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Abstract

We consider radiative backreaction for global strings using the Kalb-Ramond formalism.

In analogy to the point electron in classical electrodynamics, we show how local radiative

corrections to the equations of motion allow one to remove the divergence in the self �eld

and calculate a �rst order approximation to the radiation backreaction force. The e�ects

of this backreaction force are studied numerically by resubstituting the equations of mo-

tion to suppress exponentially growing solutions. By direct comparison with numerical

�eld theory simulations and analytic radiation calculations we establish that the `local

backreaction approximation' provides a satisfactory quantitative description of radiative

damping for a wide variety of string con�gurations. Finally, we discuss the relevance of

this work to the evolution of a network of global strings and their possible cosmological

consequences. These methods can also be applied to describe the e�ects of gravita-

tional radiation backreaction on local strings, electromagnetic radiation backreaction on

superconducting strings and other forms of string radiative backreaction.

1. Introduction

A variety of uni�ed �eld theories predict the formation of a network of topological de-

fects at one or more phase transitions in the early universe [1]. Strings associated with
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the breaking of local symmetries have generated the most interest in the literature be-

cause, amongst other reasons, GUT-scale strings could have been the initial seeds for the

formation of large-scale structure [2]. However, local strings are tightly constrained by

their contribution to the gravitational radiation background [3]. There are other types

of strings which circumvent this constraint and which may have similar cosmological

implications, in particular those formed when a global symmetry is broken. Instead of

radiating gravitationally, the dominant radiation mechanism for these strings is the emis-

sion of massless Nambu-Goldstone bosons [4]. In a recent publication [5], we studied the

nature of this radiation in detail, using analytic and numerical techniques. We demon-

strated that a low energy e�ective action known as the Kalb-Ramond action, provided

an accurate description of the dynamics of global strings even at the moderately high

velocities one expects in a realistic string network. Within this formalism the topologi-

cal coupling of the massless �eld to the string is linearized. One �nds that the coupling

between the �eld and the string worldsheet is similar to that of the point electron in

electromagnetism. However, there are still di�culties associated with this approach,

notably because equations of motion are inconsistent due to a divergent self-�eld.

This type of problem has been well understood for some time in the context of a

point electron in classical electrodynamics [6]. In the case of the electron, the self and

radiation �elds can be distinguished easily since, at large distances R, the self �eld falls

o� as 1=R2, whereas the radiation �eld falls o� as 1=R. Careful analysis of the equations

of motion leads to the renormalisation of the electron mass by the Coulomb self-�eld,

using the classical electron radius to cut o� short distance divergences and a �rst order

approximation to the radiation backreaction force known as the Abraham-Lorentz force,

F rad
� =

2

3

e2

4�

�
X
...
� +

�X2 _X�

�
; (1)

where X�(� ) is the position on the electron's worldline at time � . The dependence of this

force onX
...
� has lead to problems in numerical applications since there exist exponentially

increasing solutions to the equations of motion. These unphysical `runaway' solutions

can only be suppressed by rewriting the equations of motion as an integro-di�erential
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equation.

In a recent letter [7], we proposed a formalism for removing the self force and cal-

culating a �rst approximation for the radiation backreaction force of strings using the

analogy of classical electrodynamics. However, the analogy is not exact because the

strings are line-like objects of possibly in�nite extent. We circumvent this problem by

assuming that the dominant contribution to the backreaction force comes from string

segments in the vicinity of the point in question, henceforth known as the `local backre-

action approximation'. This approximation will not be valid in every situation, but in

a wide variety of circumstances it should work well. In this paper we will consider this

approximation in greater detail. We will elaborate on the derivation of the radiation

backreaction force and give a discussion of the physical aspects of the approximation.

Further numerical evidence will be presented in support of the validity of this approx-

imation in physically important cases by direct comparison between modi�ed Nambu

dynamics, evolved numerically using the backreaction force, and numerical �eld theory

simulations. The one free parameter in our analysis, e�ectively the damping coe�cient,

can be normalized by comparing with numerical �eld theory simulations and known

analytic results.

One of the main motivations for this work is to implement appropriate radiative cor-

rections in a full network simulation. We anticipate that the scaling assumption for gauge

strings, numerically veri�ed in refs. [8,9], will also be seen to be valid for global strings.

However, it is anticipated that the parameters quantifying the small scale features will be

somewhat di�erent [10]. Accurate numerical simulations will allow estimates of the cos-

mological axion density to be re�ned. A similar formalism is applicable to gravitational

radiation backreaction on local strings [11] and electromagnetic radiation backreaction

on superconducting strings.

Throughout this paper we employ a (+� � �) signature for the spacetime metric

g�� and (+�) for the induced metric on the string worldsheet ab, the coordinates for

which are given by X� = X�(�; � ), with the null coordinates, u = � � �; v = � + � .
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2. Analytic formalism

2.1 The Kalb-Ramond action

Th essential features of global strings in at space are exhibited in the simple U(1)

Goldstone model, with action given by

S =

Z
d4x

�
@� ��@

��� 1

4
�(���� f2a )

2

�
; (2)

where � = �ei# is a complex scalar �eld which can be split into a massive (real) com-

ponent � and a massless (real periodic) Goldstone boson #. The analytic treatment of

global string dynamics is hampered by the topological coupling of the self �eld of the

string to the Goldstone boson radiation �eld. However, we can exploit the well-known

duality between a massless scalar �eld and a two-index antisymmetric tensor B�� to

replace the Goldstone boson # in (2) via the relation

�2@�# =
1

2
fa�����@

�B�� : (3)

Performing this transformation carefully and integrating over the massive degrees of

freedom about the two-dimensional string worldsheet X�(�; � ) [12], yields the at-space

Kalb{Ramond action [13,14],

S = ��0
Z
d�d�

p� + 1

6

Z
d4xH2 � 2�fa

Z
B��d�

�� ; (4)

where H��� = @�B��+@�B��+@�B�� is the �eld strength of the antisymmetric tensor

�eld B�� , the metric induced on the world sheet is

ab = g��@aX
�@bX

� ;  = det(ab) ; (5)

and the area element on the worldsheet is

d��� = �ab@aX
�@bX

�d�d� :

The �rst term is the familar Nambu action for local strings, the second is the anti-

symmetric �eld strength for both external �elds and the self-�eld of the string and the
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last term is a contact interaction between the antisymmetric tensor �eld and the string

worldsheet. The coupling between the string and the antisymmetric tensor is analogous

to the electromagnetic coupling of the point electron to the electromagnetic �eld. This

analogy underpins our subsequent development of global string dynamics based on (4).

