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Abstract

We consider gravitationally induced perturbations of relativistic Dirac{Goto{Nambu mem-
branes and strings (or p-branes). The dynamics are described by the �rst and second fun-
damental tensors, and related curvature tensors in an n-dimensional spacetime. We show how
equations of motion can be derived for the perturbations within a general gauge and then discuss
how various simple gauge choices can be used to simplify the equations of motion for speci�c
applications. We also show how the same equations of motion can be derived from an e�ective
action by a variational principle. Finally, we compare these equations of motion to those using
more familiar notation for brane dynamics, which involves the induced metric on the world-
sheet. This work sets up a general formalism for understanding the e�ects of backreaction on
brane dynamics and the background curvature.

1. Introduction

Relativistic membranes and strings (or p-branes) occur as topological defects and other soli-

tonic structures in a variety of physical contexts [1]. Possibly the most exciting of these is the

formation of defects during phase transitions in the early universe [2]. The localised energy of

these defects is likely to extremely large and therefore their gravitational e�ects maybe cos-

mologically signi�cant. In particular, cosmic strings may have been the initial seeds for the

formation of galaxies and other large scale structure [3]. Therefore, an understanding of the

precise dynamics of branes is of signi�cant interest. Of particular interest is e�ect of backre-

action on the dynamics of the brane and the related e�ects on background curvature. In this

letter we set up a mathematical formalism by which such e�ects can be studied. The original
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motivation was to study the e�ects of gravitational radiation backreaction [4,5] on a network of

cosmic strings [6] and subsequent stochastic gravitational radiation background [7,8,9]. How-

ever, the results presented here are completely general and apply to a p-dimensional brane in

an n-dimensional spacetime. (NB. A 0{brane is a point particle, a 1{brane is a string, etc.)

The usual approach to brane dynamics involves specifying the coordinates of the brane

X� = X�(�a), where a = 0; ::; p and the �a are internal coordinates on the worldsheet. The

spacetime interval between two neighbouring points is

ds2 = g��@aX
�@bX

�d�ad�b ; (1)

where g�� is the spacetime metric and @a = @=@�a. Hence, the induced p+1 dimensional

worldsheet metric is given by

ab = g��@aX
�@bX

� : (2)

The contravariant inverse metric tensor ab can be de�ned as usual by abbc = �ac and

kk = det(ab) is the determinant of the induced metric. This bi-tensorial approach, using

quantities such as @aX
� that are tensorial with respect to both background and internal in-

dices, is useful for explicit computation in physical applications. However, long calculations

using this traditional approach can become extremely cumbersome due to the large number

of internal indices involved. For this reason, we will use the more concise pure background

tensorial formalism for brane dynamics developed in refs. [10,11,12,13]. In this formalism cal-

culations are simpli�ed by the lack of dependence on gauge and internal coordinate choices.

Simple gauge and coordinate choices will allow one to convert the expressions deduced here

into more physically usable expressions.

In the application of this formalism it is desirable to organise the tensors governing the

dynamics in terms of components that are tangential or perpendicular to the worldsheet. To

this end we de�ne the �rst fundamental tensor, or tangential projection tensor, as

��� = ab@aX
�@bX

� ; (3)

and we use the notation ?��= g������ for its orthogonal complement. For tensor �elds whose

support is con�ned to the worldsheet only the tangentially projected covariant di�erentiation,

r� = � �
� r� ; (4)

2



is well de�ned. Using this one can de�ne the second fundamental tensor and the curvature

vector as

K �
�� = ���r��

�� ; K� = g��K �
�� : (5)

The second fundamental tensor can be shown to have the following elementary properties

?�� K �
�� = 0 ; ���K

�
�� = 0 ; K

�
[��] = 0 ; r���� = 2K�(��) ; r��

�� = K� ; (6)

where round and square brackets denote index symmetrisation and antisymmetrisation, i.e.

A(��) =
1
2
(A�� +A��) and A[��] =

1
2
(A�� �A��). Using the de�nition of the �rst fundamental

tensor (3) and the properties of the second fundamental tensor (6), one can deduce that

K� = kk�1=2@a
�
kk1=2@aX�

�
+ ����

�
�� ;

K��� =? �
�

�
@aX�@bX�@a@bX

� + ����������
�
:

(7)

using the obvious abbreviation @a = ab@b. These relations allow one to convert between the

traditional bi{tensor formalism and the more concise formalism using only background indices.

For an e�ective action of the simplest type, as exempli�ed by the Dirac action for mem-

branes or the Nambu action for strings, the variational principle gives equations of motion for

the brane that are expressible [10] simply by

K� = 0 ; (8)

in the absence of any coupling of the worldsheet to any other �elds. In this letter, we shall

derive the equations of motion for small gravitationally induced perturbations in a general

gauge. These equations are shown to simplify in certain special gauge choices. Then we show

how the exact same equations of motion can be deduced by introducing perturbations into

the e�ective action before using the variational principle. Finally, we use the properties of the

second fundamental tensor (6) and the conversion formulae (7) to compare to those derived

using more traditional notation. This allows direct comparison with results derived in ref. [5]

for gravitational perturbations of a Goto{Nambu string.

