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Abstract

Superstring models describing curved 4-dimensional magnetic flux tube backgrounds are
exactly solvable in terms of free fields. We first consider the simplest model of this type
(corresponding to ‘Kaluza-Klein’ a =

√
3 Melvin background). Its 2d action has a flat

but topologically non-trivial 10-dimensional target space (there is a mixing of angular
coordinate of the 2-plane with an internal compact coordinate). We demonstrate that
this theory has broken supersymmetry but is perturbatively stable if the radius R of
the internal coordinate is larger than R0 =

√
2α′. In the Green-Schwarz formulation

the supersymmetry breaking is a consequence of the presence of a flat but non-trivial
connection in the fermionic terms in the action. For R < R0 and the magnetic field strength
parameter q > R/2α′, there appear instabilities corresponding to tachyonic winding states.
The torus partition function Z(q, R) is finite for R > R0 and vanishes for qR = 2n
(n =integer). At the special points qR = 2n (2n + 1) the model is equivalent to the free
superstring theory compactified on a circle with periodic (antiperiodic) boundary condition
for space-time fermions. Analogous results are obtained for a more general class of static
magnetic flux tube geometries including the a = 1 Melvin model.
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1. Introduction

Magnetic backgrounds were actively studied recently from various points of view in the

context of both field theory and string theory (see, e.g., [1,2,3,4,5] and [6,7,8,9,10,11,12]).

Of particular interest are the simplest ones – static flux tube type configurations with

approximately uniform magnetic field generalizing the Melvin solution. Such backgrounds

are exact solutions of string theory [10,11] and, moreover, the spectrum of the correspond-

ing conformal string models can be explicitly determined [11]. In the bosonic case these

theories are generically unstable due to the appearance of tachyons for certain values of

the magnetic field parameters.1

The problem addressed in the present paper is the construction and solution of the

corresponding superstring versions. We shall find that there still exists a range of pa-

rameters for which magnetic flux tube backgrounds considered as solutions of superstring

theory are perturbatively unstable.

In Section 2 we shall review the structure of the bosonic string model which represents

a particular (a =
√

3) Melvin flux tube background in D = 4.

The corresponding type II superstring theory will be solved in Section 3 using RNS

formulation. Its quantum Hamiltonian will be the free superstring one plus terms linear

and quadratic in angular momentum operators. As a result, the mass spectrum can be

explicitly determined.

The basic properties of the spectrum will be studied in Section 4. We will show that

supersymmetry is broken and that there exist intervals of values of moduli parameters

(Kaluza-Klein radius and magnetic field strength) for which the model is unstable. We

shall also discuss the heterotic version of the model.

In Section 5 we shall consider the light-cone Green-Schwarz formulation of the theory,

which turns out to be very simple. The breaking of supersymmetry will be related to the

absence of Killing spinors in the Melvin background. We shall also compute the expression

for the partition function on the torus which will be finite or infinite depending on the

values of the parameters.

In Section 6 the results of Sections 3-5, obtained for the a =
√

3 Melvin model, will be

generalized to a class of static magnetic flux tube models which includes, in particular, the

a = 1 Melvin model. We shall explain the reason for solvability of these models and clarify

the nature of perturbative instabilities that appear for generic values of the magnetic field

parameters.

Section 7 will contain a summary and remarks on some generalizations. In particular,

we shall comment on the relation between the a =
√

3 Melvin model and the superstring

compactifications on twisted tori where supersymmetry is broken by discrete twist angles

(or by the ‘Scherk-Schwarz’ mechanism).

1 In addition to this perturbative instability there may be other instabilities of non-perturbative

origin, discussed in the field-theory framework, in [5].
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2. Bosonic string model for a =
√

3 Melvin background

In this and the following two sections we shall consider the supersymmetric version

of the simplest representative in the class of static magnetic flux tube models of ref. [11]

– the ‘Kaluza-Klein’ (or a =
√

3) Melvin model. It has properties similar to those of the

more general models but yet can be solved in a rather simple way. This theory is special in

that the corresponding σ-model has flat target space of non-trivial topology (other models

in [11] have curved target spaces but are related to flat models by angular duality and

globally non-trivial coordinate shifts). The relation of a =
√

3 Melvin background [1,3]

to flat D = 5 theory was pointed out at the field-theory level in [4] (see also [5]) and at

the string-theory level in [11,13].2 The bosonic string model is defined by the following

Lagrangian

L = L0 + L1 , L0 = −∂at∂
at+ ∂axα∂

axα , (2.1)

L1 = ∂aρ∂
aρ+ ρ2(∂aϕ+ q∂ay)(∂

aϕ+ q∂ay) + ∂ay∂
ay . (2.2)

Here ρ ≥ 0 and 0 < ϕ ≤ 2π correspond to cylindrical coordinates on a (x1, x2)-plane, y is a

circular ‘Kaluza-Klein’ coordinate with period 2πR, and xα include the flat x3-coordinate

of D = 4 space-time and, e.g., 21 (or 5 in the superstring case) internal coordinates

compactified on a torus.

The constant q plays the role of the magnetic field strength parameter in the 4-

dimensional interpretation. L1 can be represented in the ‘Kaluza-Klein’ form

L1 = ∂aρ∂
aρ+ F (ρ)ρ2∂aϕ∂

aϕ+ e2σ(∂ay + Aϕ∂aϕ)(∂ay + Aϕ∂
aϕ) , (2.3)

so that the D = 4 background (metric, Abelian vector field A and scalar σ) corresponding

to (2.1) is indeed the a =
√

3 Melvin geometry

ds24 = −dt2 + dρ2 + F (ρ)ρ2dϕ2 + dx2
3 , (2.4)

Aϕ = qF (ρ)ρ2 , e2σ = F−1(ρ) , F ≡ 1

1 + q2ρ2
. (2.5)

The non-trivial 3-dimensional part (2.2) of (2.1) is non-chiral (there is no antisymmetric

tensor background) and the dilaton is constant. The 3-metric

ds2 = dρ2 + ρ2(dϕ+ qdy)2 + dy2 , (2.6)

2 The string model corresponding to the a = 1 Melvin background [3] was constructed in [10]

and solved in [11]. In contrast to the flat 3-space geometry of the a =
√

3 model (see below), in

the a = 1 case the 3-space is curved and the (ρ, ϕ)-surface asymptotically closes at large ρ.
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is flat (so that the model is automatically conformal to all orders) since locally one may

introduce the coordinate θ = ϕ+ qy and decouple y from ρ, ϕ. The global structure of this

3-space is non-trivial: the fixed ρ section is a 2-torus (with ρ-dependent conformal factor

and complex modulus) which degenerates into a circle at ρ = 0. The space is actually

regular everywhere, including ρ = 0 (this can easily be seen by rewriting (2.6) in terms of

Cartesian coordinates of the 2-plane and y, cf. (2.7) below). It can also be obtained by

factorizing R3 over the group generated by translations in two angular directions: in the

coordinates where ds2 = dρ2 + ρ2dθ2 + dy2 (θ = ϕ + qy) one should identify the points

(ρ, θ, y) = (ρ, θ + 2πn + 2πqRm, y + 2πRm) (n,m =integers), i.e. combine the shift by

2πR in y with a rotation by an arbitrary angle 2πqR in the 2-plane.3 Although the space

is flat, the corresponding string theory will be non-trivial (already at the classical level

due to the existence of winding string states and at the quantum level in the non-winding

sector where there will be a ‘magnetic’ coupling to the total angular momentum in the

2-plane), representing an example of a gravitational Aharonov-Bohm-type phenomenon:

the value of the parameter q does not influence the (zero) curvature of the space but affects

the global properties like masses of string states.4

The new coordinate θ is globally defined (2π periodic) only for special integer periods

of qy, i.e. for qR = n, n = 0,±1, ... . In these cases (2.3) is trivial, i.e. equivalent to a free

bosonic string theory compactified on a circle.5 Models with n < qR < n+1 are equivalent

to models with 0 < qR < 1. We shall see that this periodicity condition in qR will be

modified in superstring theory: because of the presence of fermions of half-integer spin,

n will be replaced by 2n, i.e. only models with qR = 2n will be trivial. More generally,

superstring theories with (R, q) and (R, q + 2nR−1) will be equivalent.

