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by topological nonlinear �-model. This relation is an in�nite dimensional analogy
with the relation between Poincar�e-Hopf and Gauss-Bonnet-Chern formulae in classical
Morse theory. By applying localization techniques to functional integrals we then show
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character determined by the deRham cohomology of the target space. Our results are

consistent with the Arnold conjecture which estimates periodic solutions to classical
Hamilton's equations in terms of deRham cohomology of the phase space.
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The methods of quantum �eld theory that were originally developed to understand

particle physics, have since proven useful also in statistical physics. Recently it has been

noticed that these methods could even be succesfully applied to classical Hamiltonian

dynamics. There, one of the intriguing open problems is the Arnold conjecture [1],

[2] which states, that on a compact phase space the number of periodic solutions to

Hamilton's equations is bounded from below by the sum of Betti numbers.

In this Letter we shall be interested in developing functional integral techniques to

address issues such as the Arnold conjecture. In particular, we argue that the meth-

ods of topological quantum �eld theories when combined with functional localization

techniques appear quite e�ective also in the case of classical dynamical systems.

We shall consider Hamilton's equations on a phase space which is a compact sym-

plectic manifold X with local coordinates �a. We are interested in T -periodic trajec-

tories that solve Hamilton's equations, i.e. are critical points of the classical action

Scl =
Z T

0

d� (#a _�
a �H(�; � )) (1)

Here #a are components of the symplectic potential corresponding to the symplectic

two-form ! = d#. We assume that the Hamiltonian depends explicitly on time � in

a T -periodic manner H(�; 0) = H(�; T ), so that energy is not necessarily conserved.

Hamilton's equations are

_�a � !ab@bH(�; � ) = _�a �X a
H = 0 (2)

with T -periodic boundary condition �(0) = �(T ). Without any loss of generality we

shall assume that such periodic solutions are nondegenerate.

When energy is conserved so that H does not have explicit dependence on � each

critical point of H generates trivially a T -periodic trajectory. According to the classical

Morse theory their number is bounded from below by the sum of Betti numbers on X

and consequently Arnold's conjecture is valid:

f #periodic trajectories g �
X

Bk =
X

dimHk(X;R) (3)

However, if H depends explicitly on time so that energy is not conserved, the critical

points of H do not solve (2) and the methods of �nite dimensional Morse theory are

no longer applicable. In order to show that (3) nevertheless remains valid we need

an in�nite dimensional generalization of Morse theory. Unfortunately this is not very

easy: There is no minimum for (1), and periodic solutions of (2) are saddle points of
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(1) with an in�nite Morse index. Due to such di�culties, for explicitly � -dependent

Hamiltonians the conjecture has only been proven in certain special cases [2].

In the approach to Arnold conjecture developed by Floer [3], [2] one starts by

de�ning a gradient ow in the space of closed loops �(0) = �(T )

@�a

@�
= �gab

�Scl

��b
(4)

where gab is a Riemannian metric on X. Using this metric and the symplectic two-form

!ab we set

Iab = gac!cb

Since IacI
c
b = ��ab this de�nes an almost complex structure on the manifold X and

(4) becomes

@��
a + Iab@��

b = @aH(�; � ): (5)

This equation is de�ned on a cylinder S1 � R with local coordinates � and �. It

describes the ow of loops �(� ) on X, and the bounded orbits tend asymptotically to

the periodic solutions of Hamilton's equation (2).

Using (5), Floer constructs a complex with the solutions to (2) being the vertices

and the trajectories (5), so-called pseudo-holomorphic instantons, connecting them as

the edges. He proves that for a generic Hamiltonian the cohomology of this complex is

in fact independent of H(�; � ). Subsequently Witten [4] found that Floer's cohomology

has connections to a quantum cohomology which is generated by the quantum ground

states of a topological �-model. Using the more general Novikov ring structure Sadov

[5] then established that these two cohomologies in fact coincide. According to the

Arnold conjecture (3) these cohomologies should also be intimately connected with the

standard deRham cohomology of the underlying phase space.

Witten's quantum cohomology is based on solutions of Cauchy-Riemann equations

for holomorphic curves

@��
a + Iab@��

b = 0 (6)

This corresponds to the (denegerate) special case of (5) with H = 0, which is not

generic from the point of view of Hamiltonian dynamics. Consequently it is not clear

how the topological �-model, even if it describes Floer's cohomology, could be applied

to understand Arnold's conjecture. For this, one needs to extend the topological �-

model so that it accounts for an arbitrary nontrivial Hamiltonian H(�; � ). Such issues

have been addressed by Sadov [5]. In the present Letter we shall continue his work
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by explaining how functional integrals and localization techniques, when applied to

the topological �-model, can be used to derive Morse-theoretic relations for a generic

Hamiltonian system. In particular, we shall explain how the standard, �nite dimen-

sional De Rham cohomology relates to quantum cohomology by studying an in�nite

dimensional version of Poincar�e-Hopf and Gauss-Bonnet-Chern formul� for (5).

