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Abstract

The scalar form factor of the nucleon and related physical quantities are in-

vestigated in the framework of the semibosonized SU(3) Nambu-Jona-Lasinio

soliton model. We take into account the rotational 1=Nc corrections and lin-

ear ms corrections. The strangeness content of the nucleon in the scalar form

factor is discussed in detail. In particular, it is found that the ms corrections

play an essential role of reducing the hN j�ssjNi arising from the leading or-

der and rotational 1=Nc contributions. We obtain the ��N (0) = 40:80 MeV,

�� = ��N (2m
2
�) � ��N (0) = 18:18 MeV and hr2iSN = 1:50 fm2. The re-

sults are in a remarkable agreement with empirical data analyzed by Gasser,

Leutwyler, and Sainio [3].
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I. INTRODUCTION

Since Cheng [1] showed that there is a factor-of-two discrepancy between the empirical

data for the pion-nucleon sigma term (��N ) and the naive estimates of the �-term from

the mass spectrum, there have been a great deal of discussions and disputes about the ��N

and � term (see Ref. [2,3] and references therein). Donoghue and Nappi [4] suggested that

the discrepancy is due to the presence of strange quarks in the nucleon, i.e. hN j�ssjNi 6= 0

and showed that hN j�ssjNi contributes almost 30% to the quark condensate in the nucleon,

making use of the Skyrme model and bag model. At the �rst thought, it seems to be

reasonable, since Cheng used the Zweig rule, i.e. neglected hN j�ssjNi. However, one serious

question arises: a large fraction of the nucleon mass then stems from strange quarks if one

follows Ref. [4], which contradicts the quark model. Another assumption was that the ratio

ms= �m is o� by a factor of two, which means that the �rst order perturbation theory collapses.

However, this kind of suggestion would lead to a breakdown of the Gell-Mann-Okubo mass

formula which predict the masses of hadrons in a few percent.

Motivated by these contradictions, Gasser, Leutwyler and Sainio [3] recently reanalysed

the � term prudently, taking advantage of newly accumulated and better �N scattering

data and considering the strong t-dependence of the scalar form factor �(t) (�(2m2
�) �

�(0) ' 15 MeV). The results of Ref. [3] were � = 45 � 8MeV and � ' 60MeV. The

y = 2hN j�ssjNi=hN j�uu + �ddjNi, a share of hN j�ssjNi in the � term, was about 0.2, so

that the corresponding contribution of the term hN j�ssjNi to the nucleon mass was about

130 MeV.

In the meanwhile, the e�orts to understand the � term puzzle theoretically have con-

tinued [5{7]. However, the bone of contention still lies in the role of strange quarks, more

speci�cally the contribution of the hN j�ssjNi to the � term. Recently, several works insist

that there is no need to introduce a portion of strange quarks to explain the � term discrep-

ancy. Bass [6] proposed that based on the Gribov con�nement the value of the � term can be

explained without need to invoke large strangeness content of the nucleon. Ball, Forte and
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Tigg [5] also suggested that with the correct understanding of the baryon matrix element the

� term (identi�ed with �8 = �mhN j�uu+ �dd � 2�ssjNi ) can be reproduced without violating

the Zweig rule. Hence, following these arguments, strange quarks do not contribute to the

nucleon mass. Though it should be small, it is still important to consider the contribution of

strange quarks to the � term, in line with recent experiments indicating the fact that strange

quarks might play an important role of explaining the properties of the nucleon [8,9].

It is the object of the present work to study the strangeness contribution to the � term in

the framework of the semi-bosonized SU(3) Nambu-Jona-Lasinio soliton model (often called

as the chiral quark soliton model). In our model, the nucleon is understood explicitly as

Nc valence quarks coupled to the polarized Dirac sea bound by a non-trivial chiral mean

�eld con�guration. The proper quantum numbers of the nucleon can be acquired by the

semiclassical quantization [10,11] performed via integrating over the zero-mode 
uctuations

of the pion �eld around the saddle point. It allows the nucleon to carry proper quantum

numbers such as spins and isospins. The SU(3) NJL soliton model has a merit in that

it interpolates between the nonrelativistic naive quark model and the Skyrme model. It

enables us to study the interplay between these two di�erent models [12]. The model is

quite successful in describing the static properties of the baryons and their form factors

[13{15].

The outline of the paper is as follows: In the next section, we sketch the basic formalism

for the scalar form factor in SU(3) NJL soliton the model. In section 3, we present the

numerical results and discuss about them. In section 4, we summarize the present work and

remark the conclusion.