It should be noted that it is eσR in (2.3),(2.5) that plays the role of an effective Kaluza-

Klein radius of the compact fifth dimension. Since eσ grows with radial distance from the

flux tube, it may seem that the Kaluza-Klein interpretation eventually breaks down (as

was discussed in the field-theory context in [5] the standard Kaluza-Klein interpretation

3 Since the orbits of this group are non-compact (in contrast to, e.g., the case of a special

2-cone= R2/ZN orbifold [14,15]) the corresponding string model can be defined for arbitrary

continuous values of the moduli parameters q, R.
4 Let us also note that the σ-model which is ϕ-dual to L1 is a special case of models in [11],

L̃1 = ∂aρ∂aρ + ρ−2∂aϕ̃∂aϕ̃ + qǫab∂ay∂bϕ̃ + ∂ay∂ay + α′R(2)(φ0 − ln ρ). The constant torsion

term corresponds in D = 4 to the ‘Aharonov-Bohm’ gauge potential Biy ≡ Bi = qǫijx
j/x2,

F (B)ij = −2πqǫijδ
(2)(x).

5 The Kaluza-Klein field theory is also trivial in this case, since the corresponding solution of

D = 5 Einstein theory is equivalent to (Minkowski 4-space)×S1 (any ‘observable’ computed in

terms of the 4-dimensional variables, i.e. on the background (2.4),(2.5), should have the same

value as in the D = 5 theory).
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would apply only for qR << 1). As for the higher dimensional string theory, it is defined

for an arbitrary q. Its mass spectrum derived below will not contain extra light states (in

the non-winding sector) for small R (and arbitrary q). Still, its 4-dimensional ‘magnetic’

interpretation will directly apply only for small qR.

The model (2.1), (2.2) has a straightforward generalization where ϕ is ‘mixed’ with

several internal coordinates: ∂aϕ + q∂ay → ∂aϕ + qr∂ay
r, etc. The corresponding D = 4

background contains several magnetic fields and moduli fields.

It is useful to represent (2.3) in the following equivalent form, introducing x = x1 +

ix2 = ρeiϕ :

L1 = (∂axi − qǫijxj∂ay)(∂
axi − qǫijxj∂

ay) + ∂ay∂
ay (2.7)

= (∂ax+ iqx∂ay)(∂
ax∗ − iqx∗∂ay) + ∂ay∂

ay

= DaxD∗
ax

∗ + ∂ay∂
ay , Da ≡ ∂a + iq∂ay ; (2.8)

we therefore get a charged complex 2d scalar field x in a flat 2d gauge potential. Since y

is compact, the effect of this gauge potential will be non-trivial.

The conformal theory corresponding to the bosonic model (2.1) was solved in [11]

(as a special case of a more general class of models) by observing that the solution of the

classical string equations can be expressed in terms of free fields and applying the canonical

quantization. This procedure is particularly simple in the present model (2.7). Since the

‘U(1) potential’ q∂ay in (2.8) is flat, x can be formally ‘rotated’ to decouple x from y. Then

y satisfies the free field equation and x is also expressed in terms of free fields. The only

interaction which effectively survives in the final expressions is the coupling of x to the

derivative of the zero mode part of y, y∗ = y0+2α′pτ+2Rwσ . It is then straightforward to

carry out the canonical quantization procedure, expressing all observables in terms of free

oscillators. The resulting Hamiltonian is given by the sum of the free string Hamiltonian

plus O(q) and O(q2) terms depending on the left and right components of the free string

angular momentum operators ĴL and ĴR [11].

As was shown in [11], this bosonic string model is stable in the non-winding sector,

where there are no new instabilities in addition to the usual flat space tachyon. This means,

in particular, that the Kaluza-Klein field theory corresponding to the Melvin background

is perturbatively stable with respect to the ‘massless’ (graviton, vector, scalar) and massive

perturbations. This theory may still be unstable at a non-perturbative level [5]. At the

same time, there exists a range of parameters q and R for which there are tachyonic states

in the winding sector, i.e. this string model is unstable against certain winding-mode

perturbations.

This instability (whose origin is essentially in the gyromagnetic coupling term

wqR(ĴR − ĴL), which may have negative sign) is not related to the presence of the flat

bosonic string tachyon and may thus be expected to survive (for certain values of q and

R) also in the superstring case. This, indeed, is what will be found below.
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3. Solution of the superstring Melvin model

In what follows we shall consider the type II superstring version of (2.1) (heterotic

models with the magnetic field in the Kaluza-Klein sector can be obtained by straightfor-

ward ‘left’ or ‘right’ truncations and have similar properties). Since (in contrast to the

constant magnetic field model in [9,12]) the ∂y-dependent interaction terms in (2.2) are

non-chiral, there does not exist an associated heterotic string model with the magnetic

field embedded in the internal gauge sector.

In this section we shall consider the RNS formulation of the model. The model can

be solved also by using directly the Green-Schwarz [16,17] formulation (see Section 5),

which confirms (and clarifies certain aspects of) the RNS solution. The (1, 1) world-sheet

supersymmetric extension of the model (2.2),(2.8) has the form (xµ ≡ (xi, y))

LRNS = Gµν(x)∂+x
µ∂−x

ν (3.1)

+ λRm(δm
n ∂+ + ωm

nµ∂+x
µ)λn

R + λLm(δm
n ∂− + ωm

nµ∂−x
µ)λn

L .

λm = em
µ λ

µ are vierbein components of the 2d Majorana-Weyl spinors and ωm
nµ is the

(flat) spin connection. There are no quartic fermionic terms since the metric is flat. In the

natural basis ei = dxi − qǫijxjdy, ey = dy, the spin connection 1-form has the following

components

ωij = −qǫijdy , ωiy = 0. (3.2)

In terms of the left and right Weyl spinors λ = λ1 + iλ2 corresponding to x = x1 + ix2

and λy ≡ ψ, we get (cf. (2.8))

LRNS = D+xD
∗
−x

∗ + ∂+y∂−y + λ∗RD+λR + λ∗LD−λL (3.3)

+ ψR∂+ψR + ψL∂−ψL , D± ≡ ∂± + iq∂±y ,

where the covariant derivative D± is the same as in (2.8), i.e. it contains the flat U(1)

potential. This means that, as in the bosonic case, it is possible to redefine the fields x, λ

so that the only non-trivial coupling that will remain at the end will be to the zero mode

of y.6 Although it may seem that, as in the bosonic case, the model with qR = n should

be equivalent to the free superstring theory compactified on a circle (since for qR = n one

can, in principle, eliminate the coupling terms in (3.3) by rotating the fields) this will not

actually be true unless the integer n is even, n = 2k. The non-triviality for n = 2k + 1 is

6 One can directly generalize the bosonic case discussion by replacing xi, y by (1, 1) superfields

and observing that the zero mode part of the y-superfield can have only the bosonic component

y∗. Note that both the momentum and the winding parts of y∗ are on an equal footing in (3.3):

the model is non-trivial (not equivalent to the free string one) already in the non-winding sector.
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directly related to the presence of space-time fermions in the spectrum, which change sign

under 2π spatial rotation accompanying the periodic shift in y (see below and Section 5).

Taking the world-sheet to be a cylinder (τ, σ) (0 < σ ≤ π) we can solve the classical

equations corresponding to (3.3) by introducing the fields X and ΛR,L, which will satisfy

the free string equations but will have ‘twisted’ boundary conditions (σ± ≡ τ ± σ)7

x(τ, σ) = e−iqy(τ,σ)X(τ, σ) , ∂+∂−X = 0 , X = X+(σ+) +X−(σ−) , (3.4)

X(τ, σ+ π) = e2πiγX(τ, σ) , γ ≡ qRw , (3.5)

λR,L(τ, σ) = e−iqy(τ,σ)ΛR,L(τ, σ) , ∂±ΛR,L = 0 , ΛR,L = ΛR,L(σ∓) , (3.6)

ΛR,L(τ, σ+ π) = ±e2πiγΛR,L(τ, σ) , (3.7)

with the signs ‘±’ in (3.7) corresponding to the Ramond (R) and Neveu-Schwarz (NS)

sectors. The crucial observation is that y still satisfies the free-field equation:

∂+∂−y = 0 , y = y∗ + y′ , y∗ = y0 + p+σ+ + p−σ− . (3.8)

We have used the fact that the fields x, y, λ must obey the usual closed-string boundary

conditions,

x(τ, σ + π) = x(τ, σ) , y(τ, σ + π) = y(τ, σ) + 2πRw , w = 0,±1, ... , (3.9)

λR,L(τ, σ + π) = ±λR,L(τ, σ) . (3.10)

The explicit expressions for the fields X = X+ +X− and ΛL,R are then

X±(σ±) = e±2iγσ±X±(σ±) , X±(σ± ± π) = X±(σ±) , (3.11)

ΛL,R(σ±) = e±2iγσ±ηL,R(σ±) , (3.12)

where X± and ηL,R are the free fields with the standard free closed string boundary con-

ditions, i.e.

