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Abstract

We adapt a calculation due to Massacand and Schmid [1] to the coordinate

independent de�nition of time and vacuum given by Capri and Roy [2] in order

to compute the trace anomaly for a massless scalar �eld in a curved spacetime

in 1+1 dimensions. The computation only requires normal ordering and yields

the well-known result R
24�

in a straightforward manner.
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I. INTRODUCTION

One of the more interesting results of the study of quantum �eld theory in curved space-

time is the fact that the expectation value of the trace of the stress tensor of a conformally

coupled �eld does not vanish. It has an anomaly. This trace or conformal anomaly, as it is

known, was �rst noticed by Capper and Du� [3] using a dimensional regularization scheme.

Since then many other regularization procedures have been used and when used correctly

lead to same result [4]. Unfortunately, as anyone who has ever calculated this trace anomaly

knows, the computations required are rather lengthy and certainly less than illuminating.

On the other hand, if one has a particle interpretation the problem can be handled more

simply. This fact was �rst exploited by Massacand and Schmid [1]. In this paper we adapt

their method to a computation in 1+1 dimensions using only the following two inputs.

1) The frame components of the stress tensor at a given point are, for two frames based at

this point, related by a Lorentz transformation.

2) The vacuum expectation value of the energy momentum density (relative to a given

frame) should vanish. Thus, the vacuum can have pressure, but no energy or momentum.

In general there would remain the vexing question, \Which vacuum?" The answer we

propose is to use the coordinate independent de�nition of Capri and Roy. In section II we

give a brief review of this construction of the vacuum and apply the result to a calculation of

the vacuum expectation value of the trace of the stress tensor in section III. Our conclusions

are set out in section IV.

II. COORDINATE INDEPENDENT DEFINITION OF TIME AND VACUUM

In a globally hyperbolic spacetime one can choose a foliation based solely on geodesics.

Thus, given a timelike (unit) vectorN�(P0) at the point P0 one establishes a frame (zweibein)

at P0 with components:

e�0̂ = N�(P0)
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e�1̂ = p�(P0) (2.1)

where p�(P0) is a unit vector orthogonal to N
�(P0) at P0. The spacelike hypersurface (line)

consiting of the geodesic through P0 with tangent vector p�(P0) de�nes the surface t = 0.

The \time" t corresponding to an arbitrary point P is the distance along a geodesic P1� P

which intersects the line t = 0 orthogonally at some point P1 . The geodesic distance P0�P1

along the line t = 0 yields the space coordinate x. These geodesic normal coordinates prove

to be very useful since in these coordinates the metric becomes

ds2 = dt2 � �2(t; x)dx2 (2.2)

where

�(0; 0) = 1

@�

@t
jt=0 =

@�

dx
jt=0 = 0 =

@2�

@t@x
jP0 =

@2�

@x2
jP0 (2.3)

Also,

2

�

@2�

@t2
= R (2.4)

where R is the curvature scalar.

The �eld equations in these coordinates, for a massless scalar �eld read:

1
p
g
@�(

p
gg��@�)� = 0

@2�

@t2
+

_�

�

@�

@t
+

�0

�3

@�

@x
� 1

�2

@2�

@x2
= 0: (2.5)

Here,

_� =
@�

@t
and �0 =

@�

@x
: (2.6)

The positive frequency modes � of this �eld are obtained by solving these �eld equations

with the two initial conditions

1) �p;�(0; x) =
1p
4�p

exp(ip�x) p > 0: (2.7)
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Here we have

� = +1 corresponds to right travelling waves

� = �1 corresponds to left travelling waves: (2.8)

and

2) i
@�p;�

@t
jt=0 = p�p;�jt=0: (2.9)

A useful Ansatz to implement these initial conditions is:

�p;�(t; x) =
1p
4�p

exp(�ipf�(t; x)) (2.10)

where f� is real. Equation (2.5) then yields that

@f�

@t
=

�

�

@f�

@x
(2.11)

The initial conditions become

f�(0; x) = �x (2.12)

and near t = 0

f�(t; x) � t+ �x (2.13)

The quantized �eld is now given by

	(t; x) =
X
�=�1

Z
1

0

d(�p)
�
�p;�(t; x)ap;�+ ��p;�(t; x)a

y

p;�

�
(2.14)

with the vacuum de�ned by

ap;�j0 >= 0: (2.15)

These modes have been normalized such that
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(�p;�; �q;�) = i�

Z
1

�1

dx
p
g

�
��p;�(t; x)

$

@t �q;�(t; x)

�

=
p+ q

4�
p
pq

Z
1

�1

dx��
@f�

@t
exp(i(p� q)f�(t; x))

=
p+ q

4�
p
pq

Z
1

�1

dx
@f�

@x
exp(i(p� q)f�(t; x))

=
p+ q

4�
p
pq
2��(p� q)

= �(p� q) (2.16)

III. THE TRACE ANOMALY

We begin with two \observers" with tangents to their world lines given by

N�(P0) = (1; 0) and �N�(P0) = (cosh(�);
sinh(�)