2. Gravitationally induced perturbations

One of the most fascinating aspects of the Einstein �eld equations is the existence of radiative

solutions, similar to those found in electromagnetism and other gauge theories. This similarity
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may provide a hint to the crucial missing link between general relativity and gauge theories. In

order to study such phenomena, one must perturb the Einstein �eld equations. There are many

di�erent ways of doing this, the most common being Lagrangian and Eulerian perturbations.

In a Lagrangian scheme, the perturbations are de�ned with respect to a reference system that is

comoving with the relevant displacement, whereas in an Eulerian scheme the reference system

remains �xed. In�nitesimal Lagrangian and Eulerian perturbations, denoted by �
L
and �

E

respectively, can be related by the Lie derivative L�,

�
L
= �

E
+ L�; ; (9)

with respect to �� the Lagrangian perturbation of some arbitrary coordinate system, that is

�� = �
L
x�. For the purposes of this letter, we shall only consider Lagrangian perturbations,

since �
L
X� = 0. However, it is a simple exercise to deduce the related Eulerian perturbations

using (9).

Using the de�nitions (3) and (5), one can deduce that

�
L
��� = ��������

L
g�� ; �

L
��� = ��� ?�

� �
L
g�� ; (10)

and

�
L
K �
�� =?�

� ����
�
� �L�

�
�� +

�
2 ?�

(� K
��

�) �K �
�� ���

�
�
L
g�� ; (11)

where the Lagrangian variation of the connection is given by the well known formula

�
L
���� = g��

�
r(� �Lg�)� �

1
2
r� �Lg��

�
: (12)

Previous work on this subject [12] was restricted to cases for which the background was �xed in

advance, so that there is no Eulerian variation of the metric, that is �
E
g�� = 0. In this case, the

Lagrangian variation is just the Lie derivative with respect to ��, that is �
L
g�� = 2r(���). Here,

we shall allow also for the possibility that the background spacetime metric is perturbed, so

that there will be a non-zero Eulerian variation, �
E
g�� = h�� . Therefore, the total Lagrangian

variation of the metric will be given by

�
L
g�� = 2r(���) + h�� : (13)

As with standard treatments of linearized gravity, we shall ignore terms higher than �rst order

in h�� and ��.
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Using (10) and (12), the Lagrangian variations of the �rst fundamental tensor and connec-

tion are given by

�
L
��� = �2� (�

� r�)�� � ������h�� ; (14)

and

�
L
���� = r(�r�)�

� �R�
(��)��

� +r(� h
�

�) �
1

2
r�h�� ; (15)

where R�
��� is the background Riemann curvature tensor, which will be negligible in appli-

cations for which the length-scales characterising the geometric features of interest are small

compared with those characterising any background spacetime curvature. Substituting (15)

into (11) implies that

�
L
K �
�� = ?

�
�

�
r(�r�)�

� � ��(��
�
�)R

�
����

� �K�
(��)r��

�
�

+
�
2 ?�

(� K
�

�)� � ���K
�

��

��
r��

� +r� ��
�

+ ?�
� ����

�
�

�
r(�h

�
�) �

1
2
r� h��

�
+
�
2 ?�

(� K
��

�) �K �
�� ���

�
h�� :

(16)

The �nal line is the extra contribution, due to the non-zero Eulerian perturbation of the metric.

The corresponding expression for Lagrangian perturbations of the curvature vector is

�
L
K� = g���

L
K �
�� +K �

�� �
L
g�� : (17)

Substituting from (16), one �nally obtains

�
L
K� = ?�

� ���
�
r�r��

� �R�
����

�
�
� 2K ��

� r��
� �K�

�
r��

� +r
�
��
�

+ ?�
� ���

�
r�h

�
� � 1

2
r� h��

�
�
�
K��� +K����

�
h�� :

(18)

All these Lagrangian variations will be invariant with respect to background coordinate

gauge transformations generated by an arbitrary vector �eld ��, according to the speci�cation

�� 7! �� � �� ; h�� 7! h�� + 2r(���) : (19)

The worldsheet itself is also invariant with respect to internal coordinate gauge transformations

generated by an arbitrary tangential vector �eld �� according to the speci�cation

�� 7! �� + �� ?�
� �� = 0 ; (20)

which can be used to impose the orthogonal gauge condition ����
� = 0, without restricting

the background gauge freedom (19). In particular, one may also choose the the standard
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harmonic gauge condition, r�h�� �
1
2
r� h = 0, where h = g��h��, which is usually the

most convenient for practical applications, since it greatly simpli�es the wave equation for h�� .