Varying the action (4) with respect to the worldsheet coordinates and the antisym-

metric tensor yields the string equations of motion and the tensor �eld equations,

�0@a(
p�ab@bX�) = F� = 2�faH

���V�� ;

@�H
��� = �4�J�� = �2�fa

Z
d�d��4

�
x �X(�; � )

�
V �� ;

(6)

where V�� = �ab@aX�@bX� is the antisymmetric vertex operator. In the conformal string

gauge and the Lorentz antisymmetric tensor gauge,

_X2 +X 02 = 0 ; _X �X 0 = 0 ; @�B
�� = 0 ; (7)

the equations of motion (6) become

�0
�
�X� �X 00�

�
= F� = 2�faH

���V�� ;

B�� = �4�J�� = �2�fa
Z
d�d��4

�
x �X(�; � )

�
V�� ;

(8)

where = g��@�@� and V�� = _X�X
0

��X 0

�
_X�. These equations are problematic because

the self-�eld diverges as any point of the string is approached, that is x! X(�; � ).

2.2 Simple string con�gurations

If one ignores the e�ects of the force density F�, then the equations of motion reduce to

the well-known Nambu equations of motion, a massless wave equation. The equations

have solution

X0 = t = � ; X =
1

2

�
a(u) + b(v)

�
; (9)

where the functions a(u) and b(v) are the left- and right-moving parts of the solution

(recall u = � � t and v = � + t). Using the conformal gauge conditions (7), one can

deduce that

a02 = 1 ; b02 = 1 : (10)
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Figure 1: Schematic of the solutions of the Nambu equations of motion: (a) loop solutions

parametrized by the invariant length L and (b) long string solutions parameterized by the wave-

length L and the relative amplitude E .

The equations (9) and (10) have closed loop and periodic long (or in�nite) string

solutions. The loop solutions are parametrized by the length of the loop L, which

is closely related to the characteristic frequency 
 = 2�=L, whereas the long periodic

solutions are parametrized by the wavelength L and the ratio of amplitude to wavelength

or the relative amplitude E = 2�A=L, whereA is the amplitude. Fig. 1 shows a schematic

of the two types of solution we shall consider. In general situations, such solutions will

correspond to a superposition of a large number of harmonics.

A simple two parameter family of loops, known as Kibble-Turok loops, involve just

the �rst and third harmonics [15]:

X =
1

2


�
(1� �) sin
u+ 1

3
� sin3
u+ sin
v;

� (1� �) cos 
u� 1
3
� cos 3
u� cos cos
v;

� 2
�
�(1 � �)

�1=2
cos
u� sin cos
v

�
;

(11)

where 
 = 2�=L and 0 � � � 1;�� �  � �. If � = 0 and  = 0 then the solution

is a circular loop, which oscillates between a circle of radius L=2� and a point. For a

signi�cant range of the parameters � and  these solutions can be shown to be non
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self-intersecting and so the dominant decay mechanism is likely to be through radiation

rather than loop fragmentation. The time evolution of a particular solution with  = �=3

and � = 0:5 is shown in �g. 2a. Kibble{Turok loops also generate cusps, that is, points

on the string which reach the velocity of light. For example, cusps will appear on the

� = 0 solution at � = L=4; 3L=4 when t = (n + 1=2)L=2 (n integer). Whether or not

cusps are generic on realistic loops has been the subject of various heuristic discussion,

which have also considered the unknown e�ect of backreaction on cusp evolution.

Strings reconnect or `exchange partners' when they intersect. This process intro-

duces kinks|contact discontinuities in the velocity _X and tangent vector X0|which

propagate along the string at the speed of light. Because realistic loops are produced by

long string reconnections or self-intersections we can be sure they will possess at least

two kinks, probably more. An idealized loop with four kinks between four straight string

segments is given by the following [16]

X =
1

2

�
a(� � � ) + b(� + � )

�
;

where

a(� � � ) =

8>><
>>:

�
L

2�
(� � � )� L

4

�
A�

3L

4
� L

2�
(� � � )

�
A

0 < � � � < �

� < � � � < 2� ;
(12)

b(� + � ) =

8>><
>>:

�
L

2�
(� + � )� L

4

�
B�

3L

4
� L

2�
(� + � )

�
B

0 < � + � < �

� < � + � < 2� ;
(13)

with arbitrary unit vectors A and B. The two pairs of kinks propagate in opposite

directions around the loop. In the special case A �B, the loop is planar and oscillates

between a square and a doubled line.

A simple, symmetric long string solution can be constructed from equal and oppo-

sitely propagating helicoidal waves in the fundamental mode [17],

X =

� E
2


�
cos
u+ cos
v

�
;
E
2


�
sin
u+ sin
v

�
;
1

2

p
1� E2 (u+ v)

�

=

� E


sin
� cos
t;

E


cos
� cos
t;

p
1� E2�

�
;

(14)
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where 0 < E < 1 and E ! 1 in the relativistic limit. This corresponds to a helicoidal

solution which oscillates between a static helix and a straight line, as shown in �g. 2(b)

for E = 0:6. Because of its perfect symmetry, calculations for the radiation power from

this solution are analytically tractable [17,5], though such con�gurations are unlikely to

be found in a realistic string network.

One can generalise the helicoidal solution (14) to have unequal left and right moving

amplitudes,

X =

�ER
2


cos
u+
EL
2


cos
u;
ER
2


sin
u+
EL
2


sin
u;
1

2

q
1� E2R u+

1

2

q
1� E2Lv

�
; (15)

where 0 < ER; EL < 1. This type of solution is thought to be a reasonably accurate

description of long strings in a realistic network, since within a su�ciently small volume

the number of left and right movers are unlikely to be strongly correlated. One special

case of this solution is that with no left moving perturbation,

X =

�ER
2


cos
u;
ER
2


sin
u;
1

2

q
1� E2R u+

1

2
v

�
: (16)

It has been suggested that pure left- or right-moving con�gurations do not radiate and

so they will propagate inde�nitely [18]. However, we shall argue that such solutions are

not physically relevant because they require initial data with the string �elds arti�cially

correlated out to in�nity.

A solution, similar to the helix (14), but with sinusoidal perturbations in only one

plane is

X =

� E
2


�
cos
u+ cos
v

�
; 0;

1

2


�
E(E;
u) +E(E;
v)�� ; (17)

where E(k; �) is the incomplete elliptic integral of the second kind, de�ned by

E(k; �) =

Z �

0

d�
p
1� k2 sin2 � ; (18)

where 0 < E < 1 and E ! 1 in the relativistic limit.

Long string solutions of (10) can also possess kinks as in (12). A simple solution for

a periodic distribution of kinks on a perturbed straight string, consists of the left- and
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right-moving perturbations, XU and XV respectively,

X =

�
XU +XV ; 0;

1

2

r
1� 4E2

�2
(u+ v)

�
; (19)

where

XU =

8>>>>>><
>>>>>>:

2E
�
u

2E
�

�
1

2
L� u

�
2E
�

�
� L+ u

�
0 < u <

1

4
L

1

4
L < u <

3

4
L

3

4
L < u < L ;

(20)

XV =

8>>>>>><
>>>>>>:

2E
�
v

2E
�

�
1

2
L� v

�
2E
�

�
� L+ v

�
0 < v <

1

4
L

1

4
L < v <

3

4
L

3

4
L < v < L ;

(21)

where 0 < E < �
2
and, in this case, E ! �

2
is the relativistic limit. In �g. 2d, notice

how the kinks split into two which propagate at the speed of light in opposite directions

along the string.