��
) (3.1)

The corresponding frames are:

e�0̂ = (1; 0) e�1̂ = (0;� 1

�
) (3.2)

�e�0̂ = (cosh(�);
sinh(�)

��
) �e�1̂ = (sinh(�);�cosh(�)

��
) (3.3)

Corresponding to this the metric has the two forms

ds2 = dt2 � �2(t; x)dx2 = d�t2 � ��2(�t; �x)d�x2 (3.4)

We can solve for the positive frequency modes in the barred as well as in the unbarred

coordinates to obtain the corresponding quantized �elds �	(�t; �x) and 	(t; x). Their respective

sets of annihilation and creation operators are (�ap;�; �a
y

p;�) and (ap;�; a
y

p;�) .

At P0, the point with coordinates (0; 0) in both coordinate systems, the two �elds co-

incide, as do their �rst time derivatives. Corresponding to these two �elds we have their

respective Fock space vacuums j�0 > , j0 > de�ned by

�ap;�j�0 >= 0 ; ap;�j0 >= 0 (3.5)

Any bilinear expression in the �eld operators which, for physical reasons, should have vanish-

ing vacuum expectation value is de�ned by normal ordering with respect to its own vacuum.
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Thus since we expect the vacuum to be the state of zero energy and momentum density we

require that

< �0j : �T 0̂�̂ : j�0 >= 0 (3.6)

and

< 0j : T 0̂�̂ : j0 >= 0; (3.7)

where,

T �̂�̂ = e��̂e��̂T��

�T �̂�̂ = �e��̂�e��̂ �T��: (3.8)

Furthermore, since the barred and unbarred frames �e��̂ , e��̂ are related by a Lorentz

transformation

�
�̂
�̂ =

0
@ cosh(�) sinh(�)

sinh(�) cosh(�)

1
A (3.9)

we have that at P0

: T �̂�̂ : jP0 = ��̂
̂�

�̂

�̂
: �T ̂�̂ : jP0 (3.10)

so that in particular

: T 0̂0̂ : jP0 = cosh2(�) : �T 0̂0̂jP0 + 2 cosh(�) sinh(�) : �T 0̂1̂ : jP0 + sinh2(�) : �T 1̂1̂ : jP0 : (3.11)

Taking the vacuum expectation value with respect to the barred vacuum of this equation,

and using (3.7) we have

< �0j : T 0̂0̂ : jP0 j�0 >= sinh2(�) < �0j : �T 1̂1̂ : jP0j�0 > (3.12)

Since < �0j : �T 0̂0̂ : j�0 >= 0 we �nd that the vacuum expectation value of the trace is:

< �0j�
�̂�̂

: �T �̂�̂ : jP0 j�0 >= � < �0] : �T 1̂1̂ : jP0 [�0 >= � 1

sinh2(�)
< �0] : T 0̂0̂ : jP0[�0 > (3.13)
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To evaluate this expression we have to take the term : T 0̂0̂ : jP0 which has been normal

ordered with respect to the vacuum j0 > , rewrite it in terms of the operators (�ap;�; �a
y

p;�) and

commute the terms so that the resulting expression is normal ordered with respect to the

vacuum j�0 > . To do this we write out the term : T 0̂0̂ : jP0 explicitly. A simpli�cation due to

the use of equation (2.11) occurs so that only time derivatives of the �eld operators appear.

Also since at P0 the �elds 	 and �	 as well as @t	 and @�t �	 coincide we may write

: T 0̂0̂ : jP0 =:
@	

@t

@	

@t
: jP0 =:

@ �	

@�t

@	

@t
: jP0 =

X
�=�1

Z
d(�p)[

@ �	

@�t

@�p;�

@t
ap;� +

@��p;�

@t
ayp;�

@ �	

@�t
]jP0:

(3.14)

To simplify the notation we drop the jP0 , but keep in mind that these equations only apply

at the point P0. Also we only evaluate this expression for a �xed �. Thus,

: T 0̂0̂

� :=
Z
1

0

d(�p)
Z
1

0

d(�q) [ (
@ ��q;�

@t
�aq;� +

@ ���q;�

@t
�ayq;�)ap;�

@�p;�

@t

+
@��p;�

@t
ayp;�(

@ ��q;�

@t
�aq;� +

@ ���q;�

@t
�ayq;�)

#
(3.15)

The operators (ap;�; a
y

p;�) are related to the barred operators (�ak;�; �a
y

k;�) by a Bogolubov trans-

formation

ak;� =

Z
d(�q)(�k;q�aq;� + ��k;q�a

y

q;�) (3.16)

where

�k;q = (�k;�; ��q;�)

�k;q = (��k;�;
��q;�) (3.17)

In our evaluation of the vacuum expectation value, the only term of interest is the c-number

term that results from the commutator

�aq;�0�a
y

k;� = �a
y

k;��aq;�0 + ��;�0�(k � q) (3.18)

Thus, we get
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< �0j : T 0̂0̂

� : jP0 j�0 >=
Z
d(�p)d(�q)[

@ ��q;�

@�t

@�p;�

@t
��p;q + c:c:] (3.19)

These terms are evaluated by replacing � by its expression (3.17) and interchanging the

order of integration to �rst do the momentum integrals. In doing so the only regularization

required is to de�ne an integral of the form

Z
1

0

dxx exp(ixp) (3.20)

This is accomplished by replacing p by p + i� . No further regularizations are needed.