II. FORMALISM

The scalar form factor �(t) is de�ned as a condensate of u and d quarks in the nucleon:

�(t) = �mhN(p0)j�uu+ �ddjN(p)i (1)
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with �m = (mu +md)=2 ' 6 MeV. The t denotes the square of the momentum transfer. Our

model is characterized by a low{momenta QCD partition function in Euclidean space given

by the functional integral over pseudoscalar meson and quark �elds:

Z =
Z
D	D	yD�A exp

�
�
Z
d4x	yiD	

�
(2)

where

iD = �(�i/@ + MU
5 + m̂); U
5 = ei�
a�a
5: (3)

�a are SU(3) Gell-Mann matrices normalized as Tr�a�b = 2�ab. The m̂ denotes the cur-

rent quark mass matrix for which we take the form diag(mu;md;ms), where mu;md and

ms are the corresponding current quark masses of the up, down and strange quark, respec-

tively. Here, we assume that isospin symmetry is not broken, i.e. mu = md = �m. The M

stands for the momentum{dependent dynamical mass arising from the spontaneous chiral

symmetry breaking. The momentum{dependence of the M introduces the ultra{violet cut{

o�. However, we shall regard it as a constant for simplicity. Instead, we employ a simple

proper{time regularization. The di�erential operator iD is expressed in Euclidean space in

terms of the Euclidean time derivative @� , the Dirac one-particle Hamiltonian H(U) and

symmetry breaking part [17]:

iD = @� + H(U) + hsb (4)

with

H(U) =
~� � r
i

+ �MuU + � �m1; hsb = ��01 + ��8�8: (5)

Here, we have made the famous embedding Ansatz for the pseudoscalar �elds U
5 and U is

expressed by

U =

0
BB@ U0 0

0 1

1
CCA : (6)
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The U0 expresses the SU(2) chiral background �eld U0 = exp i[~n � ~�P (r)] with the hedgehog

Ansatz. P (r) denotes the pro�le function with proper boundary conditions. �0 and �8 are

de�ned by �0 = (Ms�Mu)=3 and �8 = �(Ms�Mu)=
p

3. Ms and Mu are constituent quark

masses of the s and u quarks respectively. The Mu is used as an input parameter, while

the Ms is determined by the gap equation [17]. The current strange quark mass ms is also

settled in the same way. We treat the explicit symmetry breaking term hsb perturbatively.

The hadronic matrix elements of the �N �{term is related to the correlation function

�(t) �
T!1

h0jJN (~x;
T

2
)�̂J

y
N (~y;�T

2
)j0i (7)

at large Euclidean time T . �̂ is the quark operator for the � term, de�ned by �̂ = �m(�uu+ �dd).

JN is the nucleon current constructed from Nc quark �elds [10]

JN(x) =
1

Nc!
�i1���iNc�

�1����Nc
JJ3TT3Y

 �1i1(x) � � � �
Nc

i
Nc

(x): (8)

�1 � � ��Nc denote spin{
avor indices, while i1 � � � iNc designate color indices. The matrices

�
�1����Nc
JJ3TT3Y

are taken to endow the corresponding current with the quantum numbers JJ3TT3Y .

The J
y
B plays the role of creating the baryon state.

The integral over the quark �elds are trivial. The integral over the pseudo-Goldstone

boson �elds can be performed by the saddle point method in the large Nc limit. In order to

�nd the quantum 1=Nc corrections, it is important to take into account the small oscillations

of the pseudo-Goldstone bosons around the saddle point and the zero modes. The zero modes

are taken into account by the soliton expressed by ~U(~x; x4) = A(x4)U(~x� ~Z)Ay(x4) with an

SU(3) unitary matrix A(t). Hence, the collective action Seff becomes

~Seff = �NcSp log (iD)

= �NcSp log

�
@� + H( ~U ) + Ay(x4) _A(x4) � i�

_~Z � r

+ Ay(x4)hsbA(x4) � �(y)�Ay(x4)
1p
3

(
p

2�0 + �8)A(x4)

#
(9)

with the angular velocity Ay(x4) _A(x4) = i
E = i
a
E�

a=2. Sp denotes the functional trace.

The � stands for the external scalar �eld, with regard to which we make a functional deriva-

tive so as to obtain the sigma form factor:
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�(t) = �Nc

�

��(z)
Sp log

�
@� + H( ~U ) + Ay(x4) _A(x4) � i�

_~Z � r

+ Ay(x4)hsbA(x4) � �(y)�Ay(x4)
1p
3

(
p

2�0 + �8)A(x4)

)
(10)

It is known that there is the dependence of the � term on the regularization scheme [18].

However, we want to stress the fact that we have employed the proper-time regularization

and have evaluated possible physical observables such as mass splittings, magnetic moments,

axial constants and electromagnetic form factors within the same scheme and same values

of input parameters 1. Hence, we stick to the proper-time regularization for the � term and

make use of the same input parameters without adjusting. However, we shall not be here

bothered by going through all the tedious technical details arising from the regularization

(see Ref. [16] for details).