2.3 Green functions

One of the most basic techniques of mathematical physics is the inversion of di�erential

equations such as the �eld equation in (8) using Green functions. The basic Green

functions satisfy

D(x) = �4(x) ; (22)

which implies that the solution to

F (x) = S(x) ; (23)

is given by integrating the product of the Green function and the forcing term S(x) over

spacetime

F (x) =

Z
d4x0D(x � x0)S(x0) : (24)

In order to deduce a speci�c form for the Green function one must specify some

boundary conditions which de�ne the region over which initial data is known. The two
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Figure 2: The evolution of various string trajectories: (a) Kibble-Turok loop (11) ( = �=3,
� = 0:5), (b) four kink loop solution (12) (c) helicoidal long string (14) with (E = 0:6), and
(d) kink solution (19) with 45� openning angle.

most common Green functions used are the retarded and advanced time Green functions,

which use initial data on the backward or forward light cones respectively,

Dret(x) =
1

2�
�(x0)�(x2) ; Dadv(x) =

1

2�
�(�x0)�(x2) ; (25)

where x� = (x0;x) and �(x0) is the Heaviside function, that is �(x0) = 1 for x0 > 0 and

�(x0) = 0 otherwise.

In problems where radiation is involved one wishes to separate radiative e�ects

from those of the self-�eld. The radiation �eld is free and the radiation Green function

must satisfy a homogeneous version of (22). One can construct such a Green function by
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subtracting the advanced Green function from the retarded. Similarly, one can construct

the Green function for the self-�eld by summing the retarded and advanced Green's

functions. Using appropriate normalisations, one can deduce that

Drad =
1

2

�
Dret �Dadv

�
=

1

4�
�(x0)�(x2) ;

Dself =
1

2

�
Dret +Dadv

�
=

1

4�
�(x2) ;

(26)

where �(x0) = �(x0) � �(�x0). One can calculate the self- and radiation-�eld for a

problem such as (23) using similar expression to (24) with the basic Green function

replaced by the appropriate expression from (26).

2.4 Lienard-Wiechart Potentials

Using the Green function techniques described in the previous section, one can deduce

that

B��(x) = �4�
Z
d4x0Dret(x � x0)J��(x

0)

= �2�fa
Z
d��d�� Dret(x �X(��; �� ))V��(��; ��) :

(27)

The integration is over all time and over all string segments. In the case of a closed loop

this is a �nite range, but for long (in�nite) strings the range is in�nite. If one de�nes

�� = x� �X�(��; �� ) while treating �� as �� = ��(�� ), then

d(�2) = �2� � _Xd�� ;

@� = 2��

@

@(�2)
= � ��

� � _X

@

@��
:

Substituting into (27) and evaluating the delta function one can deduce the Lienard-

Wiechart potential [6,19,20]

B��(x) = �fa
2

Z
d��

�
V��

j�: _Xj

�����
��=�R

; (28)

where �2j��=�R = 0 and �R < t. The modulus sign in (28) preserves the orientation of

the region of integration when evaluating the delta-function. In order to calculate the

radiation backreaction force one requires the derivative of (28). This can be calculated

by performing an integration by parts,

@�B��(x) = �fa
2

Z
d��

1

�: _X

@

@��

�
��V��

j�: _Xj

�����
��=�R

: (29)
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One can separate the radiation �eld from the self �eld by using the Green functions

for the self- and radiation-�elds (26). Therefore, one can calculate the Lienard-Wiechart

potentials and their derivatives for both the self and radiation �elds.

Bself
�� (x) = �fa

4

Z
d��

�
V��

j� � _Xj

����
��=�R

+
V��

j� � _Xj

����
��=� 0

R

�
;

Brad
�� (x) = �fa

4

Z
d��

�
V��

j� � _Xj

����
��=�R

� V��

j� � _Xj

����
��=� 0

R

�
;

@�B
self
�� (x) = �fa

4

Z
d��

�
1

� � _X

@

@��

�
��V��

j� � _Xj

�����
��=�R

+
1

� � _X

@

@��

�
��V��

j� � _Xj

�����
��=� 0

R

�
;

@�B
rad
�� (x) = �fa

4

Z
d��

�
1

� � _X

@

@��

�
��V��

j� � _Xj

�����
��=�R

� 1

� � _X

@

@��

�
��V��

j� � _Xj

�����
��=� 0

R

�
:

(30)

where �2j��=�R;� 0

R
= 0 and �R < t; � 0R > t. E�ectively, then, we have performed the

separation of the self- and radiation-�elds. An attempt was made to perform this split

in ref. [21], using techniques similar to those used in classical electrodynamics [6]. This

method performed the split on the basis of asymptotic fall o�. As already discussed, this

procedure works in the case of the electron since the self-�eld falls o� like 1=R2, whereas

the radiation �eld falls o� like 1=R for large R. However, this procedure may work for

string loops. However, it is doomed to failure for long strings, since both the self- and

radiation-�elds fall o� as 1=R.

2.5 The `local backreaction approximation'

It has already been noted that the renormalisation procedure for strings is more com-

plicated than that for the point electron. The main problem becomes obvious when one

compares the Lienard-Wiechart potentials for strings to those for the electron [6]. Since

the string is an extended object, the Lienard-Wiechart potential is an integral along the

string. In the case of a loop of length L, this integral will be in the range 0 < j�� ��j < L

for a point X(�; � ) on the string and can be easily approximated. However, in the case

of a long (in�nite) string the range is �1 < j� � ��j < 1 and the integral cannot be

evaluated without the solution being periodic.

In more general situations this is not possible and one must make what we shall
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call the `local backreaction approximation'. Since the e�ects of backreaction from string

segments at large distances from the point in question must be suppressed, it seems

sensible to truncate the integrals of (28) and (30) at some renormalisation scale �, which

is at present arbitrary. That is the integrals are over the range ��=2 < j� � ��j < �=2.

Using the case of the loop of length L as an example seems to suggest that � � L. In

fact our expectation is that, for more general string trajectories, an appropriate choice

for � would be near the average curvature radius of the string.

Using the local backreaction approximation one can perform the renormalisation of

the self-�eld and the derivation of a �rst order approximation to the radiation-�eld. If

one allows x! X(�; � ), then (30) can be expanded in terms of s = �� �� and t = � � �� .