Further details of such a calculation are in the paper by Massacand and Schmid [1] and

yield a Schwarz derivative. The �nal result is:

< �0j : T 0̂0̂

� : jP0 j�0 >= � 1

24�

@3 �f

@x3
jP0

@ �f

@x
jP0

(3.21)

So we only have to evaluate these terms. Now,

@ �f

@x
=

@ �f

@�x

@�x

@x
+

@ �f

@�t

@�t

@x
(3.22)

and as initial conditions at P0 we have

@�x

@x
jP0 = cosh(�) ;

@�t

@x
jP0 = sinh(�) (3.23)

Furthermore, we also have that

�f�(0; �x) = ��x ;
@ �f

@�t
jP0 = 1 ;

@ �f

@�x
jP0 = ���

@ �f

@�t
jP0 = � (3.24)

since ��jP0 = 1 . Also, as we stated earlier,

@ ��

@�t
jP0 =

@ ��

@�x
jP0 = 0 (3.25)

@2��

@�t@�x
jP0 =

@2��

@�x2
jP0 = 0 (3.26)

and

@2��

@�t2
jP0 =

R

2
: (3.27)
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By repeatedly using the barred version of equation (2.11) , namely

@ �f

@�x
= ���

@ �f

@�t
(3.28)

as well as (3.22), (3.23) and (3.25) we �nd:

@2 �f

@�t2
jP0 =

@2 �f

@�t@�x
jP0 =

@2 �f

@�x2
jP0 = 0 (3.29)

as well as

@3 �f

@�x3
jP0 = �

@3 �f

@�t3
jP0 + �

@2��

@�t2
@ �f

@�t
jP0 = 0 (3.30)

Thus we arrive at the result that

@3 �f

@�t3
jP0 = �@2��

@�t2
jP0 = �R

2
jP0 (3.31)

This result now allows us to obtain that

@3 �f

@x3
jP0 = [

@3�t

@x3
+ ���

@3�x

@x3
+ �

@2��

@�t2
@�x

@x
(
@�t

@x
)2]

@ �f

@�t
jP0 + (

@�t

@x
+ �

@�x

@x
)
@3 �f

@�t3
(
@�t

@x
)2jP0

=
R

2
sinh2(�)�(cosh(�)� exp(��)) +

@3�t

@x3
+ �

@3�x

@x3
(3.32)

To evaluate the last two terms in this expression we use the fact that (t; x) as well as (�t; �x)

satisfy the geodesic equations, but have di�erent initial data on the spacelike geodesic that

passes through P0. These initial data are:

dx

ds
jP0 = 1 ;

dt

ds
jP0 = 0 (3.33)

d�x

ds
jP0 = cosh(�) ;

d�t

ds
jP0 = sinh(�) (3.34)

The geodesic equations read:

d2t

ds2
= ��@�

@t
(
dx

ds
)2;

d2x

ds2
= � 2

�

@�

@t

dx

ds

dt

ds
� 1

�

@�

@x
(
dx

ds
)2 (3.35)

d2�t

ds2
= ���

@ ��

@�t
(
d�x

ds
)2;

d2�x

ds2
= � 2

��

@ ��

@�t

d�x

ds

d�t

ds
� 1

��

@ ��

@�x
(
d�x

ds
)2 (3.36)
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By di�erentiating these equations as well as using (3.23) we �nd that

@2�t

@x2
jP0 =

@2�x

@x2
jP0 = 0 (3.37)

and

@3�t

@x3
jP0 = �@2��

@�t2
jP0 sinh(�) cosh2(�) = �R

2
sinh(�) cosh2(�) (3.38)

@2�x

@x3
jP0 = �2@

2��

@�t2
jP0 cosh(�) sinh2(�) = �R cosh(�) sinh2(�): (3.39)

Combining these results we obtain that

< �0] : T 0̂0̂

� : jP0 [�0 >= � R

48�
� exp(��) sinh(�) (3.40)

Adding the results for both values of � we obtain

< �0] : T 0̂0̂ : jP0[�0 >= � R

24�
sinh2(�) (3.41)

Inserting this into equation (3.12) we �nally obtain the vacuum expectation value of the

trace of the stress-energy tensor, namely R

24�
.

IV. CONCLUSION

For the case of a conformally coupled massless scalar �eld in 1+1 dimensions it is much

simpler to evaluate the trace anomaly using a particle picture than to avoid this. The only

regularization required is very simple, but it must be this very simple regularization that

su�ces to break the conformal symmetry and thus give a non-zero result for the vacuum

expectation value of the trace.
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