Topological �-model [4] is a theory of maps from a Riemann surface � with metric

��� and almost complex structure ��
� to a manifold X with Riemannian metric gab

and almost complex structure Iab. We assume that the almost complex structures are

both compatible with the metrics, so that for example on X we have gab = IcaI
d
bgcd.

Moreover, if we have

DcI
a
b = @cI

a
b + �acdI

d
b � �dcbI

a
d = 0 (7)

Iab is an integrable complex structure and gab is K�ahler. However, in the following we

do not necessarily assume (7).

The basic �elds are maps �a : �! X; a = 1 ::: dim X, which correspond to local

coordinates on X. Anticommuting �elds  a are sections of ��TX, the pullback of the

tangent bundle of X. Anticommuting �elds �a�; (� = 1; 2), are one-forms on � with

values on ��TX, so they are sections of the bundle E = ��TX 
 T ��. Commuting

auxiliary �elds F a
� are sections of the same bundle as �a�. Because the rank of E is

in�nitely bigger than dimension of the space of maps from � to X we restrict to a sub-

bundle, the self-dual part E+. This means that �a� and F a
� both satisfy the self-duality

constraint

�a� = ��
�Iab�

b
� (8)

The �elds have a grading which at the classical level corresponds to a bosonic symmetry

with charges 0; 1;�1; 0 for �a;  a; �a� and F a
�, respectively.

The action of topological �-model can be constructed in the following way: Consider

a nilpotent fermionic operator ~Q of degree �1 constructed from the �elds of the theory

~Q =
Z
�

d2x

"
i a(x)

�

��a(x)
+ F a

�(x)
�

��a�(x)

#
� i a@a + F a

��
�
a ; (9)

where summation over a always implies an integration over � and

@a =
�

��a(x)
; ��a =

�

��a�(x)
:
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This we identify as a di�erential operator d 
 1 + 1 
 � in the superspace de�ned on

the complex 
(E) 
 
(�E). Here �E means that the coordinates anticommute. Now

introduce a canonical conjugation of ~Q

Q = e�� ~Qe� = ~Q+ f ~Q;�g+
1

2
ff ~Q;�g; �g+ � � � (10)

The cohomologies de�ned by the operators ~Q and Q are the same, and we still have

Q2 = 0. A suitable conjugation is de�ned by

� = i c�b��
�
a (��

��abc �
1

2
��

�DcI
a
b);

where

��a =
�

�F a
�(�)

:

In a coordinate free language this can be written as � = �i(�; �̂�) with

�̂a��b = �̂ab 
 E�
� = ��

��ab �
1

2
��

�DIab

being a connection 1-form and  a � d�a denoting the basis of 1-forms on the space of

maps �! X. Notice that the covariant derivative of the self-dual sub-bundle E+ can

be written using the modi�ed connection

D+ =
1

2
[d+ �̂ + � � (d + �̂) � I]:

A straightforward calculation gives

Q = i a@a +

�
F a
� � i c�b�(��

��abc �
1

2
��

�DcI
a
b)

�
��a � iF b

� 
c(��

��abc �
1

2
��

�DcI
a
b)�

�
a

+
1

2
 c d�b�

�
���

�Ra
bcd +

1

2
��

�DdI
e
bDcI

a
e +

1

2
��

�IebR
a
ecd �

1

2
��

�IaeR
e
bcd

�
��a

or in short

Q = i( ; @) + (F + i��̂; �)� i(F �̂; �)�
1

2
(�R̂; �):

Here
1

2
R̂ = d�̂ + �̂ ^ �̂

is the Riemann curvature 2-form corresponding to the connection �̂a��b . In components,

1

2
R̂a�
�b = (

1

2
Ra

b �
1

4
DIebDI

a
e)��

� +
1

4
( IaeR

e
b � IebR

a
e )��

�: (11)

4



This operator Q is exactly the same as in [4] when we take into account the self-duality

condition (8) for �a� and F a
�.

We shall be interested in cohomological actions of the form

S = fQ; �g (12)

Such actions are automatically invariant under the BRST-transformation generated by

Q and consequently the partition function

Z =
Z
[ d�a][ dF a

�][ d 
a][�a�] e

iS (13)

should remain invariant under arbitrary local variations of �.