This procedure requires that the natural scale for the otherwise arbitrary renormalisation

cut-o� � be less than the average curvature radius of the string. In this case one �nds

that the condition �2j�R = 0, implies that t = jsj +O(s4) and �2j� 0

R

= 0, implies that

t = �jsj+O(s4). Ignoring terms of order four in s and t, allows one to deduce that

Hself
��� =

fa

2 _X4

�
�X[�V��] �X 00

[�V��]

�
log(�=�) +O(�2) ;

Hrad
��� =

fa

2 _X4

�
� 4

3
X
...
[�V��] �

1

2
_X[�

_V��] +

�
2 _X: �X
_X2

�
�X[�V��]

�
�+O(�2) ;

(31)

where A[���] = A��� + A��� + A���. Note that the self-�eld has no order � term.

Ignoring terms of order �2, we can then obtain expressions for the self-force and the

�rst order approximation to the radiation backreaction force density,

F self
� =� 2�f2a log(�=�)

�
�X� �X 00

�

�

F rad
� =�f2a�

�
4

3
X
...
� � 2

� _X: �X

_X2

�
�X� + 2

�
X 0: �X

_X2

�
X
. 0

� +

�
� 4

3

� _X:X
...

_X2

�
+ 2

� _X: �X

_X2

�2

+ 2

�
X 0: �X
_X2

�2�
_X� +

�
4

3

�
X 0:X

...

_X2

�
� 4

�
( _X: �X)(X 0 �X)

_X2

��
X 0

�

�
;

(32)

where � (<< �) is the width of the string core and corresponds to the ultra-violet

renormalisation scale. These expressions for the self and radiation force densities are

extremely complicated, however, our con�dence that these are the correct expression is
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strengthened since they non-trivially respect the conformal gauge conditions, that is,

F self � _X = 0, F self �X 0 = 0, F rad � _X = 0 and F rad �X 0 = 0.

The self-�eld is a multiple of the left hand side of the equations of motion and facil-

itates the well-known renormalisation of the string tension, in a way exactly analogous

to the mass of a point electron. The equations of motion in this case are

�(�)

�
�X� �X 00

�

�
= F rad

� ; (33)

where �(�) = �0 + 2�f2a log(�=�) is the renormalised string tension

For general string trajectories, similar to those discussed in ref. [5], some of the terms

in (32) can be shown to be sub-dominant. In particular, if the string solution is speci�ed

by the relative amplitude E and its wavelength L, then one �nds that X � O(EL) and
each subsequent derivative requires a division by L. Most of the higher order terms in E
can be dropped, though it is necessary to keep two of the higher order terms to maintain

the gauge conditions. One then �nds that it is possible to approximate Hrad
��� and F rad

�

by

Hrad
��� � �2fa�

3 _X4
X
...
[�V��] ;

F rad
� � 4�f2a�

3

�
X
...

� �
� _X �X

...

1� _X2

�
_X� +

�
X 0 �X

...

1� _X2

�
X 0

�

�
:

(34)

2.6 Generalization to the temporal transverse gauge

For at-space string dynamics, the conformal string gauge is usually employed. However,

when considering problems in which the string energy decays, it more convenient to use

the temporal transverse gauge in which X0 = t = � and _X:X0 = 0 with X� = (t;X). In

this gauge, the equations of motion for the string (8) are

�0

�
�X� 1

�

�
X0

�

�0�
= f ; �0 _� = f0 ; (35)

where �2 = _X2=(1 �X02) (not to be confused with the relative amplitude E) and F� =

(f0; �f + f0 _X). Radiative damping will naturally be incorporated in the decay of the

coordinate energy density �, rather than in the non-intiutive time rede�nitions of the
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conformal gauge. The string energy and momentum per unit length in the temporal

transverse gauge are then given by

E =
�0

L

Z L

0

d�� ; p =
�0

L

Z L

0

d�� _X : (36)

The renormalisation procedure in this gauge is similar to that for the conformal

gauge, but with the added complication that _X2 + X 02 6= 0. After a detailed set of

manipulations one can deduce that

Hself
��� =

fa

2 _X4

�
1

�
�X[�V��] �

1

�3
X 00

[�V��]

�
log(�=�) +O(�2) ;

Hrad
��� =

fa

2 _X4

�
� 4

3
X
...
[�V��] �

1

2
_X[�

_V��] +
3_�

2�
X 00

[�V��]

+

�
2 _X: �X

_X2
� _�

2�

�
�X[�V��]

�
�+O(�2) ;

(37)

where A[���] = A��� +A��� +A���. Note that, once again, the self-�eld has no order

� term. Ignoring terms of order �2, we can then deduce expressions for the self-force

and the radiation backreaction force,

f self =� 2�f2a log(�=�)

�
�X � 1

�

�
X0

�

�0�
;

f rad =�f2a�

�
4

3
�X
...

+

�
2�

� _X � �X
1� _X2

�
+ 3_�

�
�X� 2

�

�
X0 � �X
1� _X2

�
_X0 � 3 _�

�2
X00

+

�
� 4

3�

�
X0 �X

...

1� _X2

�
� 4

�

( _X � �X)(X0 � �X)

(1 � _X2)2
� _�

�2

�
X0 � �X
1� _X2

�
+

3_�

�4

� _X �X00

1� _X2

��
X0

�
;

f0;self =� 2�f2a log(�=�) _� ;

f0;rad =�f2a�

�
4

3
�2
� _X �X

...

1� _X2

�
+ 2

�
X0 � �X
1� _X2

�2

+ 2�2
� _X � �X
1� _X2

�2

+ 3� _�

� _X � �X
1� _X2

�
� 3 _�

�

� _X �X00

1� _X2

��
:

(38)

As in the conformal gauge, the expressions for f self and f0;self , facilitate the well-known

renormalisation of the equations of motion (35) and coordinate energy density,

�(�)

�
�X � 1

�

�
X0

�

�0�
= f rad ; �(�) _� = f0;rad ; (39)
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where the expressions for f rad and f0;rad represent the �nite radiation backreaction force.

The renormalised versions of (36) are

E =
�(�)

L

Z L

0

d�� ; p =
�(�)

L

Z L

0

d�� _X : (40)

Di�erentiating (40), gives the power and force due to radiation backreaction

_E =
�(�)

L

Z L

0

d� _� =
1

L

Z L

0

d�f0;rad ;

_p =
�(�)

L

Z L

0

d�

�
� �X + _� _X

�
=

1

L

Z L

0

d�

�
�f rad + f0;rad _X

�
:

(41)

Again, some of the terms in (37) and (38) can be shown to be sub-dominant, as for

the conformal gauge. In particular it is possible to approximate Hrad
���, f

rad and f0;rad

by

Hrad
��� � �2fa�

3 _X4
X
...
[�V��] ;

f rad � 4�f2a�

3

�
�X
...
� 1

�

�
X0 �X

...