Having taken into account the rotational 1=Nc corrections and linear ms corrections, we

arrive at

�(t) = �SU(2)(t)h2 + D
(8)
88 (A)iN

+
2 �mp
3I1

K1(t)hD(8)
8i (A)RiiN +

2 �mp
3I2

K2(t)hD(8)
8p (A)RpiN

� 4 �m�8p
3

�
N1(t)�K1(t)

K1

I1

�
hD(8)

8i (A)D
(8)
8i (A)iN

� 4 �m�8p
3

�
N2(t)�K2(t)

K2

I2

�
hD(8)

8p (A)D
(8)
8p (A)iN

� 4 �m�8

3
p

3
N0(t)hD(8)

88 (A)(D
(8)
88 (A) + 1)iN � 8 �m�0

3
N0(t); (11)

where

�SU(2)(t) = Nc

Z
d3x j0(Qr)

"
	
y
val(x)�	val(x) �

X
n

1

2
sign(En)R(En)	y

n(x)�	n(x)

#
;

K1(t) =
Nc

6

X
n;m

Z
d3xj0(Qr)

Z
d3y

"
	y
n(x)~�	val(x) �	y

val(y)�~�	n(y)

En � Eval

1In fact, we have only one free parameter, i.e. the constituent up-quark (down-quark) mass.

However, it is more or less �xed to around 420 MeV by the mass splitting [13].
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+
1

2
	y
n(x)~�	m(x) �	y

m(y)�~�	n(y)RM(En; Em)

�
;

K2(t) =
Nc

6

X
n;m0

Z
d3x j0(Qr)

Z
d3y

"
	y

m0(x)	val(x)	y
val(y)�	m0(y)

Em0 � Eval

+
1

2
	y
n(x)	m0(x)	y

m0(y)�	n(y)RM(En; E
0
m)

�
;

N1(t) =
Nc

6

X
n;m

Z
d3xj0(Qr)

Z
d3y

"
	y
n(x)�~�	val(x) �	y

val(y)�~�	n(y)

En � Eval

+
1

2
	y
n(x)�~�	m(x) �	y

m(y)�~�	n(y)R�(En; Em)

�
;

N2(t) =
Nc

6

X
n;m0

Z
d3x j0(Qr)

Z
d3y

"
	
y

m0(x)�	val(x)	
y

val(y)�	m0(y)

Em0 � Eval

+
1

2
	y
n(x)�	m0(x)	

y

m0(y)�	n(y)R�(En; E
0
m)

�
;

N0(t) =
3Nc

2

X
n;m

Z
d3xj0(Qr)

Z
d3y

"
	y
n(x)�	val(x)	

y
val(y)�	n(y)

En � Eval

+
1

2
	y
n(x)�	m(x) �	y

m(y)�	n(y)R�(En; Em)

�
: (12)

The subscripts i and p in the collective part are i = 1; 2; 3 and p = 4; 5; 6; 7, respectively.

Ii and Ki are respectively the moments of inertia and anomalous moments of inertia [13].

When t! 0, Ki(t) become Ki. The �SU(2) corresponds to the �N sigma term in SU(2) [13]

at t = 0, which can be obtained by the Feynman-Hellman theorem

�SU(2) = �m
@E( �m)

@ �m

�����
�m=0

; (13)

where E stands for the classical soliton energy. The regularization functions R(En),

RM(En; Em), R�(En; Em) 2 are de�ned by

R(En) =

Z
dup
�u
�(u; �i)jEnje�uE

2

n ;

RM(En; Em) =
1

2

sign(En)� sign(Em)

En � Em

;

R�(En; Em) =

Z 1

0

du

2
p
�u
�(u; �i)

Ene
�uE2

n � Eme
�uE2

m

En � Em

; (14)

2RM(En; Em) is not actually a regularization function, since Ki come from the imaginary part of

the action. It does not depend on the cut-o� parameter.
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respectively. The hiN stands for the expectation value of the Wigner D functions in collective

space apanned by A. The expectation values of the D functions can be evaluated by SU(3)

Clebsch-Gordan coe�cients found in Refs. [19,20]. With SU(3) symmetry explicitly broken

by ms, the collective part is no longer SU(3)-symmetric. Therefore, the eigenstates of the

hamiltonian are not in a pure octet or decuplet but mixed states. Since we treat the strange

quark mass ms perturbatively, we can obtain the mixed SU(3) baryonic states as follows:

j8; Ni = j8; Ni + cN�10j �10; Ni + cN27j27; Ni (15)

with

cN�10 =

p
5

15
(�� � r1)I2ms; c

N
27 =

p
6

75
(3�� + r1 � 4r2)I2ms: (16)

The constant �� is related to the �SU(2) by �SU(2) = 2=3(mu + md)��. ri denotes the ratio

Ki=Ii.

