
Abstract

A recently proposed path-integral bosonization scheme for massive fermions in 3

dimensions is extended by keeping the full momentum-dependence of the one-loop

vacuum polarization tensor. This makes it possible to discuss both the massive and

massless fermion cases on an equal footing, and moreover the results it yields for

massless fermions are consistent with the ones of another, seemingly di�erent, canon-

ical quantization approach to the problem of bosonization for a massless fermionic

�eld in 3 dimensions.
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During the last few years many di�erent proposals have been considered to

bosonize fermionic theories in 3 dimensions [1, 2, 3, 4, 5]. In Ref. [2], order-disorder

�eld operators related to a free massless Dirac �eld were de�ned. Applying canon-

ical quantization methods, a bosonic, non-local and gauge-invariant action for an

Abelian vector �eld was constructed, the approximate bosonization rules (in Eu-

clidean spacetime) being
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where  is a two-component Dirac spinor, A� is a U(1) gauge �eld, and nqt means

terms non-quadratic in A� (the neglecting of non-quadratic terms is what makes

this bosonization approximate). The parameter � is regularization-dependent. This

sort of ambiguity, which manifests itself in the bosonization rules, already exists in

the fermionic description. It is due to the regularization dependence of the induced

Chern-Simons term [7].

In Ref. [4], functional methods were applied to derive bosonization formulae for

the free massive Thirring model, and in [5], the Abelian and non-Abelian cases

in any dimension d � 2 were considered. These `long distance' bosonization rules

are reliable for the description of phenomena where the fermionic current is not a

strongly varying �eld, with a typical scale of variation much bigger that the inverse of

the fermion mass. In this regime, either the free massive Dirac �eld or the Thirring

model (in 3 dimensions) can be mapped to Chern-Simons theories by using the

approximate bosonization rules
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This is valid to leading order in
1

m
, while the inclusion of the next-to-leading order
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term would lead to a Maxwell-Chern-Simons theory instead.

As it was stressed in [4, 5], the possibility of �nding exact bosonization rules (in

this functional approach), depends on our ability to compute the fermionic determi-

nant in the presence of a background �eld exactly. Thus in 3 dimensions we must

use an approximation scheme. The one presented in [4, 5] amounts to expanding

the corresponding e�ective action in powers of
@

m
.

The question presents itself about how to extend this approximation in order to

include cases where the derivative expansion is no longer valid, as it is indeed the

case for massless fermions. The most obvious attempt to improve the approximation

would be to include higher order terms in the derivative expansion. However, when

doing so a new problem arises. The resulting theory will present instabilities, which

in the Euclidean formulation are manifested in the action being not bounded from

below, whereas in Minkowski space the related unitarity problem shows up. It is

possible to get rid of this apparent drawback by recalling that the e�ective higher-

order theory is valid only for gauge �elds with momenta smaller than a cut-o� of the

order of the fermion mass m, which is a region free from such unphysical features,

as can be easily veri�ed. At any rate, cases where the momentum is larger than the

fermion mass remains out of the scope of any (however re�ned) derivative expansion.

In this letter we attempt to overcome this kind of limitation by including the

full momentum dependence in the one-loop quadratic part of the e�ective action.

Whence the results will also be valid for the massless case, without spoiling the

proper low-momentum features. As no momentum expansion is performed, there

is no instability problem. Keeping the full momentum dependence one introduces

a non-locality in the bosonized action, a property shared with the approach of [2].

This non-locality is unavoidable as soon as the derivative expansion, which always

produces local terms, is discarded. For massless fermions in particular, one cannot

escape the non-locality, since there is a branch cut at zero momentum so the one-loop

2



vacuum-polarization tensor cannot be analytic there.

The above mentioned approaches, canonical and functional, to bosonization in

3 dimensions look a priori quite di�erent and their relationship is not at all obvi-

ous. We will show that, by keeping the full momentum dependence of the vacuum

polarization tensor in the approach of [5], one can reproduce [2] if the mass of the

Dirac �eld is set equal to zero. The result of [5] will survive in the low-momentum

(or m!1) limit.