1� _X2

�
X0

�
;

f0;rad � 4�f2a�

3

�
�2 _X �X

...

1� _X2

�
:

(42)

Substituting the expressions for f0;rad into the power expression (41) yields

dP

dl
= � _E = �4�f2a�

3L

Z L

0

d�
�2 _X:X

...

1� _X2
: (43)

2.7 Eliminating `runaway' solutions

This simpli�ed form of the equations of motion using (42) still has serious shortcomings

because of the presence of the X
...

term. The equations have unphysical, exponentially

growing or `runaway' solutions which will, for example, plague any potential numerical

applications. Furthermore, one would be required to store information at three di�erent

timesteps, fundamentally changing the nature of a numerical algorithm. It appears,

however, that both these problems can be circumvented by resubstituting the equations

of motion, that is, we make the approximations �X � ��1(X0=�)0 and X
...

� ��1( _X0=�)0

in (42) (note we have used the unperturbated equations with _� � 0). The equations of

16



Figure 3: The relative positions of the curves y = f(m) (solid line) and y = g(m) (dotted
line) for typical values of the parameters 
 and �. Notice that the real positive solutions of

f(m)=0|corresponding to the exponentially growing solution of the equations of motion|is not

a solution of g(m) = 0.

motion then acquire an analogue of a viscosity term for which there are only damped

solutions. After performing this resubstitution one �nds that the approximate force (42)

becomes

f rad � 4�f2a�

3

� _X0

�

!0

� 1

�2

�
X0 � ( _X0=�)0

1� _X2

�
X0

�
;

f0;rad � 4�f2a��

3

� _X � ( _X0=�)0

1� _X2

�
:

(44)

The reason for the suppression of the exponentially growing solution becomes ap-

parent if we consider simpli�ed one-dimensional equations,

�X �X 00 = �X
...
; �! �X �X 00 � � _X 00 ; (45)

where we have performed the resubstitution assuming that � is small. We now take an

approximately periodic solution, X 00 � �
2X, and we substitute the ansatz X � emt.

The solutions for (45) are given respectively by the roots of the following polynomials in

m,

f(m) = �m3 �m2 � 
2 ; �! g(m) = �m2 � �
2m� 
2 : (46)
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Figure 4: A schematic of the contributions to the radiation backreaction force for a perturbed

long string con�guration. (a) The force is calculated by integrating along �, that is, summing

the contributions of all string segments on the backward light cone. (b) The expected appearance

of the actual radiation force contributions; this has a local maximum and a fairly rapid fall-o�

with cancellations. Here, L is the typical wavelength of perturbations on the string (or the string

curvature radius) and the area under the curve is the total magnitude of the force. (c) The radiation

force is estimated in the local backreaction approximation using the local magnitude of the force

and an e�ective width� for which the area under the two curves is equal. For this approximation

to be valid,� must be less than the string curvature radius.

If we rewrite f(m) = (m2+Am+
2+B)(�m�C), then we see that A = �
2+O(�2),

B = O(�2) and C = 1+O(�2). If we ignore terms O(�2), then the solutions of g(m) = 0

are approximately solutions of f(m) = 0. However, the real positive solution of f(m) = 0,

corresponding to the exponentially growing solution of the equations of motion, is not

a solution of g(m) = 0. Fig. 3 shows the relative positions of the curves y = f(m) and

y = g(m) for typical values of the parameters 
 and �.

2.8 Understanding the `local backreaction approximation'

The local backreaction approximation e�ectively reduces the problem of calculating the

backreaction force from the string to the equivalent problem for the electron. The as-

sumptions underlying (32) and (39) are that the dominant contributions to the integrals

(27), (28) and (30) come from string segments close to the point under consideration.

In �g. 4 we have schematically illustrated the construction of the radiation backreac-
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tion force in the local backreaction approximation. To calculate this force at the time

t at a particular point on the string (say � = 0), we must sum over the retarded time

contributions from all other string segments. For de�niteness, let us suppose we are con-

sidering a long straight string with perturbations of typical wavelength L (comparable

to the string curvature radius R). As we integrate along the backward light cone of

�g. 4a, we can expect force contributions to take a form appearing something like �g. 4b.

The precise rate of the fall-o� of this force density away from � = 0 is unknown, but

�niteness certainly implies that it is faster than 1=�. Moreover, regions of the string

beyond the curvature radius R will give negative, as well as positive, contributions and

the resulting net cancellations should ensure rapid convergence of the integrated force at

large distances.

The total area under the curve in �g. 4b represents the exact magnitude of the

radiation backreaction force. The `local backreaction approximation' to this force is

illustrated in �g. 4c. We calculate the actual magnitude of the force at the point in

question and we assume that the contribution from neighbouring segments falls away

rapidly beyond an e�ective width �. We then normalize � to ensure that the area

under the curve (c) is equal to that under curve (b). In x3 we shall discuss the procedure
for achieving this by comparing with analytic and numerical radiation calculations.

Of course, we do not expect our local force to evolve every string trajectory com-

pletely accurately. We are, after all, assuming a uniform �, though it is possible to

improve this �rst approximation. Furthermore, the force given by (42), which we shall

use in the numerical simulations of x3, breaks worldsheet covariance and so we should

anticipate di�culties describing some special `null' string trajectories. This is because

we have taken time as a preferred direction in the derivation of the Lienard-Wiechart po-

tentials. E�ectively, we calculate the backreaction force by summing up all contributions

from points on the string inside the region D given by

D =

�
(�; � ) s.t. ��=2 < � < �=2 ; ��=2 < � < �=2

�
; (47)

which corresponds to the shaded diamond in �g. 3a. However, there exists a family
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of elongated rectangular regions of equal area related to D by Lorentz boosts. If the

string trajectory has a typical wavelength (or periodicity) then it seems likely that the

contributions from the two regions will be similar and the inaccuracies in the force should

cancel out. We anticipate, therefore, that errors in the local backreaction approximation

should be small for generic long string trajectories and for closed loops where this `pseudo-

periodicity' is likely to be evident.

In essence the validity of the local backrection approximation hinges on whether the

following integral is small:

@�B��(x) = �fa
2

Z
j����j>�=2

d��
1

� � _X

@

@��

�
��V��

j� � _Xj

�����
��=�R

: (48)

To summarize, we believe that (48) can be neglected for strings in a realistic network

because the natural long distance force fall-o� will be augmented by strong cancellations

from a random superposition of distant modes. In any case, at the very least, this

approximation should work in an some `averaged' sense.

2.9 Analytic models for radiative decay

We can begin to develop con�dence in the veracity of the local backreaction approx-

imation by demonstrating that it predicts the correct scale-dependence of the overall

radiation power from closed loops and long string trajectories. By analogy with the

simple model for backreaction of ref. [5], we shall deduce expressions for the evolution of

the invariant string length L for loops and the relative amplitude E for perturbed long

strings, using some of the solutions we presented in x2.2.