X+ = i
√

1
2
α′

∑

n∈Z

ãne
−2inσ+ , X− = i

√

1
2
α′

∑

n∈Z

ane
−2inσ− , (3.13)

η
(NS)
R =

√
2α′

∑

r∈Z+
1
2

cr e
−2irσ− , η

(R)
R =

√
2α′

∑

n∈Z

dn e−2inσ− , (3.14)

7 The twist parameter γ can be interpreted as a flux corresponding to the 2d U(1) field Aa =

q∂ay on the cylinder,
∫

A = 2qRw
∫

dσ = 2πγ. Note that we have redefined γ by factor of 2

compared to our previous papers [11,12].
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and similar expressions for the left fermions with oscillators having extra tildes. We can

then proceed with canonical quantization of the model expressing the observables in terms

of the above free oscillators. It is convenient to choose the light-cone gauge, eliminating

the oscillator part of u = y − t (see [11,12] for details). Then

u = u∗ ≡ u0 + 2α′(p+ E)τ + 2Rwσ , (3.15)

p = py − qĴ , py = mR−1 , m = 0,±1, ... ,

where E is the total energy, m is the Kaluza-Klein linear momentum number, w is the

winding number and Ĵ = ĴR + ĴL is the total angular momentum in the 2-plane.

In what follows we shall first assume that w (or qR) is such that 0 ≤ γ < 1 and then

consider generalizations to other values of γ = qRw. The angular momentum operators

that appear in the final Hamiltonian contain the orbital momentum parts plus the spin

parts (with the latter having the standard free superstring form [17])

ĴR = −b†0b0 − 1
2 +

∞
∑

n=1

(

b†n+bn+ − b†n−bn−
)

+ K̂R , (3.16)

K̂
(NS)
R = −

∞
∑

r=
1
2

(c∗rcr + c−rc
∗
−r), K̂

(R)
R = −[d∗0, d0] +

∞
∑

n=1

(d∗ndn + d−nd
∗
−n).

The expression of ĴL is similar, with the reversed sign of the orbital momentum terms.

Here b’s are the free creation and annihilation operators related to the modes in (3.13) by

rescaling by factors (n± γ)1/2, see [11]. The eigenvalues of ĴL,R are

ĴL,R = ±(lL,R + 1
2
) + SL,R , Ĵ ≡ ĴL + ĴR = lL − lR + SL + SR, (3.17)

where the orbital momenta lL,R = 0, 1, 2, ... (which replace the continuous linear momenta

p1, p2 in the 2-plane for non-zero values of γ) are the analogues of the Landau quantum

number and SR,L are the spin components.8

The number of states operators N̂R and N̂L have the standard form

N̂R,L = NR,L − a , a(R) = 0 , a(NS) = 1
2 , (3.18)

8 In the case γ = 0 (or, more generally, γ = n) the zero-mode structure changes in that the

translational invariance in the 2-plane is recovered, see [9,11]. This leads to a slight modification

in the formulas (the operators b†0, b0, b̃
†
0, b̃0 in the expressions below are then replaced by standard

zero-mode operators x1,2, p1,2). We shall not explicitly indicate this in what follows.
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where, e.g. in the Ramond sector,

N
(R)
R =

∞
∑

n=1

n
(

b†n+bn+ + b†n−bn− + b†nαbnα + d∗ndn + d−nd
∗
−n + d−nαdnα

)

. (3.19)

N
(R)
L has a similar expression in terms of operators with tildes (there are no contributions

with oscillators corresponding to y and t since we used the light-cone gauge). Under the

usual GSO projection (which is necessary for the correspondence with the Green-Schwarz

formulation and with the free RNS superstring theory in the limit q = 0 but will not

imply the space-time supersymmetry in the present case) N̂R and N̂L can take only non-

negative integer values (and correspond to the number of states operators of the light-cone

Green-Schwarz formulation).

The resulting expressions for the Hamiltonian and level matching constraint are9

Ĥ = 1
2
α′

(

− E2 + p2
α + 1

2
Q2

L + 1
2
Q2

R

)

+ N̂R + N̂L (3.20)

−α′q(QLĴR +QRĴL) + 1
2α

′q2Ĵ2 ,

QL,R ≡ m

R
± wR

α′
, (3.21)

N̂R − N̂L = mw . (3.22)

Ĥ can be represented also in the following (‘free superstring compactified on a circle’) form

which clarifies its structure and is useful for generalizations

Ĥ = 1
2α

′
(

− E2 + p2
α +m′2R−2 + α′−2

w2R2
)

+ N̂ ′
R + N̂ ′

L , (3.23)

where m′, N̂ ′
R, N̂

′
L (which are no longer integer in general) are defined by

m′ ≡ m− qRĴ , (3.24)

N̂ ′
R ≡ N̂R − γĴR , N̂ ′

L ≡ N̂L + γĴL , γ = qRw . (3.25)

Up to the orbital momentum terms, N̂ ′
R,L can be put into the same form as free operators

N̂R,L (see (3.19)) with the factor n replaced by n± γ.

9 Symmetrizing the classical expressions for the Virasoro operators L0, L̃0, we then normal-

order them and use the generalized ζ-function prescription. In contrast to the bosonic case [11]

here the γ2 normal ordering terms cancel out between bosons and fermions. For example, in the

NS-sector one obtains: L0 → L0 − 1
2
(1− γ) . The latter normal-ordering constants are naturally

absorbed into N̂R,L and ĴR,L.
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The Virasoro condition Ĥ = 0 leads to the following mass spectrum

M2 ≡ E2 − p2
α = M2

0 − 2qR−1mĴ − 2α′−1
qRw(ĴR − ĴL) + q2Ĵ2 , (3.26)

where M0 is the mass operator of the free superstring compactified on a circle (for sim-

plicity we ignore the contributions of the other 5 free compactified dimensions, i.e. the

corresponding momenta are set equal to zero)

M2
0 = 2α′−1

(N̂L + N̂R) +m2R−2 + α′−2
w2R2 . (3.27)

The equivalent form of (3.26), which demonstrates that in general M2 is not positive-

definite in the winding sector, is

M2 = 2α′−1
(N̂R + N̂L) + (mR−1 − qĴ)2 (3.28)

+ [α′−1
wR − q(ĴR − ĴL)]2 − q2(ĴR − ĴL)2 .

Let us consider first the zero winding sector w = 0 (γ = 0) where M2 = 2α′−1
(N̂R + N̂L)+

m′2R−2. It is clear from (3.24) that the mass spectrum is then invariant under

q → q + 2nR−1 , n = 0,±1, ... , (3.29)

since this transformation can be compensated by m → m − 2nĴ = integer. Note that

since Ĵ can take both integer (NS-NS, R-R sectors) and half-integer (NS-R, R-NS sectors)

values, the symmetry of the bosonic part of the spectrum q → q+nR−1 is not a symmetry

of its fermionic part, i.e. the full superstring spectrum is invariant only under (3.29).

The same conclusion about the periodicity in q is true in general for w 6= 0. In the

form given above, eqs. (3.20),(3.26),(3.28) are valid for 0 ≤ w < (qR)−1, i.e. for 0 ≤ γ < 1.

The generalization to other values of γ, e.g. γ in any interval n ≤ γ < n+ 1, n =integer,

is straightforward (see also [11]). The net effect is the replacement of γ in (3.25) by γ −n,

i.e. qRw in (3.26) by qRw − n. The general form of the mass operator is thus

α′M2 = 2(N̂R + N̂L) + α′(mR−1 − qĴ)2 + α′−1
w2R2 (3.30)

− (γ − n)(ĴR − ĴL) .

As will be clear from a comparison with the Green-Schwarz formulation, one should use the

standard GSO projection for 2k ≤ γ < 2k+1, and the ‘reversed’ one for 2k+1 ≤ γ < 2k+2,

(k = 0,±1, ...). The ‘reversal’ of GSO for 2k+ 1 ≤ γ < 2k+ 2 implies that in this interval

only states having half-integer eigenvalues of the operators N̂L,R will survive, including,

in particular, scalar odd-winding tachyon states with N̂L = N̂R = −1
2
. This prescription

(which appeared also in the model of [18], see also [19,20], related to the special case

9



qR = 2n + 1 of our model) is consistent with the modular invariance of the partition

function (see Section 5).

For fixed radius R the mass spectrum is thus periodic in q, i.e. it is mapped into

itself under (3.29) (combined with m → m − 2nĴ). In the case qR = 2n (i.e. γ =

2nw = 2k) the spectrum is thus equivalent to the standard spectrum of the free superstring

theory compactified on a circle. For qR = 2n + 1 (i.e. γ = (2n + 1)w = 2k + 1 if

w is odd) the spectrum is the same as that of free superstring compactified on a circle

with antiperiodic boundary conditions for space-time fermions [18] (see also [19,20]). This

relation will become clear in the Green-Schwarz formulation (Section 5). In particular, it

will be apparent that the interaction term in the superstring action can be eliminated by

a globally defined field transformation only if qR = 2n, while for qR = 2n+ 1 this can be

done at the expense of imposing antiperiodic boundary conditions (in the y-direction) on

fermions (under the rotation by the angle 2πqR = 2π in the 2-plane, which is associated

with a periodic shift in y, the bosons remain invariant but the spinors change sign).