We start by constructing a bosonized version of the generating functional of

current correlation functions in the case of a free fermionic �eld in three dimensions,

reviewing the procedure followed in [5]. This method builds upon the functional

representation of the fermionic generating functional

Z(s) =
Z
[d ][d � ] exp

�
�
Z
d3x � (6@ + i 6s+m)  

�
(3)

by performing the change of variables

 (x)! ei�(x) (x) , � (x)! e�i�(x) � (x) (4)

to obtain
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De�ning b� = @�� () F��(b) = @�b� � @�b� = 0 ), as Z(s) does not depend on b�,

the pure-gauge �eld b� can be integrated with an arbitrary (non-singular) weight

functional f(b), yielding (up to a normalization factor)

Z(s) =
Z
[db][d ][d � ] f(b) �(F��(b)) exp�

Z
d3x � (6@ + i(6s+ 6b) +m) 

=
Z
[db][d ][d � ]f(b� s)�(F��(b� s))

� exp�
Z
d3x � (6@ + i 6b+m) ; (6)
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where the last equation follows from the �rst one by shifting b ! b�s. Introducing a

Lagrange multiplier A� to exponentiate the �-functional, integrating over the fermion

�elds and setting the weight functional equal to one, it yields

Z(s) =
Z
[dA] [db] exp

�
�T (b) � i

Z
d3xA�(����@�b� � ����@�s�)

�
(7)

where T (b) denotes the fermionic e�ective action in the presence of an external

vector �eld

T (b) = � log det( 6@+ 6b + m ) : (8)

We now make the approximation of retaining up to quadratic terms in b� in (8).

This is consistent with the approaches of ref.'s [2] and [5] 1. The quadratic part of

T (b) may be split as

T (b) = TPC(b) + TPV (b)
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where TPC and TPV come from the parity-conserving and parity-violating pieces

of the vacuum-polarization tensor, respectively [6]. The function F in (9) is

regularization-independent, and a standard one-loop calculation yields
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where here and in what follows we shall always denote momentum-space represen-

tation by putting a tilde over the corresponding coordinate-space representation

quantity. The function ~G in (9) is regularization dependent, and can be written as

~G(k2) =
q

4�
+

m

2� j k j arcsin(1 +
4m2

k2
)�

1

2 ; (11)

1This is equivalent to introducing a `coupling constant' e by means of the rede�nition b� ! e b�,

and working up to order in e
2.

4



where q can assume any integer value [7, 8], and may be thought of as the e�ective

number of Pauli-Villars regulators, namely, the number of regulators with positive

mass minus the number of negative mass ones. Adding a gauge-�xing term
�

2
(@ �b)2,

the b - dependent part of the path integral (in momentum-space) reads:

I =
Z
[db]e

�1

2

Z
d3k

(2�)3
(~by(k) ~M (k)~b(k) + i~by(k)jkj ( ~P+(k)� ~P�(k)) ~A(k))

:(12)

We introduced an obvious matrix notation, where the �elds are represented by

column vectors, the matrix ~M is given by

~M(k) = ( ~Fk2 + i ~G j k j) ~P+ + ( ~Fk2 � i ~G j k j) ~P� + �k2 ~L ; (13)

and we introduced a complete set of hermitian orthogonal projectors

( ~P�)�� =
1

2

 
��� �

k�k�

k2
� i����

k�

j k j

!
; ~L�� =

k�k�

k2
; (14)

which verify ~P 2
� = ~P�, ~L

2 = ~L; ~P� ~L = 0, ~P+
~P� = 0; and ~P+ + ~P� + ~L = 1.

The bosonization formulae are obtained by integrating out the out the ~b-�eld

I = exp

"
�1

2

Z
d3k

(2�)3
~Ay ( ~P+(k)� ~P�(k)) k
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#
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The inverse of ~M , needed in (15) is computed from (13),

~M�1(k) = ( ~Fk2 + i ~G j k j)�1 ~P+ + ( ~Fk2 � i ~G j k j)�1 ~P� + (�k2)�1 ~L ;(16)

and by further use of the projectors' properties, we can write

Z(s) =
Z
[d ~A] exp

Z
d3k

(2�)3
[
1

2
k2 ~Ay

(
1

~Fk2 + i ~Gjkj
~P+ +

1

~Fk2 � i ~Gjkj
~P�) ~A � i ~sy jkj ( ~P+ � ~P�) ~A] : (17)