(i) Closed loop solutions

For closed loops of invariant length L, we can estimate that _X � O(1) and X
...
� O(L�2)

(the actual average over one period is hj _Xji = 1=
p
2). If we take � � L in our local

approximation, then the power per unit length (43) is proportional to L�1, which im-

mediately recovers the well known result that the power loss from a loop is independent

of its size L [14]. In general, one can write the radiation power as

P = �af
2
a = �� ; (49)
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where �a is some factor dependent on the particular loop trajectory, but not its size and

� is the radiation backreaction scale, assumed to be independent of timey. The radiation
damping can be modelled by considering the following equations,

E = �

Z L

0

d�� = �L ;

P = �dE
dt

= �af
2
a = �� :

(50)

Integrating these equations one obtains,

L = L0 � �(t� t0) : (51)

(ii) Long string solutions

The generic result for a long string solution, parametrized by its wavelength L and

relative amplitude E, is _X � O(E) and X
...

� O(EL�2). If � � L, then the power per

unit length in (43) is

dP

dl
=
�E2
L

; (52)

where � � f2a quanti�es the overall strength of the radiation. By analogy to the closed

loops the radiation damping can be modelled by,

E =
�

L

Z L

0

d�� = �+ ��E2 ;

dP

dl
= �dE

dt
=
�E2
L

;

(53)

where � is the (order unity) solution-dependent coe�cent of E2 in the power series

expansion of �
1

L

Z L

0

dX3

d�
d�

��1

: (54)

The power loss (52) will lead to an exponential decay of the amplitude and oscillation

energy per unit length E,

E = E0 exp
�
� �t

2��L

�
; E = �+ ��E20 exp

�
� �t

��L

�
: (55)

y Problems involving global strings become intractable if the logarithmic time dependence of the string
tension is included. In cosmological problems one �nds that the logarithm changes by only about one order
of magnitude over the enormous timescale between string formation and the present day. We will make this
assumption in all the following calculations.
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Exponential decay has already been shown to be generic [5] for a realistic situa-

tion where the left- and right-moving amplitudes are not precisely the same as in (15).

However, for some of the periodic solutions of x2.2 such as the `standing wave' solu-

tions (14) and (17), the amplitude fall-o� was shown analytically to be a power law, a

fact also con�rmed in numerical �eld theory simulations [5]. How can we reconcile this

apparent contradiction? The answer lies in noting that the local backreaction approx-

imation only applies to string con�gurations in which long-range �eld correlations are

suppressed beyond the string curvature radius. Thus when we compare the e�ects of

the radiation backreaction force with numerical �eld theory simulations, we must ensure

that global correlations are suppressed, eliminating arti�cial situations with large-scale

periodic coherence.

3 Numerical Comparisons

3.1 Numerical methods

In order to solve the modi�ed equations of motion (39) and (44) numerically, one must

recast the simpli�ed resubstituted equations of motion into a �rst-order form accessible

to numerical solution. De�ning ~� = X0 � � _X and ~� = X0 + � _X, the equations of motion

can be rewritten as

�(�)

�
_~�+

�
~�

�

�0�
= �1

2

�
�f rad + f0;rad _X

�
;

�(�)

�
_~� �

� ~�
�

�0�
=

1

2

�
�f rad + f0;rad _X

�
;

�(�) _� = f0;rad ; _X =
1

2�

�
~� � ~�

�
:

(56)

Using the above, we were able to evolve string trajectories by modifying a total

variation non-increasing (TVNI) algorithm [22,9] which has already been well-tested for

string network evolution in an expanding universe. This method relies on the fact that

the �rst order equations of motion (56) are in conservative form, if the backreaction force

is zero. Arti�cial compression methods are used to prevent the numerical dissipation of

kinks. Typically, the algorithm maintains the perpendicularity condition _X �X0 = 0 and
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conserves energy to within a few percent over many timesteps. It should be noted that

the addition of a small backreaction forcing term does not seem to a�ect the stability

of the numerical scheme. However, if the backreaction force becomes larger than the

tension force, then the equations of motion become qualitatively di�erent behaving like

a di�usion equation rather than a hyperbolic wave equation. The characteristic Courant

condition for a di�usion equation is very much more restrictive and so stability problems

will emerge in this regime. One can address this numerical problem by arti�cally prevent-

ing the force from becoming too large, that is, the usual procedure of `force softening'.

There is a further technical numerical problem because the coordinate energy � decays

more rapidly at certain points (for example, at the cusps of the Kibble{Turok loops).

Eventually, this imposes an unacceptably small timestep on the simulation because we

always require �t < ��� everywhere. However, this problem can be solved by a number

of approaches, including multiple time-stepping in small � regions, by reparametrising

the string to redistribute � more evenly, or by eliminating such regions through `point-

joining' techniques.

In all the numerical simulations using the radiation backreaction force in this paper,

we have employed the constant damping coe�cent given by

4�f2a�

3�(�)
� 0:001L : (57)

This choice of damping coe�cient corresponds to the cosmologically interesting pareme-

ter range �(�) � 100f2a with our numerically determined normalization � � 0:1L which

we shall discuss in the next section. When we compare the results of these Nambu string

simulations with those using the underlying �eld theory for which �(�) � 5f2a , we have

had to perform a single global rescaling of the time axis in order to take into account

the di�erent radiation strengths.

As well as this one-dimensional e�ective model, we have developed sophisticated

numerical algorithms to dynamically simulate string con�gurations in the Goldstone

model (2) [5,23,24]. We discretize space on a three-dimensional grid with dimensions

N1;N2;N3 in the x; y; z directions respectively, solving the rescaled (fa ! 1; � ! 2)
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Euler-Lagrange equation,

@2�

@t2
� @2�

@x2
� @2�

@y2
� @2�

@z2
+�(���� 1) = 0 : (58)

We employ a second-order leapfrog algorithm for the time derivative and fourth-order

�nite di�erence approximations for the spatial derivatives. In problems where radiation

is incident on the boundaries, its sensible to use absorbing boundary conditions [5,24]. A

second order wave equation which annihilates the reected wave at the x = 0 boundary

is

@

@t

@�

@x
� @2�

@2t
+

1

2

�
@2�

@2y
+
@2�

@2z

�
= 0 : (59)

The e�cacy of these methods is discussed in some detail in ref. [5].

We use a cylindrically symmetric string ansatz to create initial conditions for both

long string and loop solutions as in ref. [5]. However, a naive application of this ansatz

arti�cially creates long-range correlations which do not conform with the assumptions

underlying the `local backreaction approximation'. As we have emphasised, general

con�gurations that occur in realistic string networks will not have �eld correlations

beyond the average curvature radius of the string because of reconnection processes

and causality constraints. Consequently, we have modi�ed our ansatz for long string

con�gurations by numerically suppressing the initial perturbations with the gaussian,

e�(jx�xsj=R)2 ; (60)

where R is the string curvature radius, x is the position in question and xs is the nearest

long string segment. At large distances r>>R, therefore, the string �elds will approach

those for a straight string, as we would expect in a general physical context for random

small-scale structure.