Let us note that, in contrast to the case of the free string compactified on a circle,

the mass spectrum (3.28) (for generic qR) is not invariant under the naive duality trans-

formation R → α′R−1 (accompanied by some redefinition of quantum numbers such as

(w,m) → (m,w) in the free string case). Unlike, e.g. the free string or a = 1 Melvin

model [10,11], the action (2.2) does not preserve its form under the duality transformation

in y, i.e. the y-duality maps (2.2) into a different σ-model (belonging to the 3-parameter

class of models in [11])

L̃ = ∂+ρ∂−ρ+ F (ρ)ρ2(∂+ϕ+ q∂+ỹ)(∂−ϕ− q∂−ỹ) + ∂+ỹ∂−ỹ (3.31)

+ R(φ0 + 1
2

lnF ), F ≡ (1 + q2ρ2)−1 , R ≡ 1
4
α′√gR(2) .

This model is equivalent to (2.2) at the CFT level, i.e. it has, in particular, the same mass

spectrum (3.28).

4. Mass spectrum: supersymmetry breaking and (in)stability

There are two immediate consequences that can be drawn from the above expressions

(3.26),(3.28) for M2:

(i) the space-time supersymmetry is broken for qR 6= 2n;

(ii) there exists a range of values of parameters q and R for which there are tachyonic

states in the spectrum.

Suppose that we start with the free superstring compactified on a circle y and study

what happens with the spectrum when we switch on the magnetic field, q 6= 0. Since

the mass shift in (3.26) involves both components ĴL and ĴR of the angular momentum

(with independent generically non-vanishing coefficients), it is easy to see that the masses

10



of bosons and fermions that were equal for q = 0 will become different for q 6= 0. Indeed,

it is impossible to have both ĴL and ĴR equal for bosons and fermions.10

Supersymmetry is absent already in the non-winding sector (where the coupling is

to the total angular momentum Ĵ). For example, the free superstring massless (ground)

states (N̂L,R = 0 = m = w) will, according to (3.26), get masses M = |qĴ | proportional to

their total angular momenta, which must be integer for bosons and half-integer for fermions

(cf. (3.17)). Note that these states are neutral, so that from the 4-dimensional point of

view the shift in the masses can be interpreted as a gravitational effect. This shift implies,

in particular, that supersymmetry is broken at the field-theory (e.g., D = 5 supergravity)

level, in agreement with the absence of Killing spinors in the Melvin background (see

Section 5).

In the absence of supersymmetry some instabilities of the bosonic string model may

survive also in the superstring case. As in the bosonic case, the mass operator (3.28) is

positive in the non-winding sector, but tachyonic states may appear in the winding sector

(we use the name ‘tachyon’ for a state with M2 < 0; it should be remembered, of course,

that the string states we are discussing propagate in curved D = 4 space-time). Consider,

for example, the NS-NS superstring winding states with zero Kaluza-Klein momentum and

zero orbital momentum quantum numbers and with maximal absolute values of spins SR,L

at given levels

w > 0 , m = 0 , lR = lL = 0 , SR = N̂R + 1 , SL = −N̂L − 1 . (4.1)

We will restrict our consideration to states for which 0 < qRw < 1 (states with w > (qR)−1

can be analysed in a similar way, see (3.30)). Then (3.22),(3.26) imply

N̂R = N̂L ≡ N , Ĵ = 0 , ĴR − ĴL = 2N + 1 , (4.2)

α′M2 = 4N + α′−1
w2R2 − 2qRw(2N + 1) . (4.3)

A state with given N and w will be tachyonic for q > qcr,

qcr =
4N + α′−1

w2R2

2(2N + 1)wR
. (4.4)

For N = 0 we get α′qcr = 1
2wR. The condition qRw < 1 is satisfied provided wR <

√
2α′.

10 In the constant magnetic model [12] where the coupling to the magnetic field was only through

ĴR (half of) the supersymmetry was preserved in the type II superstring and in the ‘left-right’

symmetric and ‘left’ heterotic models. There ĴR (and thus the mass shift) was the same for bosons

and fermions.
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In general, it is easy to check (using the fact that −N̂R,L −1 ≤ SR,L ≤ N̂R,L +1) that

states with M2 < 0 can be present only for R <
√

2α′, i.e. the full spectrum is tachyon-

free if R >
√

2α′. For fixed R <
√

2α′ the minimal value of the magnetic field strength

parameter at which tachyons first appear is α′qcr = 1
2
R, corresponding to the N = 0, w = 1

case of (4.4). Tachyons with N = 1 are found at larger values of the magnetic field q > qcr
with qcr given by (4.4) for N = 1, etc.

All other sectors (R-R, R-NS, NS-R) are tachyon-free. Let us consider, for example,

the fermionic states of the R-NS -sector with the following quantum numbers (cf. (4.1)):

w > 0, lR = lL = 0, SL = −N̂L − 1, SR = N̂R + 1
2 . For qRw < 1 the corresponding mass

formula is (cf. (4.3))

α′M2 = 2(N̂R + N̂L)(1 − qRw) + α′−1
(wR− 1

2
α′q)2 (4.5)

+ α′R−2m(1 − qRw)[m(1 − qRw) + qR] ,

i.e. M2 is non-negative. The winding fermionic state with N̂R,L = 0 = m, w = 1 thus

becomes massless at q = 2R/α′.

Some values of the radius, such as R =
√

2α′, are special. For R =
√

2α′ the value of

M2 is non-negative. As the magnetic field q is gradually increased from zero, the masses

of the infinite number of modes belonging to the set (4.1) with w = 1 will decrease. They

will simultaneously approach zero when q will approach R−1 = 1/
√

2α′ (qRw → 1). At

this point there is a discontinuity in M2 since, for qR = 1, the spectrum is equivalent to

that of a free superstring on a circle with antiperiodic boundary conditions for fermions

(see the discussion on the periodicity of M2 in q in the previous section).

The structure of the spectrum of the present model is thus different from that of the

constant magnetic field model [9,12] in which infinitely many instabilities appeared for any

arbitrarily small value of the magnetic field.

One can consider also the heterotic version of the above model (where the magnetic

field is embedded in the Kaluza-Klein sector) by combining the ‘left’ or ‘right’ part of the

superstring model with the free internal part. The mass formula and the level matching

condition in this case take the following form (cf. (3.28),(3.22))

α′M2 = 2(N̂R + N̂L + 1
2p

2
I) + α′(mR−1 − qĴ)2 (4.6)

+ α′−1
(wR)2 − 2qRw(ĴR − ĴL),

N̂R − N̂L = mw + 1
2p

2
I , N̂R = 0, 1, 2, ..., N̂L = NL − 1 = −1, 0, 1, ... ,

where N̂L contains only the free internal oscillator modes (see [12] for notation). There

are instabilities similar to the ones discussed in the above type II model. In addition,

there are other instabilities which, in the case of the special ‘self-dual’ value of the radius

R =
√
α′, appear for infinitesimal values of the magnetic field. These are just the usual

Yang-Mills-type magnetic instabilities, associated with the gauge bosons (with quantum

numbers m = w = ±1, p2
I = lR = lL = 0, N̂R = NL = 0, SR = 1, SL = 0) of the SU(2)L

group.
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5. Green-Schwarz formulation and partition function

The supersymmetry breaking is related to the coupling of fermions in (3.3) to the flat

but globally non-trivial U(1) connection. This can be seen explicitly in the Green-Schwarz

formulation [16,17] where the absence of supersymmetry is connected to the non-existence

of Killing spinors in a given bosonic background. Let us consider the Killing spinor equation

(∂µ + 1
4
ωmn

µγmn)ǫ = 0 , (5.1)

in the D = 3 background corresponding to (2.7). Here ǫ = ǫ(xi, y) is a space-time spinor

and ωmn
µ is the same flat spin connection as in (3.1),(3.2) so that (5.1) reduces to

(∂y − 1
4qǫ

ijγij)ǫ = 0 . (5.2)

The formal solution of (5.2)

ǫ(y) = exp( 1
4qǫ

ijγijy) ǫ(0) , (5.3)

does not, however, satisfy the periodic boundary condition in y, ǫ(y+2πR) = ǫ(y) (unless

qR = 2n when the Killing spinor does exist, in agreement with the fact that in this case

the theory is equivalent to the free superstring).11

The conclusion is that for qR 6= 2n there is no residual space-time supersymmetry

in the higher-dimensional (e.g., D = 5 supergravity) counterpart of the a =
√

3 Melvin

background. The absence of Killing spinors in the case of the a = 0 Melvin solution of the

Einstein-Maxwell theory was previously mentioned in [2].