Since the Cheng-Dashen point is out of the physical region, it is necessary to extrapolate

to the region t > 0. This can be done by the analytic continuation of the j~qj, i.e. j~qj !

ij~qj so that we may have the positive t up to the Cheng-Dashen point (t = 2m2
�). The

analytic continuation above the threshold t = 4m2
� is not valid in our model, since above

this threshold, the correlation between mesonic clouds is getting important [22]. Hence,

in this work, we only evaluate the scalar form factor from the Cheng-Dashen point to the

physical channel (space-like region: t < 0).

III. NUMERICAL RESULTS AND DICUSSION

In order to calculate the ��N(t) numerically, we take advantage of the Kahana-Ripka

discretized basis [26]. Figure 1 shows the scalar form factor as a function of the constituent

quark mass M = Mu = Md. The �(t) decreases as the M increases, in particular, below

t = 0. As a result, the di�erence between the �(2m2
�) and �(0) changes drastically when we

increase the M from 370 MeV to 450 MeV, as shown in Table 1. We select the M = 420 MeV
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for the best �t as we did for other observables. The error bar presented in Fig. 1 stands

for the empirical analysis due to Gasser, Leutwyler, and Sainio [3], i.e. �(0) = 45� 8 MeV.

Our numerical prediction is in a remarkable agreement with Ref. [3]. It is also interesting

to see how the ms corrections contribute to the scalar form factor. As shown in Fig. 2,

the ms corrections are very small. At t = 0, the ms corrections contribute to the � term

about 2% which is negligible. However, the ms corrections play a signi�cant role of reducing

remarkably the large strangeness contribution hN j�ssjNi arising from the leading term and

rotational 1=Nc corrections. With the ms corrections taken into account, we obtain y = 0:27

in case of the M = 420MeV, which agrees with the empirical value y ' 0:2 [3] within about

30%, whereas we have y = 0:48 without the ms corrections. It is already known that the

explicit symmetry breaking term quenchs the hN j�ssjNi [27{29].

The di�erence �� = �(2m2
�) � �(0) we have obtained is 18:18MeV. This value is very

close to what Gasser and Leutwyler extracted [21], �� = 15:2�0:4MeV. The tangent of the

scalar form factor at t = 0 is known to be related to the scalar square radius. It is almost

two times larger than the electric one, i.e. the hr2iSN ' 1:6fm2 while hr2iEN ' 0:74fm2. The

prediction of our model for the hr2iSN is 1:5fm2 which is almost the same as obtained by Gasser

and Leutwyler. It implies that the tail of the scalar density is of great importance. In Fig.

3 we can �nd a long-stretched and strong tail in the sea contribution to the scalar density.

This tail is due to the mesonic clouds arising from the Dirac sea polarization. Moreover,

the sea contribution in the scalar density is large, compared with the other densities such

as electromagnetic densities [23{25].

The other interesting quantities are presented in table 1. �0 is the condensate of the

singlet scalar quark operator in the nucleon:�0 = �mhN j�uu + �dd + �ssjNi Rs is de�ned by

Rs = hN j�ssjNi=hN j�uu+ �dd+ �ssjNi.

9



IV. SUMMARY AND CONCLUSION

We have discussed the scalar form factor with related quantities in the SU(3) NJL soliton

model. The results we have obtained are in a good agreement with empirical data [3,21].

The reliable strangeness contents of the nucleon in the scalar channel is obtained by taking

into account the ms corrections, since they suppress the excess of hN j�ssjNi due to the

leading order and rotational 1=Nc contributions. In contrast to Refs. [5,6] suggesting no

strangeness contribution, our model favors y = 0:27. The large value of the hr2iSN is caused

by the pronounced long ranging tail which can be identi�ed with the pion and kaon clouds.
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TABLES

TABLE I. The physical quantities related to the scalar form factor. The empirical data come

from Ref.[3,17].

M 370 MeV 420 MeV 450 MeV Exp

ms [MeV] 0 156.75 0 148.49 0 145.35

��N [MeV] 43.09 44.71 40.01 40.80 38.22 38.69 45� 8

�0[MeV] 53.25 49.25 49.58 46.24 47.37 44.35

�8[MeV] 22.77 35.63 20.87 29.92 19.92 28.37

y 0.47 0.20 0.48 0.27 0.48 0.29 0:2� 0:2

Rs 0.19 0.09 0.19 0.12 0.19 0.13

��[MeV] 32.29 33.37 18.36 18.18 14.23 13.84 15:2� 0:4

hr2iSN 1.94 1.87 1.56 1.50 1.40 1.34 1.6
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