of two quarks and two an-

tiquarks, the static qq�q�q-potential will be calculated in perturbation

theory to fourth order. The result will be shown to be exactly equal

to the prediction of a straightforward two-body approach, which in

Monte Carlo lattice simulations has been found to be a reasonable

approximation for very small interquark distances.
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1 Introduction

As QCD is the accepted theory of the strong interactions, it is no doubt de-

sirable to understand all hadronic phenomena directly in terms of the funda-

mental �elds of QCD. However, QCD being asymptotically free, perturbation

theory is applicable only for very short distances and cannot cover the com-

plete range of interest. At present lattice gauge simulations are the only way

to study such systems. In a �rst approach, the static approximation is the

natural choice, where the gluonic degrees of freedom are integrated out, and

quark loops are ignored (the quenched approximation), giving rise to a po-

tential between the stationary quarks. The potential of the quark-antiquark

system, where this approach|leading to the familiar Wilson Loop|is very

well known, has been calculated extensively in Monte Carlo lattice simula-
tions. (For recent data, see e.g. [?].) The ground state potential of this static
system has also been calculated in perturbation theory upto sixth order [?].

Here we shall describe how to generalize this procedure to multi-quark

systems, especially to (q�q)k systems. However, even with present-day com-
puters, q�q lattice simulations are still very demanding, and the amount of
computations needed increases rapidly with the number of interacting quarks.
Reliable models for multi-quark systems expressing their potentials e.g. in
terms of the well known q�q-systems would therefore be of great help. Such

two-body approximations have proven successful in many areas of physics,
and these models can be formulated without di�culty. For the qq�q�q-system,
which is the simplest one that can be considered consisting of two colour sin-
glets, this model has been tested against numerical data from a Monte Carlo
simulation [?]. For small distances the agreement has been found reasonable.

It has also been observed [?] that the two-body model corresponds to lowest
order perturbation theory. We shall be able to show that it is correct even
to fourth order. To sixth order, however, three- and four-body forces begin
to appear.

2 The Generalized Wilson Loop

While the concepts discussed below are of course well known in the context of
the Wilson Loop for the q�q-system, we �nd it useful to start with rephrasing

these concepts in the case of an arbitrary number of quarks, leading to a
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study of more complicated systems.

When we have assembled a system of several quarks (and antiquarks),

gluons will mediate a force between them. Treating this system in an ap-

proximation as a quantum mechanical system of several static quarks, the

interactions between the quarks are incorporated into a potential. This as-

sembly of quarks is then expected to propagate in time with the usual factor

of e�itH , where the interesting piece of the Hamilton operator H is the poten-

tial energy. Thus, by calculating appropriate Green functions, the potentials

of eigenstates of H can be extracted.

2.1 Setting up Gauge Invariant States

Because of con�nement, it makes sense only to talk about systems of quarks
where the overall states have colour singlet quantum numbers. The problem
with setting up say a q�q-system in a singlet is that the quark and antiquark
are located a distance apart. This problem can be overcome by inserting the

path ordered exponential U(x; y;A) = Pe
ig
R x

y
TaA

�
a(z)dz� between the locations

x and y of the quarks in the presence of the gauge potential A. Here g
denotes the coupling constant and T a the representation matrices. Thus
� (x)U(x; y) (y)j0i will serve as a basis state in this case. We must also
know how many basis states there are. When dealing with Green functions
coming from Monte Carlo lattice simulations, they will have contributions
from excited states of the gluonic �eld, and there are in�nitely many of them
even in the q�q-case. With suitable methods, the lowest potentials can be

extracted, and several have been calculated for the quenched q�q-system { see
for example [?], [?]. The situation is di�erent for Green functions calculated
in perturbation theory. Here, unlike the lattice simulations, we can and must
go to the in�nite time limit. We do not expect to reach excited states of the
gluon �eld in �nite order perturbation theory, and thus the number of basis

states for a system of several quarks is given by the usual arguments of group

representation theory, e.g. one for the q�q-system and two for the qq�q�q-system.
In the large time limit we expect that the e�ects of `introducing' the quarks
into the vacuum will be irrelevant in comparison to their time evolution, and

the notion of a potential makes sense.
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2.2 Diagonalization