Given a generic curved bosonic background, the corresponding Green-Schwarz (GS)

superstring action [16] defines a complicated non-linear 2d theory (see, e.g., [23,24,25]).

This theory appears to be more tractable when one is able to fix a light-cone gauge (in par-

ticular, when the background is flat at least in one time-like and one space-like directions).

Then the action takes a ‘σ-model’ form, which can be explicitly determined [24], e.g. by

comparing with the known light-cone superstring vertex operators [17]. This light-cone

11 Redefining ϕ → ϕ − qt (which is always possible since t is non-compact) one can put

the Lagrangian (2.1),(2.7) in the ‘plane-wave’ form (see [11]) L = ∂au∂av + qxixi∂au∂au +

2qǫijx
i∂axj∂au + ∂axi∂

axi, u = y − t, v = y + t. Then the absence of supersymmetry in the

Melvin model seems to contradict usual claims that plane-wave backgrounds are supersymmetric

(see, e.g., [21,22]). In fact, there is no contradiction since the supersymmetry may be broken in

the plane-wave backgrounds if the direction y in which the wave is propagating is compact. If the

spin connection has constant y (or u) component, the corresponding Killing spinor equation may

not have solutions consistent with periodic boundary conditions in the y-direction.
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gauge action becomes very simple (quadratic in fermions) when the background geometry

is flat as in the case of the Melvin model (2.2) (cf. (3.1))

LGS = Gµν(x)∂+x
µ∂−x

ν + iSRD+SR + iSLD−SL , (5.4)

Da ≡ ∂a + 1
4ω

mn
µ γmn∂ax

µ .

Here Sp
R,L (p = 1, ..., 8) are the right and left real spinors of SO(8) (we consider type IIA

theory). In the case of (2.2) we get (cf. (2.8),(3.3),(5.2))12

LGS = (∂+ + iq∂+y)x(∂− − iq∂−y)x
∗ + ∂+y∂−y (5.5)

+ iSR(∂+ − 1
4
qǫijγij∂+y)SR + iSL(∂− − 1

4
qǫijγij∂−y)SL .

It is natural to decompose the SO(8) spinors according to SO(8) → SU(4) × U(1), i.e.

Sp
L → (Sr

L, S̄r
L), Sp

R → (Sr
R, S̄r

R), r = 1, .., 4 (S̄L,R are complex conjugates of SL,R). With

respect to the rotational group U(1) of the plane, Sr
R, S̄r

L and S̄r
R,Sr

L have the charges 1
2

and −1
2 (the bosonic fields x, x∗ have the charges ±1). Then the fermionic terms in (5.5)

become

LGS(SL,R) = iS̄r
R(∂+ + 1

2 iq∂+y)Sr
R + iS̄r

L(∂− − 1
2 iq∂−y)S

r
L . (5.6)

The condition that the action (5.4),(5.5) has residual supersymmetry invariance S →
S + ǫ(x) is equivalent to Daǫ(x(τ, σ)) = ∂ax

µ(∂µ + 1
4ω

mn
µ γmn)ǫ(x) = 0. The absence of

supersymmetry invariance is the consequence of the absence of zero modes of the above

covariant derivative operators, or, equivalently, of the non-existence of solutions of the

Killing spinor equations (5.1), (5.2).

The connection terms in the covariant derivatives in the fermionic part of the GS

action (5.6) have extra coefficients 1
2 with respect to the ones in the RNS action (3.3).

This immediately implies that the full theory is periodic under qR→ qR + 2n.

As in the bosonic and RNS cases, we can explicitly solve the classical string equations

corresponding to (5.5) with the final result that the only essential difference, as compared

to the free superstring case, is the coupling of bosons and fermions to the zero-mode part

of the flat U(1) connection ∂ay∗. The expressions for the superstring Hamiltonian and

mass spectrum are essentially the same as in (3.20), (3.30), where, for 2k ≤ γ < 2k + 1

the operators N̂L,R, ĴL,R have the usual free GS superstring form, which is similar to

their form in the R-sector of the RNS formalism with vanishing zero-point energy. For

2k − 1 ≤ γ < 2k the operators N̂L,R have the ‘NS-sector’ form, i.e. they take half-integer

eigenvalues starting from −1
2 .

12 Light-cone gauge may be fixed on t − x3. An equivalent approach is first to redefine the

fields to eliminate the ‘oscillating’ part of y from the interaction terms and then impose the gauge

on u = t − y.
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The reason for this change from integer to half-integer eigenvalues can be understood

directly from the action (5.6): the classical solution is (cf. (3.6),(3.7))

SR,L(τ, σ) = e−
i

2
qy(τ,σ)ΣR,L(σ∓) , ΣR,L(τ, σ + π) = eiπγΣR,L(τ, σ) , (5.7)

so that the change γ → γ+1 is equivalent to the change of sign in the boundary conditions

(in σ) for the free fermion field ΣR,L.13 The fact that for 2k−1 ≤ γ < 2k the GS operators

N̂R,L take half-integer eigenvalues indicates, in particular, that in these intervals the GSO

projection that must be done in the RNS approach must be the ‘reversed’ one.

In general, the model with qR = 2n + 1 (γ = 2k + 1 for odd w) is equivalent to the

free superstring compactified on a twisted 3-torus (in the limit when the 2-torus part is

replaced by 2-plane), or on a circle with antiperiodic boundary conditions for the fermions

[18] (in particular, the theory with qR = 1 and R <
√

2α′ will have tachyons).

The fundamental world-sheet fermions S that appear in GS action (5.4) are always

periodic in σ. This is necessary for supersymmetry of the model in the q = 0 limit. If

one considers spinors (space-time fermions) in the space with the metric (2.6) one should

assume that they satisfy the periodic boundary conditions in y for arbitrary q since this is

the condition of unbroken supersymmetry in the limit q → 0. This condition of correspon-

dence with the standard superstring ‘free-theory’ limit fixes the ambiguity in the choice of

a spin structure which a priori exists for all qR = m. Then the adequate point of view is

that the breaking of supersymmetry for qR 6= 2n (in particular, for qR = 2n+1) is due to

the non-trivial background (q-dependent spin connection) and not due to ‘special’ choice

of boundary conditions.

The ‘redefined’ fermions Σ in (5.7) are effectively dependent on y and thus change

phase under a shift in y-direction. For qR = 2n+ 1 this results in antiperiodic boundary

conditions for space-time fermions as functions of y (the space-time fields can be repre-

sented, e.g., as coefficients in expansion of a super string field Φ(y,S, ...) in powers of

world-sheet fermions). As a consequence, there exists a continuous 1-parameter family of

models interpolating between the standard supersymmetric qR = 0 model with fermions

which are periodic in y and a non-supersymmetric qR = 1 model with fermions which are

antiperiodic in y.

13 The Hamiltonian contains a term of the form (cf. (3.25))
∑

m
(m − 1

2
γ)s∗msm, where sm, s∗m

are standard GS fermion oscillators. The vacuum state in Fock space is defined in the standard

way as being annihilated by negative frequency oscillators, i.e. sm|0〉 = 0, m > 1
2
γ. In the

interval 2k − 1 ≤ γ < 2k we have γ − 2k + 1 < 1, so that it is convenient to represent this term

as
∑

m
[m − ( 1

2
γ − k + 1

2
) − k + 1

2
]s∗msm =

∑

r
[r − ( 1

2
γ − k + 1

2
)]s′r

∗
s′r, s′r ≡ s

m−k+
1
2

. This will

lead to the expressions for N̂L,R and ĴL,R in Ĥ of the type which appear in the NS-sector in the

RNS formalism, i.e. with − 1
2

normal-ordering constant.
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The GS formulation makes also transparent the computation of the 1-loop (torus)

partition function (which will be non-vanishing for q 6= 2nR−1 due to the absence of

fermionic zero modes, i.e. the absence of supersymmetry). Indeed, the path integral

computation of the GS superstring partition function is a straightforward generalization of

the computation in the bosonic string model described in [11]. The first step is to expand y

in eigen-values of the Laplacian on the 2-torus and redefine the fields x, x∗ and SL,R, S̄L,R

in (5.5),(5.6) to eliminate the non-zero-mode part of y from the U(1) connection. The

zero-mode part of y on the torus (ds2 = |dσ1 + τdσ2|2, τ = τ1 + iτ2, 0 < σa ≤ 1) is

y∗ = y0 + 2πR(wσ1 + w′σ2), where w,w′ are integer winding numbers. Integrating over

the fields x, x∗ and Sr
L,R, S̄r

L,R, we get a ratio of determinants of scalar operators of the

type ∂ + iA, ∂̄ − iĀ (∂ = 1
2 (∂2 − τ∂1)) with constant connection

A = q∂y∗ = πχ, Ā = q∂̄y∗ = πχ̄, χ ≡ qR(w′ − τw), χ̄ ≡ qR(w′ − τ̄w). (5.8)

The final expression for the partition function takes the simple form (cf. [11])14

Z(R, q) = cV7R

∫

d2τ

τ2
2

∞
∑

w,w′=−∞

exp
(

− π(α′τ2)
−1R2|w′ − τw|2

)

(5.9)

× Z0(τ, τ̄ ;χ, χ̄)
Y 4(τ, τ̄ ; 1

2χ,
1
2 χ̄)

Y (τ, τ̄ ;χ, χ̄)
.