If we select

� = (�; s)�
�

4
(�; F ) = �a�gab�

��sb� �
�

4
�a�gab�

��F b
�; (14)

where sa�[�] is a section of E and � is a parameter, we get

S =
Z
�

"
�i�a�Dc(gabs

�b) c + F a
�gabs

�b �
i

2
����

b
�DcI

a
b 

cgads
�d �

�

4
F a
�F

�
a

+
�

16
DcI

a
eDdI

e
b 

c d��a�
b
� �

�

8
Ra

bcd 
c d��a�

b
�

#
: (15)

specializing to sa�[�] = @��
a and � = 1 then gives the usual action [4] of topological

�-model.

Since the partition function (13) is (formally) invariant under local variations of �

we conclude that it must be independent of �. Indeed, if we eliminate the auxiliary

�eld F a
�, the partition function yields an in�nite dimensional version of the Mathai-

Quillen formalism [6], [7]: In this formalism, one has a section � of a bundle E over

the manifold X, and an (ordinary) integral over X of the so called Thom class

ZMQ =
Z
X

Z
d� exp�[

1

4�
(�;�)� i�r��

�

4
�R�]: (16)

This integral is independent of �, and as � ! 0 it localizes to a �nite dimensional

integral over the moduli space M of solutions to the equation � = 0. On the other

hand, as �!1 (16) is nothing but the integral of the Pfa�an of the curvature which

is the same as the Euler character of the bundle. The integral (16) thus yields an

interpolation between the Poinc�are-Hopf and Gauss-Bonnet-Chern formulae.
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In the present case, elimination of the auxiliary �eld F a
� gives an in�nite dimensional

functional integral version of the Mathai-Quillen formalism: Using (11) the action

becomes

S =
Z
�

�
1

4�
(sa� + ��

�Iabs
b
�)(s

�
a + ���Ia

bs
�
b )�

i

2
��aDc(s

a
� + ��

�Iabs
b
�) 

c

�
�

4
R̂a

bcd 
c d��a�

b
�

#
(17)

which is clearly of the same functional form as the integrand that appears in (16), the

relevant bundle being E+ and the section

�a
� = sa� + ��

�Iabs
b
� (18)

Thus we may view (13) as an in�nite dimensional version of the integral of the Thom

class (16).

Since (13) is (formally) independent of �, we can consider its �!1 limit. Accord-

ing to the �nite dimensional Mathai-Quillen formalism, this limit should be related to

the Euler character of the functional space. For this, we specialize the world-sheet �

to be a torus with coordinates � and � such that the metric ��� is a unit matrix with

compatible complex structure ��
� = ���� = 1. In the � !1 limit we then �nd that

the partition function evaluates to

Z�!1 =
Z
[ d�a][ d a] Pfa�(R̂a

b): (19)

At least formally, this is the Euler character of the in�nite dimensional bundle E+. In

particular, all dependence on T �� has vanished from the last integral, it only depends

on the Euler character of ��TX. Formally, this in�nite dimensional quantity is a

topological invariant and as such does not depend on how we choose the connection.

It is the Euler character in the quantum cohomology de�ned by the quantum ground

states of the topological �-model, and counts the di�erence in the number of bosonic

vacua (even forms) and fermionic vacua (odd forms) in the quantum theory.

In analogy with �nite dimensional Morse theory, we next relate the (formal) in�-

nite dimensional Euler character (19) to an alternating sum over critical points of a

functional � describing the Floer cohomology. For this we consider the limit � ! 0,

again on a torus � with local coordinates �; � .

As �! 0, the integral obviously concentrates around the zeroes of

�a
� � sa� + ��

�Iabs
b
�
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For simplicity we shall assume that these zeroes are non-degenerate. (A generalization

to the degenerate case is straightforward, see for example [8].) Let �a
0
be such that

�a
�[�0] = 0

and write �a = �a
0
+ �̂a. In the absence of degeneracies, the �rst term in the expansion

�a
� � @c(�

a
�)�̂

c +O(�̂2)

does not vanish. The corresponding expansion of the action is

S =
Z
�

�
�
i

2
�a�gab@c(�

a
� ) 

c �
i

2
�a�gab@c(�

a
�) 

c

+
1

4�

�
@c(�

a
� )gab@d(�

b
� ) + @c(�

a
�)gab@d(�

b
�)
�
�̂c�̂d +O(�̂3)

�
: (20)

Using the self-duality of �a� and the fact that near �0 we have �
a
� = �Iab�b

� this gives

S =
Z
�

�
�i�a�gab@c(�

a
�) 

c +
1

2�
@c(�

a
�)gab@d(�

b
�)�̂

c�̂d +O(�̂3)
�
: (21)

As �! 0, we can then evaluate the partition function which yields

Z�!0 =
Z
[ d�a

0
][ d�̂a][ d a][�a� ][�

a
�] det

� 1

2 (
i�

2
g) exp[iS]

=
Z
[ d�a

0
] det�

1

2 (g) det�
1

2

h�
@c(�

a
�)gab@d(�

b
�)
�i
det

�
gab@c�

b�
�

=
X
�a
�
=0

sign det jj@b�
a
�jj (22)

In particular, if we select

sa� = @��
a � �a�

and take �a� to be a self-dual Hamiltonian vector �eld, i.e.

