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Abstract: The principle of indirect elimination states that an algorithm for

solving discretized di�erential equations can be used to identify its own bad-

converging modes. When the number of bad-converging modes of the algorithm

is not too large, the modes thus identi�ed can be used to strongly improve the

convergence. The method presented here is applicable to any standard algo-

rithm like Conjugate Gradient, relaxation or multigrid. An example from theo-

retical physics, the Dirac equation in the presence of almost-zero modes arising

from instantons, is studied. Using the principle, bad-converging modes are re-

moved e�ciently. Applied locally, the principle is one of the main ingredients

of the Iteratively Smooting Unigrid algorithm.

1. Introduction

Discretized di�erential equations lie at the heart of many simulation algo-

rithms in physics. A large variety of solution algorithms like Conjugate Gradi-

ent, Overrelaxation, or Multigrid exist to deal e�ciently with such problems

[14]. The convergence of these algorithms usually depends on the condition

number of the problem operator, i.e. the quotient of its largest and smallest

eigenvalue. (For many simple problems multigrid methods will always con-

verge well. Here we are not interested in such cases.) When the number of

eigenmodes with very small eigenvalues is not large, each of these methods

could be accelerated if an additional method for dealing with these modes

would be applied.

In this paper we want to study a method that can be used to do exactly this.

It is partly based on the multigrid idea and relies on a surprisingly simple

principle, called the Principle of indirect elimination or PIE.

We will explain this principle in general context and then apply it to a case

where the occurence of almost-zero modes spoils the convergence of standard
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methods, namely the Dirac equation in a gauge �eld background with instan-

tons [7,10]. We will also show connections to an idea by Kalkreuter somewhat

similar in spirit, called the updating on the last point [11], and explain why

our method is more general. Finally, we will brie
y remark on the connections

to the Iteratively Smoothing Unigrid algorithm [2].

2. The general problem

Consider a linear operator D which may arise from a discretized di�erential

equation. Here and in the following we assume D to be positive de�nite, if it

were not, we could use the operator D�D instead. The general form of the

equation to be solved is then

D� = f : (1)

Let us call the lowest eigenvalue of the operator "0
1
. Its value determines the

criticality of the operator because the smaller it is the larger the condition

number (quotient of largest and smallest eigenvalue) of the operator will be.

If "0 = 0 the problem is ill-posed because the contribution of this zero-mode

to the solution is not determined. For small "0 standard iterative methods

will converge only slowly, the convergence time � (the number of iterations

needed to reduce the error by a factor of e) behaving like � / �
z=2

, where �

is the condition number of D and z is the critical exponent. This behaviour

is called critical slowing down because the more critical the problem gets the

slower the algorithm will be. For relaxation methods, one usually �nds z � 2,

Conjugate Gradient has a critical exponent of z � 1. An optimal algorithm

should have a critical exponent of 0.

At each time-step, any iterative method will yield an approximate solution
e
�.

We introduce two important quantities: the error e = � � e� which is the dif-

ference between the true and the actual solution and is of course not known,

and the residual r = f �De
�, the di�erence between the true and the actual

righthandside. With these de�nitions we can recast the fundamental equa-

tion (1) as

De = r ; (2)

called the error equation.

For a linear method, we can also introduce the iteration matrix S which tells

us what the new error after the next iteration step will be, given the old one:

enew = Seold : (3)

1 It is not fully correct to speak about eigenvalues of D. In section 2.1 we will explain what

is meant by such a statement.
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The concrete structure of the iteration matrix is irrelevant for the following

discussion, see [17,18] for examples. The important point here is that the

iteration matrix is the reduction matrix for the error. Its eigenvalues should

lie between minus one and one and convergence is governed by the eigenmode

of S with absolute value of the eigenvalue closest to one.

In the following sections we will usually assume the algorithm to be linear be-

cause the existence of an iteration matrix eases the analysis. Nevertheless the

method presented here could be applied to the Conjugate Gradient algorithm

as well, see also section 4.2

2.1. Remark on vector spaces

For the analysis it is important to distinguish between a vector space and its

dual [15]. The di�erential operator D maps a vector � 2 V to a vector in the

dual space f 2 V
�

. To see this, consider the Laplace equation in electrody-

namics as an example: �� = �%. The Laplace operator maps a potential onto

a charge density. These two objects can be regarded as dual vectors because

there is a unique way of assigning a real number to them, namely the energyR
%(x)�(x)dx. The Laplace operator therefore provides us with a bilinear form

h�; i
�

=

R
�(x)(� )(x)dx. However, there is no natural identi�cation be-

tween the vector space and its dual besides that given by this scalar product.