Here

Y (τ, τ̄ ;χ, χ̄) ≡ det′(∂ + iπχ) det′(∂̄ − iπχ̄)

det′∂ det′∂̄
=
U(τ, τ̄ ;χ, χ̄)

U(τ, τ̄ ; 0, 0)
, (5.10)

U(τ, τ̄ ;χ, χ̄) ≡
∏

(n,n′)6=(0,0)

(n′ − τn+ χ)(n′ − τ̄n+ χ̄) , (5.11)

where, in the determinants, we have projected out the zero modes appearing at χ = χ̄ = 0

( i.e. Y (τ, τ̄ ; 0, 0) = 1). The equivalent form of Y is (see, e.g. [28] and [11])

Y (τ, τ̄ ;χ, χ̄) = exp[
π(χ− χ̄)2

2τ2
]
θ1(χ|τ)
χθ′1(0|τ)

θ1(χ̄|τ̄)
χ̄θ′1(0|τ̄)

(5.12)

=

∣

∣

∣

∣

θ
[

1
2 + qRw
1
2

+ qRw′

]

(0|τ)

qR(w′ − τw)θ′1(0|τ)

∣

∣

∣

∣

2

,

14 Note that in the light-cone gauge the free part of the GS superstring measure is trivial (up

to the τ−6
2 factor related to the zero modes) since the bosonic and fermionic determinants of 8

bosonic and 8L + 8R fermionic degrees of freedom cancel out (see [26,27]).
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where θ1(χ|τ) = θ

[

1
2
1
2

]

(χ|τ).
The factor Z0 in (5.9) stands for the contributions of the integrals over the constant

fields x, x∗,SL,R, S̄L,R ( i.e. the contributions of (n, n′) = (0, 0) terms in the determinants)

which become zero modes in the free-theory (q = 0) limit15

Z0 =
( 1
2χτ

−1/2
2 )4 ( 1

2 χ̄τ
−1/2
2 )4

χχ̄τ−1
2

, (5.13)

i.e. Z0 = 2−8q6R6|w′ − τw|6τ−3
2 . Z0 (and thus Z) vanishes for q → 0 in agreement with

the restoration of supersymmetry (existence of fermionic zero modes) in this limit.16

The partition function vanishes at all points qR = 2n where the fermionic deter-

minants have zero modes (or θ1-functions in Y -factors in (5.9) have zeros for any w,w′,

θ1(0|τ) = 0), in agreement with the fact that the theory is trivial at these points. More

generally, the theory, and, in particular, Z is periodic in q (see (3.29))

Z(R, q) = Z(R, q + 2nR−1) , n = 0,±1, ... . (5.14)

For qR = 2n+ 1 the partition function (with bosonic zero-mode singularity properly reg-

ularized) is the same as that of free superstring compactified on a circle with antiperiodic

boundary conditions for space-time fermions [18] (as was already mentioned, the depen-

dence on odd qR can be eliminated from (5.6) provided SR,L, S̄R,L satisfy antiperiodic

boundary conditions in y).

Separating contributions of different intervals of values of w,w′ in the sum in (5.9)

(which correspond to different values of γ in the Hamiltonian picture after Poisson resum-

mation) and comparing with the RNS expression it can be confirmed that the different

prescriptions for the GSO projection in the different sectors discussed above are consistent

with modular invariance.

Z is infrared-divergent for those values of the moduli q and R for which there are

tachyonic states in the spectrum (see Section 4) and is finite for all other values of q, R

(a special symmetry of a general class of tachyon-free string models with finite 1-loop

cosmological constant was discussed in [29]).

15 Note that the full integrand of Z is modular invariant since the transformation of τ can be

combined with a redefinition of w, w′ (so that, e.g. Z0 and Y remain invariant).
16 The q → 0 divergence of the bosonic ‘constant mode’ factor ∼ q−2 corresponds to the

restoration of the translational invariance in the x1, x2-plane in the zero magnetic field limit (this

infrared divergence reproduces the factor of area of the 2-plane). This factor was projected out

in [11] to get a smooth q → 0 limit of Z. As is clear from the above, in the superstring theory

this divergence is cancelled against the analogous fermionic ‘zero-mode’ factors which ensure the

regular (zero) q → 0 limit of Z.
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6. a = 1 Melvin model and other more general static magnetic flux tube models

In the previous Sections we have discussed the simplest possible static magnetic flux

tube model. More general bosonic string models were constructed in [11]. They depend on

4 real parameters (R, q, α, β), with two (‘left’ and ‘right’) magnetic fields proportional to

q+ β and q −α and an antisymmetric tensor proportional to α− β. The most interesting

subclass of these models, corresponding to the α = β case, describes static magnetic flux

tube backgrounds. It contains the a =
√

3 Melvin model studied above as the special case

of α = β = 0 and the dilatonic a = 1 Melvin model as the case of α = β = q. The

four-dimensional geometry is given by

ds24 = −dt2 + dρ2 + F (ρ)F̃ (ρ)ρ2dϕ2 + dx2
3 , (6.1)

Aϕ = qF (ρ)ρ2 , Bϕ = −βF̃ (ρ)ρ2 , (6.2)

e2(φ−φ0) = F̃ (ρ) , e2σ = F̃ (ρ)F−1(ρ) , F ≡ 1

1 + q2ρ2
, F̃ ≡ 1

1 + β2ρ2
.

The models with β > q are related to the models with β < q by the duality transfor-

mation in the Kaluza-Klein coordinate y; more precisely, the (R, β, q) model is y-dual to

(α′/R, q, β) model (so that the a = 1 Melvin model is the ‘self-dual’ point). For fixed q

these models thus fill an interval 0 ≤ β ≤ q parametrized by β with a =
√

3 and a = 1

Melvin models being the boundary points. The non-trivial part of the corresponding La-

grangian is [11] (cf. (2.2))

L = ∂+ρ∂−ρ+ F (ρ)ρ2[∂+ϕ+ (q + β)∂+y] [∂−ϕ+ (q − β)∂−y] (6.3)

+ ∂+y∂−y + R(φ0 + 1
2 lnF ) , F−1 = 1 + β2ρ2 .

This model is related to the model (2.2) by the formal O(2, 2) duality rotation (combination

of a shift of ϕ by y and duality in y). Indeed, it can be formally obtained from the y-dual

(3.31) to (2.2) by first changing q → β, ỹ → y in (3.31) and then shifting ϕ → ϕ + qy.

This explains why this bosonic model is solvable even though the ten-dimensional target

space geometry is, in general, no longer flat.17 The equivalent form of (6.3) is

L = ∂+ρ∂−ρ+ F (ρ)[∂+y − βρ2∂+ϕ
′][∂−y + βρ2∂−ϕ

′] (6.4)

+ ρ2∂+ϕ
′∂−ϕ

′ + R(φ0 + 1
2

lnF ) ,

17 In [11] we used the ‘rotating’ coordinate system by redefining ϕ → ϕ−βt (the corresponding

background remained static). This redefinition is not actually necessary for the solution of the

model as we shall explain below.
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where we have used the formal notation ϕ′ = ϕ + qy. Introducing an auxiliary 2d vector

field with components V+, V− we can represent (6.4) as follows, cf. (2.8) (this corresponds

to ‘undoing’ the duality transformation mentioned above)

L = 1
2(∂+ + iβV+ + iq∂+y)x (∂− − iβV− − iq∂−y)x

∗ + c.c. (6.5)

+ V+V− − V−∂+y + V+∂−y .