�a� =
1

2
@aH�(�; �) (23)

where H�(�) are two a priori arbitrary Hamiltonian functions on X related by the

self-duality condition for �a�, we �nd that

�a
� = @��

a + Iab@��
b � @aH�(�; �) = 0

which is Floer's instanton equation (5).

Note that demanding �a�'s to be self-dual together with (23) implies that Iab must

be complex structure so that X is now a K�ahler manifold.
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This result establishes that the quantum cohomology of the topological �-model

indeed describes the cohomology of Floer's instanton equation, at least in the sense

of Poincar�e-Hopf and Gauss-Bonnet-Chern formul�. The underlying idea in Floer's

approach to the Arnold conjecture is that this cohomology should also be intimately

related to the deRham cohomology of the original symplectic manifold, i.e. the target

manifold of the �-model. Such a relation would then explain why an estimate such as

(3) makes sense as a Morse inequality. We shall now proceed to evaluate our functional

integral using localization methods to establish that the Euler character (19) of quan-

tum cohomology indeed coincides with the Euler character of the deRham cohomology

over the symplectic manifold X.

For this, we specialize to a symplectic manifold which is K�ahler. We select local

coordinates so that Iab = i�ab and I
�a
�b = �i��a�b. Self-duality then implies that F a

z =

F �a
�z = 0 so that the only surviving components are F a

�z and F �a
z , and similarly for �a�.

Using the (formal) invariance of (13) under local variations of �, we introduce the

functional

� = ���gabF
a
��

b
� + �gab�

��@��
a�b� (24)

and consider the pertinent action (12). Explicitly (we set F a
�z � F a etc.),

S = ga�bF
aF

�b +Ra
bc �d 

c 
�d�bga�e�

�e +R�a
�bc �d 

c 
�d�
�bg�ae�

e + �(F aga�b@�z�
�b + F �ag�ab@z�

b)

+ ��a(�iga�b@�z � iga�d@�z�
�e�

�d
�b�e) 

�b + ���a(�ig�ab@z � ig�ad@z�
e�dbe) 

b (25)

We evaluate the corresponding functional integral in the � ! 1 limit, by separating

the z; �z independent constant modes (for example in a Fourier decomposition) and

scale the non-constant modes by 1p
�
,

�a(z; �z) = �ao + �̂a(z; �z) ! �ao +
1
p
�
�̂a(z; �z)

F a(z; �z) = F a
o + F̂ a(z; �z) ! F a

o +
1
p
�
F̂ a(z; �z)

�a(z; �z) = �ao + �̂a(z; �z) ! �ao +
1
p
�
�̂a(z; �z)

 a(z; �z) =  a
o +  ̂a(z; �z) !  a

o +
1
p
�
 ̂a(z; �z) (26)

and similarly for ��a; F �a; ��a;  �a. The Jacobian for this change of variables in (13)

is trivial, and evaluating the integrals in the � ! 1 limit we end up with the Euler

8



character of the phase space X in the form

Z =
Z
d�aod�

�a
od 

a
od 

�a
o Pfa�(R

a
bc �d 

c
o 

�d
o)Pfa�(R

�a
�bc �d 

c
o 

�d
o) (27)

which also exhibits the underlying complex structure on X. As a consequence, we have

found that the Euler characteres in quantum cohomology and deRham cohomology

coincide, establishing an intimate relationship between these two cohomologies. In

particular, the Floer instanton equation de�ned over our torus obeys

X
�a
�
=0

sign det jj@c�
b
�jj =

X
k

(�)kBk

with Bk the Betti numbers of the symplectic manifold X. Obviously this is fully

consistent with (3).

In conclusion, we have studied three a priori di�erent cohomologies: Floer's coho-

mology which describes periodic solutions to Hamilton's equations, Witten's quantum

cohomology which describes the quantum ground state structure of a topological non-

linear �-model, and standard �nite dimensional deRham cohomology. By investigating

an in�nite dimensional generalization of the familiar Poincar�e-Hopf and Gauss-Bonnet-

Chern formul�, we have found that these three cohomologies are intimately related.

This result is consistent with the Arnold conjecture. In particular, it indicates that

topological �eld theories and functional localization methods are useful tools also in

the study of classical dynamical systems.
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