To make this distinction plain, �g. 5 illustrates the e�ect of large distance corre-

lation suppression on the decay of a periodic sinusoidal solution. The suppressed case

(�g. 5b) can be seen initially to decay more rapidly than the con�guration in which

perturbations in the �elds are correlated out to the simulation boundary (�g. 5a); the
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Figure 5: A comparison of the decay amplitude for a sinusoidal solution in full �eld theory (a)

without suppression and (b) with suppression of the �eld at the curvature radius. Notice that the

initial decay rate of the suppressed con�guration is much faster (exponential) than that for the

unsuppressed con�guration (power law) due to the long range correlations of the latter.

former is exponential decay, while the latter is power law. However, given the periodic

boundary conditions, this di�erence does not persist inde�nitely because the suppressed

con�guration will causally relax to an unsuppressed one, as the long range �elds become

correlated on larger and larger scales. Given this limitation imposed by the numerical

grid size, we can only expect to normalize the local backreaction approximation using

relatively short simulations (or by using non-periodic con�gurations).

3.2 Long string con�gurations

We have extensively tested the `local backreaction approximation', using the modi�ed
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Figure 6: Log-linear plots for the decay of amplitude for (a) a sinusoidal solution, (b) a pure

left moving helicoidal perturbation, and (c) a helicoidal perturbation with unequal left- and right-

moving amplitudes. The straight line typi�es the exponential decay.

Nambu equations of motion (56) and the approximate force derived from (42) by directly

comparing with �eld theory simulations of radiating strings in the Goldstone model.

Using our modi�ed Nambu string simulations, we �nd that exponential decay is

generic for all the long string con�gurations discussed in x2. This decay is illustrated

in �g. 6 for the sinusoidal solution (17), the pure right-moving helicoidal solution (16)

and the helicoidal solution with unequal left- and right-moving amplitudes (15). Fig. 7

illustrates the excellent quantitative agreement with the full �eld theory simulations by
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Figure 7: Decay of E using the radiative backreaction force (dotted line) and numerical �eld

theory simulations (solid line) for (a) a sinusoidal perturbation, (b) a helicoidal perturbation with

unequal left- and right-moving amplitudes, and (c) a pure left moving helicoidal perturbation. Note

the excellent quantitative agreement for all three cases.

direct comparison with the same three long string solutions. Note that these curves

have not been matched separately; the same backreaction damping coe�cient applies for

each and there has been only a single global rescaling. The agreement persists for the

longest time for the (generic) unequal left- and right-moving con�guration (15) because

exponential decay is predicted in this case even after �eld correlations have relaxed at

large distances. By comparing with the simple backreaction model for exponential decay

(55), one can use the numerical �eld theory results to normalize �, that is, we estimate

� � (0:1� 0:02)L (61)
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for the long string solutions investigated. This is a result for which there are considerable

uncertainties at this stage, mainly because of the imprecision inherent in our small-

scale �eld theory simulations. We had anticipated that � should be normalized to a

distance near the string radius of curvature R, which for a sinusoidal perturbation is

R � L=4. The fact that � is smaller than R validates the linearized expansion on which

the `local backreaction approximation' is based. The normalisation of the value of �

above can become ambiguous in certain physical contexts, such as a solution with a

number of di�erent Fourier modes. In this case, we must make a further approximation

by normalising to the lengthscale which is radiatively dominant.

We have also applied these numerical approaches to study the kink solution (19)

of x2. Fig. 8 compares the evolution of a sharp kink in both the local backreaction

approximation and in a �eld theory simulation. Backreaction leads to a substantial

rounding of the kink, in agreement with the intuitive picture described in refs. [25,5].

The results are almost indistinguishable except for the computational advantages of the

former which, in this case, saved a factor of 102 in cpu time and 104 in allocated memory.

We have also performed spectral analysis of the modes on the string using techniques

similar to those used in three dimensions in ref. [5]. The kink itself can be written as

an in�nite series of odd Fourier modes, while the anticipated endpoint, a sinusoidal

solution, is just a single Fourier mode. Fig. 9 illustrates the mode decomposition of the

kink solution initially and then at late times. Radiation backreaction causes decay in

all modes, but the higher harmonics are clearly damped much more strongly, leading to

the kink `rounding'. These spectra can be compared to the kink radiation �elds shown

in ref. [5] which demonstrate the same trend.

3.3 Closed loop solutions

We have also applied the local backreaction approximation to the study of loop solutions,

such as the Kibble-Turok loops described in x2.2. In this case, � � L is not independent

of time because the loop shrinks as it decays*. This problem can be circumvented in the

* For the long string solutions, periodic boundary conditions forced the solution to have a �xed time-
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Figure 8: Decay of a kink perturbation (E0=0:9) using (a) the radiation backreaction force

and (b) numerical �eld theory. Notice the visible rounding of the kink in both cases.

case of loops by choosing the cut-o� scale � equal to a constant multiple of the total

invariant string length,

L =

Z 2�

0

d� � ; (62)

which is easily calculable within the evolution algorithm described earlier.

The damped evolution of the special kinky loop solution (12) is shown after several

oscillations in �g. 10. As the loop shrinks in size, there is discernible `rounding' due to

the radiative damping, though it is less pronounced than in the long string kink decay.

Unfortunately, evolution for this and other loops could not be continued inde�nitely be-

cause a numerical solution to the Courant violation problem in small � regions has yet to

be implemented (refer to x3.1). However, the observed `rounding' is at least qualitatively
in agreement with a previous attempt to study gravitational backreaction in ref. [26]. In

independent wavelength � � L.
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Figure 9: The time evolution of the Fourier modes of an initial kink con�guration (a). Note the

damping of higher modes after 16 oscillations in (b).

Figure 10: The time evolution of a kinky loop solution shown initially and after 5 and 10

oscillations. Note the decrease in loop size and discernible kink `rounding'.
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Figure 11: The e�ect of radiative damping on loop energy for � = 0 Kibble{Turok loops with

� = �=12 (solid line), �=3; (dotted line) and 5�=12 (dashed line). Note the expected linear

decay of the loop length.

this non-local approach, all the retarded time radiation contributions were accumulated

for an unperturbed loop trajectory and then these `corrections' were applied at the end

of each oscillation period. Unlike the local backreaction approximation, there is little

prospect of such `exact' approaches being implemented in network simulations because

the O(N2) algorithms require a supercomputer to evolve a single loop. Nevertheless, we

anticipate future quantitative comparisons with such methods to determine the accuracy

of our approach.