Now it is easy to understand why the classical equations of this model are explicitly solvable

in terms of free fields and the partition function is computable. In spite of the y-dependence

in the first term, the equation of motion for y still imposes the constraint that V has zero

field strength, F(V ) = ∂−V+ − ∂+V− = 0: the variation over y of the first term vanishes

once one uses the equation for x (this follows from the fact that qy-terms can be formally

absorbed into a phase of x). Then V+ = C+ + ∂+ỹ, V− = C− + ∂−ỹ, C± = const. In the

equations for V+, V− one can again ignore the variation of the first term in (6.5) since it

vanishes under F(V ) = 0. We find that V+ = C+ + ∂+ỹ = ∂+y, V− = C− + ∂−ỹ = −∂−y.
The solution of the model then effectively reduces to that of the model (2.2), the only

extra non-trivial contribution being the zero mode parts of the two dual fields y and ỹ.

Interchanging of q and β is essentially equivalent (after solving for C+, C−) to interchanging

y and ỹ and thus momentum and winding modes.

Eliminating C+, C− one gets terms quartic in the angular momentum operators in the

final Hamiltonian. Similar approach applies to the computation of the partition function

Z. Once x, x∗ have been integrated out, the integrals over the constant parts of V+, V−
cannot be easily computed for qβ 6= 0 and thus remain in the final expression [11] (see also

below).

This discussion has a straightforward generalization to superstring case. A simple way

to obtain the supersymmetric version of (6.3) is to start with (3.3) (with β instead of q),

make the y-duality transformation,

LRNS = ∂+x∂−x
∗ + λ∗R∂+λR + λ∗L∂−λL (6.6)

+F (x)
[

∂+y +
i

2
β(x∂+x

∗ − x∗∂+x+ 2λ∗LλL)
][

∂−y −
i

2
β(x∂−x

∗ − x∗∂−x+ 2λ∗RλR)
]

+ R(φ0 + 1
2 lnF ) , F−1 = 1 + β2xx∗ ,

and then include the q-dependence by rotating x and λ, i.e. by replacing their derivatives

by covariant derivatives with iq∂±y as a connection. The action now contains the quartic

fermionic terms reflecting the non-trivial (generalized) curvature of the space. The model

still remains solvable. The direct analogue of (6.5) is (cf. (3.3))

LRNS = 1
2 (∂+ + iβV+ + iq∂+y)x (∂− − iβV− − iq∂−y)x

∗ + c.c. (6.7)
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+ λ∗R(∂+ + iβV+ + iq∂+y)λR + λ∗L(∂− + iβV− + iq∂−y)λL

+ V+V− − V−∂+y + V+∂−y .

The final expressions for the Hamiltonian and partition function then look very similar

to the bosonic ones (the role of fermions is just to supersymmetrize the corresponding

free superstring number of states and angular momentum operators and to cancel certain

normal ordering terms).

The operator quantization of the model can be performed in a similar way as in the

simplest case of a =
√

3 Melvin model. The exact Hamiltonian corresponding to the

superstring theory on the curved space-time geometry (6.1), (6.2) takes a very simple and

β-q symmetric form, cf. (3.20)

Ĥ = 1
2α

′(−E2 + p2
α) + N̂R + N̂L (6.8)

+ 1
2
α′R−2(m− qRĴ)2 + 1

2
α′−1

R2(w − α′βR−1Ĵ)2 − γ̂(ĴR − ĴL) ,

N̂R − N̂L = mw , (6.9)

γ̂ ≡ γ − [γ] , γ ≡ qRw + α′βR−1m− α′qβĴ , (6.10)

where [γ] denotes the integer part of γ (so that 0 ≤ γ̂ < 1) and the operators N̂R,L, ĴR,L

are the same as in (3.20).

The duality symmetry in the compact Kaluza-Klein direction y (which exchanges the

axial and vector magnetic field parameters β and q) is now manifest. The Hamiltonian

is indeed invariant under R ↔ α′R−1, β ↔ q m ↔ w. The resulting expression for

(mass)2 is obvious from (6.8) (cf. (3.26),(3.30)). The mass formula can also be written

in terms of the ‘left’ and ‘right’ magnetic field parameters and charges, BL,R ≡ q ± β,

QL,R = mR−1 ± α′−1
Rw,

α′M2 = 2N̂R + 2N̂L + 1
2α

′(Q2
L +Q2

R) (6.11)

− 2α′
(

BLQLĴR +BRQRĴL

)

+ α′
(

B2
LĴR +B2

RĴL

)

Ĵ .

It is clear from eq. (6.8) that all states with ĴR − ĴL ≤ N̂R + N̂L have positive mass

squared. The only bosonic states which can be tachyonic thus lie on the first Regge

trajectory with maximal value for SR, minimal value for SL, and zero orbital momentum,

i.e. ĴR = SR − 1
2

= N̂R + 1
2
, ĴL = SL + 1

2
= −N̂L − 1

2
, so that ĴR − ĴL = N̂R + N̂L + 1.

Then

α′M2 = 2(N̂R + N̂L)(1 − γ̂) (6.12)

+ α′R−2(m− qRĴ)2 + α′−1
R2(w − α′βR−1Ĵ)2 − 2γ̂ ,
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which is not positive definite due to the last term −2γ̂. For all other possible values of

ĴR, ĴL the resulting M2 is non-negative. In particular, all fermionic states will have

(mass)2 ≥ 0, as expected in a unitary theory. This is manifest from eq. (6.8), except for

the fermions with ĴR − ĴL = N̂R + N̂L + 1
2 , for which there is a negative contribution −γ̂

in the expression for M2. A close inspection of eq. (6.8) shows that M2 ≥ 0 is true also

in this case.

From eq. (6.12) one learns that in general there are instabilities (associated with states

with high spin and charge) for arbitrarily small values of the magnetic field parameters.

The special case of β = 0 (or q = 0), corresponding to the a =
√

3 Melvin model discussed

in Section 4, is the only exception: we have seen that in this (type II) model there are no

tachyons below some finite value of q. Let us now consider an example which illustrates

the generic pattern: the a = 1 Melvin model where q = β (BR = 0, BL = 2β) and

α′M2 = 4N̂R + α′Q2
R − 4γ̂ĴR , γ = α′βQL − α′β2Ĵ . (6.13)

Let us take for simplicity R =
√
α′, and choose the states with w = m, N̂L = 0, ĴR =

N̂R + 1
2 and ĴL = −1

2 . These states become tachyonic for β in the interval β1 < β < β2,

with

β1,2 =
1

m

(

1 ∓
√

1 − γcr

)

, γcr =
m2

m2 + 1
2

. (6.14)

For large m these magnetic field parameters will be very small. Conversely, given any

arbitrarily small magnetic field, there will be tachyons corresponding to states with m

obeying β−1 − 2−1/2 < m < β−1 + 2−1/2, where we have neglected O(β) terms. Unlike

the usual Yang-Mills type magnetic instabilities, these (being associated with higher level

states) remain even after the massless level states get small masses (they can be eliminated

only if the corresponding higher-spin states receive Planck-order corrections to their free-

theory masses).

For generic values of the magnetic field parameters β, q the supersymmetry is broken

in all these models. This can be seen directly from the spectrum. Indeed, the two magnetic

fields couple to both components of the spin (SL and SR), which cannot be simultaneously

the same for bosons and fermions. This means that bosons and fermions should get different

mass shifts. When qR = 2n1 and α′βR−1 = 2n2 , n1,2 = 0,±1, ..., the theory is equivalent

to the free superstring compactified on a circle (in this case γ̂ = 0 and, after appropriate

shifts of m,w by integers, eq. (6.8) reduces to the free superstring Hamiltonian). If

qR = 2n1 + 1 or α′βR−1 = 2n2 + 1, then the necessary shift in m or w in the fermionic

sector involves half-integer numbers. As discussed in the previous sections, in these cases

the theory can be interpreted as a free superstring on a circle with antiperiodic boundary

conditions for space-time fermions.
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Finally, the partition function can be computed by a similar procedure as in the

bosonic case [11]. Starting with the analogue of (6.7) in the Green-Schwarz approach we

find (cf. (5.9))

Z(R, q, β) = cV7R

∫

d2τ

τ2
2

∫

dCdC̄ (α′τ2)
−1

∞
∑

w,w′=−∞

(6.15)

× exp
(

− π(α′β2τ2)
−1[χχ̄−R(q + β)(w′ − τw)χ̄−R(q − β)(w′ − τ̄w)χ

+R2q2(w′ − τw)(w′ − τ̄w)]
)

× Z0(τ, τ̄ ;χ, χ̄)
Y 4(τ, τ̄ ; 1

2
χ, 1

2
χ̄)

Y (τ, τ̄ ;χ, χ̄)
,

χ ≡ 2βC + qR(w′ − τw) , χ̄ = 2βC̄ + qR(w′ − τ̄w) ,

where Y (τ, τ̄ ;χ, χ̄) and Z0(τ, τ̄ ;χ, χ̄) were defined in (5.12) and (5.13). The auxiliary

parameters C, C̄ are proportional to the constant parts of V± in (6.7). In the limit β → 0

we recover the partition function (5.9) of the model discussed in the previous section.