We will later see an example where one is easily drawn to wrong conclusions

if this distinction is not taken into account.

It is not really meaningful to speak about eigenvectors or -values of bilinear

forms. On the other hand, the iteration matrix of relaxational methods maps

the error to another error and is therefore a map S : V ! V , possessing

eigenvectors. It are the eigenvalues of this matrix that determine the conver-

gence. The standard identi�cation of eigenvectors of S with eigenvectors of D

is done using additional structure. This is given by the matrix B0 which is de-

�ned through the relation S = I�B�1

0 D. (Standard relaxation methods arise

from splitting the fundamental operator D = B0 + C0, where B0 is chosen

such that it approximates D as good as possible but is \easy to invert".) B0 is

an additional bilinear form and furnishes us with a scalar product in addition

to the scalar product given by D.

For Conjugate Gradient, the situation is similar: Conjugate Gradient updating

steps require computations of scalar products, e.g. � = hr; ri=hd;Ddi, where d
is the search vector. Here we need another scalar product than the D-product.

It is therefore only correct to speak of eigenvectors of D when we have chosen

a basis that is in some sense natural. For example, if we use the standard site-

wise basis and �nd that the eigenvectors of D in this basis agree with those of

3



S, the sloppy way of speach is justi�ed. This will be the case for the example

we will study below. Nevertheless, in the theoretical parts of this paper we

will be more strict.

3. PIE in general

After these preliminaries we formulate the

Principle of indirect elimination (PIE): It is easier to calculate the shape of

a bad-converging mode for a certain algorithm than to reduce it directly using this

algorithm.

To see this, consider the case where there is only one bad-converging mode and

all others are reduced e�ciently by the algorithm. We now use the algorithm

to try to solve an equation of which we already know the solution, for example

the equation D� = 0. In this case we have
e� = �e, so we know the error as

well. Remembering equation (3) we see that we can now directly investigate

how the iteration matrix acts. After n iterations we have

e�(n) = Sn e�(0) ; (4)

where
e
�
(0)

is the initial guess we started with and
e
�
(n)

is the approximate

solution after the n-th iteration. For n ! 1 Sn
projects onto the eigen-

vector of S with the largest absolute value of the eigenvalue, which is the

slowest-converging mode. For �nite n the accuracy of the projection depends

on quotient between the largest and the second-largest eigenvalue: The larger

this is, the better the projection will be. (This can be seen easily by imagin-

ing S to be diagonalized.) In the model case considered here, where there is

only one bad-converging mode, this quotient will be large and so Sn e�(0) will
converge rapidly against the bad-converging mode.

If the number of bad-converging modes is larger than one, but still small, we

can use the same technique to calculate them if we take care of orthogonalizing

the approximations to the already known modes. By this it is obvious that

this method will only be useful if this number is not too large, otherwise

the calculations will take too much time. We will later comment on how the

principle of indirect elimination can be applied locally and used to construct

a multigrid algorithm.

Let us come back to the case of only one bad-converging mode. If we have

calculated this using the principle of indirect elimination, how can we apply

this knowledge to improve convergence?
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The answer relies on multigrid ideas and is in fact very simple. Let us call the

bad-converging mode w. We de�ne an operator A : R ! V; � 7! �w that

creates a vector on the fundamental lattice from a number. This cumbersome

notation has a two-fold purpose: First it stresses the similarity to multigrid

ideas, where A would be called an interpolation operator, second it will later

allow us to study the case where A is not exactly equal to the bad-converging

mode w to see how this will a�ect the convergence.