The evolution of the energy of some Kibble{Turok loops is illustrated in �g. 11.

One can readily observe the linear decay of these solutions, as expected from our simple

backreaction model (51). Notice, however, the oscillatory nature of the decay due to

stronger radiation when the loop trajectories becomes more convoluted and when cusps
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appear. It is interesting to note that a preliminary analysis indicates that, while cusp

velocities are curtailed by backreaction, their periodic reappearance in these particular

solutions is not actually prevented.

The overall decay rate in �g. 11 is parameter dependent; the slope yields the back-

reaction scale � (or �a) in (49) which is appropriate for the particular loop trajectory.

Fig. 12 illustrates the �-dependence of � for the � = 0 loop solutions (11). This is

qualitatively similar to analytic estimates of the radiation from these loops, though at

this stage we can only compare to results for gravitational radiation [14]. Note, how-

ever, that the divergences at small and large � become weakened relative to the previous

analysis; this may reect a shortcoming of our approximation or the genuine inuence of

backreaction. However, a considerably more detailed quantitative analysis is necessary

to test the accuracy of this approach, especially if we are to normalize it properly for

string network simulations.

A study of the overall Kibble{Turok loop parameter space (which previous anal-

yses have regarded as fairly typical) yielded an approximate value � � 0:1, given the

assumed damping coe�cient (57) which was set by normalizing � with the long string

results. However, � � 0:1 is the typical backreaction scale expected for GUT-scale global

string loops with �(�) � 100f2a (refer to ref. [14,10]), thus independently validating our

previous normalization

� � 0:1L : (63)

Given that the case for the local backreaction approximation is not as clear-cut for closed

loop solutions, these results must be regarded as encouraging. At the very least, this

approach can be used to phenomenologically incorporate expected loop decay rates, but

results to date suggest it will do substantially better.

4 Radiative backreaction in an expanding universe

Our current understanding of the evolution of a cosmic string network is based on a mar-

riage between analytic models and sophisticated network simulations [8,9]. However, the
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Figure 12: Parameter dependence of the backreaction scale � for � = 0 Kibble{Turok loops

using the local backreaction approximation.

network simulations only evolve the free equations of motion for a string in an expanding

universe. In order to incorporate the radiative e�ects discussed in the preceding section

one must modify the equations of motion to include a radiation damping term,

�0

�
�X+

2_a

a
(1 � _X2) _X � 1

�

�
X0

�

�0�
= f ;

�0

�
_�+

2_a

a
� _X2

�
= f0 ;

(64)

where a is the scale factor.

However, to calculate this radiation damping term one must use Green functions in

an expanding background. In the radiation-dominated era, the retarded Green function

is

Dret(x; x
0) =

a(�)

2�a(�0)
�
�
(x � x0)2

�
�(� � �0) : (65)
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where x� = (�;x) and x0� = (�0;x0). In the matter-dominated era the retarded Green

function also includes the e�ects of back-scatter o� the background spacetime curvature,

Dret(x; x
0) =

a(�)

2�a(�0)

�
�
�
(x � x0)2

�
�(� � �0) +

1

2��0
�(� � �0 � jx� x0j)

�
: (66)

Applying, the `local backreaction approximation' in either of these scenarios, one �nds

that the forcing terms are given by,

f rad = f radat +
_a

a
g +O(1=t3) ;

f0;rad = f
0;rad
at +

_a

a
g0 +O(1=t3) ;

where the at su�x denotes the at space backreaction force given by (42) and (g0;g)

is a correction to the force due to the expanding background. Notice that to eliminate

`runaway' solutions due to X
...
, we must now resubstitute the damped expanding universe

equations of motion (64). Recall that perturbations with lengthscales r>>H�1 are essen-

tially `frozen' by Hubble damping. It is for the same reason that large-scale perturbations

will not radiate, despite the high degree of string curvature on these lengthscales.

The forced equations of motion (64) can be averaged to derive equations for the

evolution of the density of long strings (�1) and loops (�L), under the inuence of the

expansion, Hubble damping and the radiation backreaction force. If one now inserts a

term to take into account of loop production, the equations become

_�1 = �2 _a

a
(1 + hv2i)�1 � c�1

L
� d�1

L
;

_�L = �3 _a

a
�L +

c�1

L
;

(67)

where

d = d0 +
_a

a
d1 +O(1=t2) ;

hv2i is the average string velocity, d0; d1; :: are constants and c is a measure of the

e�ciency of loop production. Substituting �1 = ��=t2 and L = ��1=2t into (67), one

obtains
_�

�
=

1

t

�
2� 2�(1 + hv2i) � (c+ d)�1=2

�
; (68)
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where � is determined by the scalefactor, a / t�. Eqn (68) has an attractive �xed point,

which corresponds to the scaling regime. If di = 0 for i > 0, then we have

c = ��1=2(1 � hv2i) � d0 :

In the case where d1 is non-zero, one should observe transient e�ects in the scaling.

However, for large times these e�ects will be negligible and the attractive �xed point is

exactly that for d1 = 0.

5 Conclusions

We have introduced, and we have endeavoured to justify, a new approach to the study

of radiation backreaction on strings (and other extended objects and membranes). If

our analysis and the supporting evidence is valid, then the `local backreaction approxi-

mation' o�ers the hope of quantitative insight into the essentially intractable problem of

radiative damping e�ects during string network evolution. It is appropriate, therefore,

to summarize the main points in our discussion.

By exploiting the analogy with classical electrodynamics we have used Green func-

tion methods to separate the self- and radiation �elds of a global string, using the former

to renormalize the string tension. We then approximated the radiation force at a point

on the string by an expansion in powers of a cut-o� parameter �. The `local back-

reaction approximation' to the radiation force, then, is the local force at the point in

question multiplied by an e�ective width � beyond which the neighbouring string seg-

ment contributions become negligible. We normalize � in order to reproduce the actual

radiation force in known situations and we have con�rmed the self-consistency of the

approximation by demonstrating that � is less than the string curvature radius. We

then generalized this approach to the temporal transverse gauge, a convenient gauge for

studying dissipative string processes. The �nal step was to remove unphysical `runaway'

solutions, which plague the analogous point-particle analysis, by resubstituting the string

equations of motion.
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We then tested a numerical implementation of the `local backreaction approxima-

tion' by investigating a variety of long string and closed loop trajectories. We have

directly compared the results with analytic radiation calculations and numerical �eld

theory simulations, demonstrating a consistent normalization for � using these inde-

pendent methods. This approach reproduces the correct scale-dependence of radiative

e�ects and demonstrates satisfactory quantitative agreement for a wide variety of dif-

ferent solutions. There is clearly scope for a more detailed analysis of the accuracy of

this approach and for addressing a number of outstanding issues. However, we have

presented su�cient grounds for believing that the `local backreaction approximation' is

a signi�cant step forward in the study of string radiative backreaction.
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