It may be shown that the state

j quarks qi and antiquarks �qj at time ti

= � i(�t; xi) : : :U(�t; xi; yi; A) : : :  (�t; yi)j0i (1)

satis�es Schr�odinger's equation. Forming the overlap of states at time �t and

t, we get an equation between Green functions and expressions of the form

Aij
def
= hAije

�itH
jAji, where jAii stands for some basis state and we have

introduced the matrix A. By assuming a decomposition of these basis states

into eigenstates of H, a diagonalization procedure will yield the potentials. In

the case of the Green functions coming from lattice simulations, one considers
a practical number of basis states, expands them in energy eigenstates and
drops contributions with e�itEi for energies Ei above a certain limit. Of course
we implicitly assume Wick-rotation. In perturbation theory, where a power

expansion of e�itEi(g) in the coupling g will not be exponentially damped,
we need to consider all linearly independent basis states, a number that is
�nite, as remarked in the last section. Because of this �niteness, we can �nd
an invertible transformation to energy eigenstates, and the diagonalization
is straightforward. In fact, given a matrix A satisfying certain consistency

relations, we can perturbatively prove [?] the existence of a time-independent
basis transformation such that in this new basis A is not only diagonal, but
its eigenvalues are of the form e�itEi(g). Here the energy Ei(g) of the i-th
basis state, which can be calculated perturbatively, is for static quarks equal
to the i-th potential (apart from an irrelevant constant, the rest mass).

2.3 Loops

What remains to be done is to bring the Green functions of the last paragraph
to more familiar forms. Since we work within the static approximation, the

full quark propagator in the presence of gauge �elds can be calculated [?]:

S0(x; y;A) = �i[Pe
ig
R x

y
TaA

�
a(z)dz�]e�imjx0�y0 j�(~x� ~y)�

[
1 + 0

2
�(x0

� y0) +
1 � 0

2
�(y0 � x0)] (2)
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We shall now outline how various contour integrations, i.e. loops arise.

Considering the well-known q�q-case, we �nd a path-ordered line integral from

antiquark to quark arising from the U in eq. (1), then the path-ordered line

integral propagating the quark forward in time from eq. (2). Another U

and the antiquark propagating backwards in time close the rectangle of the

familiar Wilson loop. Starting with the Green functions described below

eq. (1) and evaluating them for propagation from �t=2 to t=2, the following

diagrammatic rule for calculating the Green function dealing with an arbi-

trary number k=2 of quark-antiquark pairs (i.e. k quarks and antiquarks)

partitioned into q�q singlets is seen to hold:

1. Draw two horizontal lines, the lower denoting time �t=2, the upper

t=2. Mark the position of every quark and antiquark on the lower line
and once again vertically above it on the upper line.

2. At the �t=2 level connect every quark-antiquark pair that is set up as

a singlet at �t=2 with a line, having an arrow pointing from antiquark
to quark.

3. At the t=2 level connect every quark-antiquark pair that is set up as
a singlet at t=2 with a line, the arrow in which points from quark to
antiquark.

4. Join the quarks at the �t=2 level with quarks at the same position at
the t=2 level, arrow pointing upwards, i.e. forward in time.

5. Join the antiquarks at the t=2 level with the antiquarks at the �t=2
level, arrow pointing downwards, i.e. backwards in time.

6. Associate a path-ordered exponential of eig
H
C
TaA

�
a(z)dz� together with a

trace for every closed loop C occurring.

7. Determine the overall sign: If the pairings at the �t=2 level are the

same as those on the t=2 level, there must be a + sign. (This follows
from the positivity of the norm on a Hilbert space if one lets t ! 0.)

If this is not so, determine the sign of the permutation of antiquarks
on the upper line that is necessary to give the same pairings as on the

lower line. This is the overall sign.
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8. Multiply by (�(~0)e�imt)k, where k is the total number of quarks and

antiquarks.

9. Insert the factor so obtained in the numerator1 of

R
[DAa

�][D��a][D�a]e
i

R
d4x[L]

R
[DAa

�][D��a][D�a]e
i

R
d4x[L]

This gives the Green function in the chosen singlet structure.

3 The qq�q�q-Potentials

In SU(N) gauge theory with quarks in the fundamental representation, we

want to calculate the qq�q�q-potential in perturbation theory to fourth order.

It has been remarked in subsection 2.1 that there are two independent basis
states for this system, and one easily recognises a choice of these in the
two possible ways of pairing the system into two quark-antiquark singlets.
Assuming the �rst static quark at position R1, the second at R2, and the

antiquarks at R3 and R4, we will label the two states jA1i = 113124 and
jA2i = 114123.

3.1 Calculating the Green Functions

According to subsection 2.3, we encounter the following types of loops:

-

� �

-

?

6

?
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R4 R2 R3 R1

�t=2

t=2

ChA1;�t=2jA1;t=2i

and

1With � we denote the ghost �elds, with L the Lagrangian without fermions
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