There is still freedom to write the partition function (17) in di�erent ways, namely,

we can always rede�ne the �eld ~A� by performing a non-singular transformation on
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it. This will, of course, change both the quadratic and linear parts of the action,

thus a�ecting both the bosonized action and the mapping between fermionic currents

and bosonic �elds, but in such a way that the current correlation functions are not

modi�ed, since we are just changing a dummy variable. It is however, necessary

to do this in order to show explicitly the connection with the approach of [2]. A

general rede�nition of ~A� may be written as ~A ! (~u+ P+ + ~u�P� + ~uL L) ~A,

where the ~u's are functions of the momentum. Note that the e�ect of ~uL disappears

as a consequence of gauge-invariance.
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P�] ~A� i~syjkj(~u+P+ � ~u�P�) ~A) : (18)

In what follows we shall restrict ourselves to the constant-~u� case. Expression (18)

can be put in coordinate space representation as follows:
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Z
d3x[

1

4
F�� C1 F�� �

i

2
A�C2 ����@�A�

+ i (
u+ � u�

2
) s�

1p
�@2

@�F�� � i (
u+ + u�

2
) s�����@�A�] (19)

where

C1 =
1

2

ju+j2(F � iG) + ju�j2(F + iG)

�@2F 2 + G2

C2 =
i

2
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�@2F 2 + G2
(20)

Let us discuss now the explicit form adopted by (20) for the cases m ! 1

and m! 0, to make contact with the results of reference [5] (particularized to the

Abelian d = 3 case) and reference [2], respectively. This is achieved by evaluating

C1 and C2 in the corresponding limits, and this is in turn determined by the values

of F and G. When m ! 1, C1 tends to a constant which multiplies the Maxwell
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term. This is neglected to leading order in a derivative expansion, since there is also

a Chern-Simons term, multiplied by the constant factor C2:

C2 ! 4� juj2 � (q +
m

jmj) : (21)

C2 is regularization-dependent, and its ambiguity is re
ected here by the unde�ned

constant q. To compare with [5], we partially �x q by the condition q+sgn(m) = �1,

and chosing u+ = u� = u = 1
2�
, we see that the bosonized action (denoted Sbos),

in the partition function (19) reduces to
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Z
d3x
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2
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which agrees with the result of [5].

Now we discuss the limit m! 0. In this case we have for F and G the behaviours

F (k2) ! e2

16
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4�
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which imply for C1 and C2
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16juj2
jkj C2 !

4�juj2
q

: (24)

By taking then

~u+ = ~u� =
1

4
ei� ; (25)

the bosonized action in coordinate space assumes the form
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d3x (
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thus with the identi�cations
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�
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cos�

4
; (27)
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the bosonized action becomes identical with the one of Equation (1), which is the

Euclidean version of the one of Ref. [2].

We have thus studied the full bosonized partition function (19) for the low and

large momentum regimes. In the general case, the full expression (19) should be

retained. It is however, possible to simplify the form of ~F and ~G, by replacing them

by approximate but simpler looking expressions, which may be replaced in (20).

With an error smaller than 10 percent over the full range of momenta, we have the

approximations:
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j m j
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which are obtained by following the approach of Ref. [10].

In this letter we have extended the method presented in [5], to obtain a bosoniza-

tion for the free Dirac �eld, valid over the whole range of distances. A sensible ex-

tension is achieved by retaining the complete one-loop quadratic part of the e�ective

action. The (non-local) bosonized theory that is obtained in this way have some

advantages with respect to the (local) higher order theory that would have been ob-

tained by considering a �nite number of terms, when expanding the e�ective action

in powers of
@

m
. On the one hand we can see that the Euclidean action is positive

de�nite leading to a stable bosonized theory. On the other hand it unables us to

treat the massive and massless cases in an equal footing, leading to the bosonization

formulae for a massless Dirac �eld (Eq. (1)), obtained by following the canonical

method.
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In contrast, the higher order Euclidean e�ective action that results from the

approximation of the non-local e�ective action is not positive de�nite, which leads

to an unstable behaviour, unless a cut-o� of the order of the fermion mass is used.

In Minkowski space, a similar situation shows up. A higher order theory leads

to the presence of poles in the �eld propagator which are in con
ict with unitarity.

However, these poles will be located at a mass scale greater than m and again the

imposed cut-o� will prevent these poles from producing unphysical e�ects. Now, if

we look Minkowskian version of the non-local Lagrangian Ref. [2] as this equivalence

is valid over the whole range of momenta, no unphysical problems should appear.

This is precisely the case [9].
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