Another possibility would be to use the comoving gauge condition �� = 0. However, in this case

the wave equation for h�� would be much more complicated. Since K� = 0 for an unperturbed

Goto-Nambu string, the equation of motion for the perturbation �� is

?�� ���
�
r�r��� �R�����

�
�
�K���

�
2r��� + h��

�
+ ?�� ���

�
r�h�� �

1
2
r�h��

�
= 0 : (21)

3. The alternative combined perturbation procedure

The procedure outlines in the proceeding section consists of making successive approximations

for the perturbations, whereby one �rst solves the zeroth order equation for X� and then solves

the �rst order equation for ��. An alternative procedure { which can be used safely when h��

represents a weak, previously given gravitational wave �eld, but that leads to runaway solutions

for the backreaction problem { is to choose the unperturbed world sheet to coincide with the

perturbed world sheet. In this case, the curvature vector non-longer satis�es K� = 0, but one

now automatically has �� = 0, independently of the gauge used for h��. This contrasts with

the successive approximation approach in which �� could only have been set to zero by �xing

the gauge in a manner that would have been incompatible with the harmonic gauge condition.

Instead of the separate zeroth and �rst order equations whereby K� and �
L
K� are set to zero

separately, in this alternative procedure one just has a single equation, expressible { neglecting

second order corrections { as K� + �
L
K� = 0, that is

K� � (K��� +K����)h��+ ?�� ���
�
r�h�� �

1
2
r�h��

�
= 0 : (22)

Remembering that K� � O(h), one sees that { again subject to neglect of second order

corrections, O(h2) { the tangential projection of (22) is satis�ed automatically as a mere iden-

tity, while its projection perpendicular to the worldsheet gives the remaining non-trivial part

of the dynamical equations of the perturbed worldsheet in the simpler form

K� �K���h��+ ?�� ���
�
r�h�� �

1
2
r�h��

�
= 0 : (23)

In this alternative formulation, the inclusion in h�� of the gravitational self-�eld leads to the

familiar problem of unphysical runaway solutions. This di�culty can be consistently overcome

using a local backreaction approximation and resubstituting the equations of motion [4,5].
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4. Variational approach to perturbations

One can also obtain the result (23) by considering the variation of an action integral of the

form

I =

Z
Lkk

1=2
dp+1� =

Z
L̂kgk

1=2
dnx ; (24)

where in standard Dirac notation the distributional background Lagrangian scalar �eld L̂ is

given in terms of the regular worldsheet Lagrangian density L by

L̂ = kgk�1=2
Z
L�n[x� xf�g]kk

1=2
dp+1� : (25)

In such a formulation, the e�ect to �rst order of the Eulerian variation g�� 7! g�� + h�� will

be expressible simply by L 7! L
G
, where the gravitationally coupled \gross" Lagrangian L

G
is

given by

L
G
= L + 1

2
h��T

��; (26)

and the worldsheet energy{momentum density tensor is given by the standard formula

T �� = 2kk�1=2
�

�g��

�
Lkk1=2

�
= 2

�L

�g��
+L��� : (27)

The overhead bar is used to distinguish this regular, fworldsheet con�ned tensor �eld from the

corresponding Dirac distributional background spacetime energy{momentum density tensor

�eld

T̂�� = 2kgk�1=2
�

�g��

�
L̂kgk1=2

�
= kgk�1=2

Z
T�� �n[x�Xf�ag] kk1=2 dp+1� ; (28)

which will act as the gravitational source for h�� . Using (26) one can de�ne the corresponding

\gross" surface energy momentum density tensor as

T
G

�� = T�� + C����h�� ; (29)

where C���� = C���� is the automatically symmetric hyper-Cauchy tensor [14],

C���� = kk�1=2
�

�g��

�
T ��kk1=2

�
=

�T ��

�g��
+

1

2
T ����� ; (30)

the relativistic generalisation of the ordinary space projected Cauchy type elasticity tensor [15].
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In the application of the variational principle, the worldsheet is supposed to undergo an

in�nitesimal virtual displacement x� 7! x� + �� so that the action integrand will undergo a

Lagrangian variation given by

kk�1=2�
L

�
L
G
kk1=2

�
= 1

2
T
G

���
L
g�� +

1
2
T���

L
h�� ; (31)

where the Lagrangian variations of g�� and h�� are given by their Lie derivatives with respect

to ��,

�
L
g�� = 2r(���) ; �

L
h�� = ��r�h�� + 2h�(�r�)�

� : (32)

Therefore, the variation of the action integrand is

kk�1=2�
L

�
L
G
kk1=2

�
= r�

�
��(T

G

�
� + T��h��)

�
� ��

�
r�

�
T
G

�
� + T��h��

�
� 1

2
T��r�h��

�
:

(33)

The �rst term is a surface divergence and can be ignored by using Green's theorem. Therefore,

variational invariance reduces to the requirement that the coe�cient of �� in the second term

should vanish, that is

r�

�
T
G

�� + T��h �
�

�
= 1

2
T��r�h�� : (34)

Regrouping the �rst order terms onto the right side, this dynamical equation can conveniently

be rewritten as

r�T
�� = f� ; (35)

where the e�ective surface force density due to the gravitational perturbation is given by

f� = 1
2
T��r�h�� �r�

�
T��h�

� + C����h��
�
: (36)

For a Dirac{Goto{Nambu membrane or string, the unperturbed Lagrangian is just a con-

stant and therefore

L = �mp+1 ; T�� = �mp+1��� ; (37)

where m is some �xed parameter having the dimensions of a mass. In general m would be

expected to be of the same order of magnitude as the relevant Higgs mass of the underlying

�eld theoretical model. However, in some cases it could be very much larger, for example a

global string. Using (37) one can deduce that the hyper-Cauchy tensor is

C���� =mp+1
�
��(���)� � 1

2
������

�
: (38)
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If one now substitutes (37) and (38) into (26) and (29), the gravitationally coupled \gross"

Lagrangian is given by

L
G
= �mp+1

�
1 + 1

2
���h��

�
: (39)

and the corresponding \gross" surface energy{momentum tensor is given by

T
G

�� =mp+1

�
������h�� � ���

�
1 + 1

2
���h��

��
: (40)

Using the properties the �rst and second fundamental tensors (6), one can deduce that the

force density induced by the gravitational perturbations is

f
�
= mp+1

�
?�� ���

�
r�h�� �

1
2
r�h��

�
+
�
?�� K� + 1

2
���K� �K���

�
h��

�
: (41)

This force is orthogonal to the worldsheet, that is ���f
�
= 0, which is a Noether identity

resulting from the lack of internal structure in the Dirac{Goto{Nambu case.

Using (35), the dynamical equations are thus obtained in the �nal form

K� +
�
?�� K� + 1

2
���K� �K���

�
h��+ ?�� ���

�
r�h�� �

1
2
r�h��

�
= 0 : (42)

In order to account for the small,second order discrepancy between this �nal variational equation

(42) and the previous equation (23) that was obtained via a less sophisticated approach by

considering K�+ �
L
K� = 0, one must understand that in the variational case we are e�ectively

considering variations of kk1=2K�, instead of just K�. The equation (42) can be seen to be

exactly equivalent to

K� + �
L
K� + kk�1=2�

L

�
kk1=2

�
K� + h��K

� = 0 (43)

where kk�1=2�
L

�
kk1=2

�
= 1

2
���h�� . Another alternative equation could be similarly deduced

by considering variations of kk1=2K�. However all these di�erent dynamical equations can be

seen to agree to within corrections O(h2), when one uses the fact that K� � O(h).

5. Comparison to results in traditional notation

We have shown that the equation (23) describes the dynamics of a perturbed Dirac Goto-Nambu

membrane or string. This problem has also been studied for strings using more traditional

notation [5]. It should be possible to show that the results obtained by the two approaches are
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ultimately equivalent. In order to do this we split the forcing terms up into two parts, writing

the dynamical equation (23) in the form

K� = F
�
1 + F

�
2 ; (44)

with

F
�
1 = � ?�� ���

�
r�h�� �

1
2
r�h��

�
; F

�
2 = h��K

��� ; (45)

in which F
�
1 depends only on derivatives of h�� and F

�
2 depends only on the undi�erentiated

metric perturbation h�� .

Using the de�nition of ?��, it is a trivial exercise to show that

F
�
1 =������

�
r�h�� �

1
2
r�h��

�
� ���

�
r�h

�
� �

1
2
r�h��

�

=

�
����� � 1

2
�����

�
rh�� �

1
2
���

�
�r�h�� +r�h

�
� +r�h

�
�

�
:

(46)

Evaluating the above expression for F
�
2 is more tricky. Using the formula for r��

�� = 2K
(��)

�

with the formula (3) for the �rst fundamental tensor, and making the chain rule substitution

@a�
�� = @aX

�@��
�� , one can deduce that

F
�
2 =h��

�
���@��

�� � 1
2
���@��

�� + �
�
���

�����
�

=h��

�
@��

��ab@aX
�@bX

� � 1
2
@��

��ab@aX
�@bX

� +�
�
���

�����
�
;

(47)

from which we �nally obtain

F
�
2 = h��

�
ab@a

�
cd@cX

�@dX
�
�
@bX

� � 1
2
ab@a

�
cd@cX

�@dX
�
�
@bX

� + �
�
���

�����
�
: (48)

It can be checked that this agrees with what is obtained by the traditional approach [5].
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