The partition function (6.15) has the following symmetries (cf. (5.14)),

Z(R, q, β) = Z(α′R−1, β, q) , (6.16)

Z(R, q, β) = Z(R, q + 2n1R
−1, β + 2n2α

′−1
R) , n1,2 = 0,±1, ... . (6.17)

These are symmetries of the full conformal field theory (as can be seen directly from the

string action in the Green-Schwarz formulation). For qR 6= n1 and α′βR−1 6= n2, n1,2 =

integers, there are tachyons at any value of the radius R, and the partition function contains

infrared divergences. As follows from eq. (6.17), when α′β/R (or qR) is an even number,

the partition function reduces to that of the a =
√

3 model, eq. (5.9). In particular, in the

special case that both qR and α′βR−1 are even, the partition function is identically zero,

since for these values of the magnetic field parameters the theory is equivalent to the free

superstring theory. In the case when either α′β/R or qR is an odd number, the partition

function is finite in a certain range of values of the radius.

7. Conclusions

The simple model considered in the main part of this paper describes type II super-

string moving in a flat but topologically non-trivial 10-dimensional space. The non-trivial

3-dimensional part of this space (2.6) is a ‘twisted’ product of a 2-plane and a circle S1

(the periodic shifts in the coordinate of S1 being accompanied by rotations in the plane).

The free continuous moduli parameters are the radius R of S1 and the ‘twist’ q. If other
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5 spatial dimensions are toroidally compactified, the model can be interpreted as corre-

sponding to the Kaluza-Klein Melvin magnetic flux tube background in 4 dimensions (R

being Kaluza-Klein radius and q being proportional to the magnetic field strength).

This model can be easily solved either in the RNS or light-cone GS approach and

exhibits several interesting features. The supersymmetry is broken if qR 6= 2n. For

qR = 2n the theory is equivalent to the standard free superstring theory compactified on

a circle with periodic boundary conditions for space-time fermions; for qR = 2n + 1 it is

equivalent to the free superstring with antiperiodic boundary conditions for the fermions

(the model thus continuously interpolates between these two free superstring models).

The mass spectrum is invariant under q → q + 2nR−1 and contains tachyonic states for

certain intervals of values of R and q. The one-loop vacuum amplitude Z(R, q) is finite

for R >
√

2α′ but diverges for those R and q, for which there are tachyonic states in the

spectrum.

The presence of tachyonic instabilities for certain finite values of R and q is not sur-

prising in view of the magnetic interpretation of this model. This perturbative instability

of the Kaluza-Klein Melvin background as a solution of superstring theory may be more

serious than its potential non-perturbative instabilities discussed at field-theory level in

[5].18

We have seen that the superstring versions of more general static magnetic flux tube

models of [11] (which depend on compactification radius, vector and axial magnetic field

parameters R, q and β) have analogous properties. In particular, supersymmetry is broken

for all of these models (for generic values of β, q). These more general models reduce to

the free superstring theory when both qR and α′βR−1 are even integers. The bosonic

string partition function [11] has the following symmetries: Z(R, q, β) = Z(α′R−1, β, q)

and Z(R, q, β) = Z(R, q + n1R
−1, β + n2α

′−1
R), n1,2 = 0,±1, ... . The same symmetries

are present also in the superstring case, with the replacement n1,2 → 2n1,2 (the case of

odd integers n1, n2 is again equivalent to the theory with antiperiodic fermions).

A common feature of all these models is the appearance of tachyonic instabilities asso-

ciated with states on the first Regge trajectory. All other Regge trajectories are tachyon-

free. This should be a universal feature of all static backgrounds in superstring theory.

Indeed, this fact is related to unitarity (implying the absence of ‘fermionic tachyons’).19

18 For comparison, the S1× (Minkowski space) Kaluza-Klein vacuum is perturbatively stable

but may be unstable at the non-perturbative level [30]. Let us note also that the perturbative

instability of the Melvin background suggests that other, related, more general solutions, such as

the Ernst geometry [4] which asymptotically reduce to Melvin, are also perturbatively unstable

at the superstring-theory level.
19 Since a unitary tree-level S-matrix should correspond to a string field theory with a hermitian

action, the ‘square’ of hermitian fermionic kinetic operator should be positive in any background.

This translates into positivity of M2 for the fermionic states in the case of static backgrounds.
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The expression for (mass)2 depends on the angular momentum operator. If there were

bosonic tachyons not only on the leading Regge trajectory, but also on the subleading one,

then a fermionic state with the ‘intermediate’ value of the spin (but otherwise the same

quantum numbers) would have M2 < 0. Since this is not allowed by unitarity, in any

unitary superstring model corresponding to a static background tachyonic states can only

appear on the first (bosonic) Regge trajectory.

The breaking of supersymmetry in the model (3.3) is a consequence of an incompat-

ibility between periodicity of space-time spinors in the compact Kaluza-Klein direction

y and the presence of a mixing between y and the angular coordinate of 2-plane (this

mixing produces a flat but globally non-trivial connection in the fermionic derivatives).

Replacing the 2-plane by a compact space with a non-trivial isometry parametrized by a

coordinate θ and mixing θ with another compact internal coordinate y, one may try to

construct a similar model in which supersymmetry is broken with preservation of Lorentz

symmetry in the remaining flat non-compact directions. The simplest examples of such

models are string compactifications on twisted tori (or, equivalently, string analogues of

the ‘Scherk-Schwarz’ [31] or ‘coordinate-dependent’ compactifications) [18,32,33,20]. Con-

sider, e.g., the 3-torus (x1, x2, y) ≡ (x1 + 2πR′n1, x2 + 2πR′n2, y + 2πRk) and twist it by

imposing the condition that the shift by period in y should be accompanied by a rotation

in the (x1, x2)-plane. For a finite R′ the only possible rotations are by angles 1
2πn, i.e.

one may identify the points (θ, y) = (θ + 2πn + 1
2πk, y + 2πRk), cot θ = x1/x2. The

superstring theory with this flat but non-trivial 3-space as (part of) the internal space

was considered in [18] (see also [32,20]) where it was found that such a twist of the torus

breaks supersymmetry and leads to the existence of tachyons for R2 < 2α′ and a finite

(for R2 > 2α′) non-vanishing partition function. It is easy to see that the R′ → ∞ limit

of the Rohm model is actually equivalent to the special case qR = 1
4
k of our model. The

corresponding limits of the spectra and partition functions of the two models indeed agree

(the case of k = 4 explicitly considered in [18] is equivalent to the superstring compactified

on a circle with antiperiodic boundary conditions for the fermions). Since in the present

model the 2-plane is non-compact and thus the twisting angle 2πqR is arbitrary, this model

continuously connects large R′ limits of the models of [18] with different values of integer

k.

Similar models with compact flat internal spaces obtained by ‘twisting’ tori always

have discrete allowed values of the twisting parameter (a symmetry group of a lattice which

generates a torus from RN is discrete). It is of interest to study analogous ‘twistings’

of models with compact curved internal spaces with isometries. For example, one may

consider the SU(2)×U(1) WZW model and ‘twist’ the product by shifting the two isometric

Euler angles θL and θR of SU(2) by the coordinate y corresponding to U(1), θ′L = θL+q1y,

θ′R = θR + q2y (q1, q2 are arbitrary continuous twist parameters). The model with q2 = 0

was recently discussed in [34]. The resulting action ISU(2)(θ
′
L, θ

′
R, ψ) +

∫

(∂y)2 defines a
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conformal theory (locally the 4-space is still SU(2) × U(1) group manifold). The case of

q1 = q2 (or q1 = −q2) is a compact analog of the model (2.2) studied in the present paper.

It is possible to show that supersymmetry is broken (in particular, there is no Killing

spinors) in this ‘compact’ model for all values of the continuous parameters qi 6= 2nR−1

[35]. This is not, however, in contradiction with the ‘no-go’ theorem of ref. [36]. In the

case of compactification on SU(2) × U(1) group space the supersymmetry is broken (in

a ‘discrete’ way) already in the absence of twisting (qi = 0) due to the central charge

deficit (see, e.g., [37,38]). Still, analogous closed string models containing extra continuous

supersymmetry-breaking ‘magnetic’ parameters may be of interest in connection with a

possibility of spontaneous tree-level supersymmetry breaking in string theory.
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