To solve the inhomogenuous equation, we �rst apply our standard iterative

solver a few times. This will reduce all components of the error appreciably

except for a part proportional to w: e � cw. Inserting this knowledge into the

error equation (2) or using the fact that r = De � Dwc we get

D(cA) � r =)A�DAc � A�r : (5)

In other words, we have transformed the fundamental equation, living on a

large lattice, into an equation for scalars (or simple matrices in the case of a

gauge theory, see below). This new equation can be considered to live on a

lattice with only one point. In multigrid language this is often called the \last-

point lattice" as we have there a whole tower of coarser and coarser lattices

of which the last consists of only one point.

The equation on the last point can be solved easily to get c and afterwards

we correct our approximation:
e
�  e

� +Ac. Thus we have reduced that part

of the error corresponding to A. It is well-known from the multigrid context

that using the largest mode of S as interpolation operator will yield the best

convergence (Greenbaum criterion [8]). If the iterative method used before

has not been perfect, i.e. if the error still contains contributions from other

modes, we now have to start the iteration again to act on the remaining parts.

This may again introduce error-components proportional to A which are then

reduced by another \last-point updating".

We can now understand the reason why the principle has been called principle

of indirect elimination: Direct elimination of the bad-converging mode using

the iterative solver does not work e�ciently, but an indirect approach, �rst

trying to solve an auxilliary equation and only afterwards addressing the real

problem, works �ne.

In practice the situation will not be the idealized one described above. We

now want to study two situations: What will the result of the correction be

when the error is not an exact multiple of the zero-mode w, and what happens

when A deviates from w?

In the �rst case it is easy to prove that after the correction
e
� and A will be

D-orthogonal even if the error before was not a multiple of A, but contained
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an additional contribution v:

�e� = e = cA+ v

r = De = DAc+Dv

The equation on the last point is then:

A�DAx = A�DA c+A�Dv

=) x = c+
A�Dv

A�DA

Correcting
e
� yields

e
� =
A�Dv

A�DA
A� v

This gives D-orthogonality:

A�De� = +
A�Dv

A�DA
A�DA�A�Dv = 0

Now we want to investigate the second question, namely how well the approx-

imation of the zero-mode has to be. To do so we can prove the following rather

trivial

Theorem 1We have an algorithm consisting of two parts. The �rst part is

able to eliminate completely all components of the error except one single

mode w, so we have e = w. The second updating then consists of an updating

on the last point as described above using an approximation A of w.

We can split the bad-converging mode w into two D-orthogonal parts:

w = Ac+ v ; with hA;Dvi = 0 : (6)

Then the iteration matrix M of the full algorithm consisting of both steps has

the (squared) energy norm (with respect to D)

kMk2
D
=

hv;Dvi

hw;Dwi
: (7)

Proof. The energy norm is de�ned as

kMk2
D
= sup

�

hM�;DM�i

h�;D�i
:

Let S be the iteration matrix of the �rst part of the algorithm. As it eliminates

all parts of an arbitrary error except the modew, it is clear that the supremum

in the de�nition will be reached for � = w. S does not a�ect w. After the
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iteration only that part of w that is D-orthogonal to A will remain, see the

calculation above. So we get Mw = v.

Thus we have

kMk2
D
=

hMw;DMwi

hw;Dwi
=

hv;Dvi

hw;Dwi
: 2

It is also useful to look at this geometrically: The angle � between the vectorw

and Ac with respect to the scalar product de�ned by D is given by

cos � =
hw;DAci

hw;Dwi1=2hAc;DAci1=2
:

The reduction works by �rst projecting w onto the direction given by A and

then taking theD-orthogonal part of this. This orthogonal part is the vector v;

it is all that remains after the coarse-grid correction step. The length of this

vector is given by kvkD = kwkD sin �. The reduction factor, which is equal to

the norm of the iteration matrix, is sin �:

A

θ

w

v c

Using Pythagoras' theorem we get

sin
2
� = 1 � cos

2
� = 1�

hw;DAci2

hw;DwihAc;DAci
;

and inserting the split of the vector w and again using the orthogonality

property, we �nally arrive at

sin
2
� = 1�

(hAc;DAci+ hv;DAci)2

hw;DwihAc;DAci
=
hw;Dwi � hAc;DAci

hw;Dwi
=
hv;Dvi

hw;Dwi
:

What are the implications of this theorem? First it must be understood that

the energy norm of the iteration matrix will be equal to the spectral radius
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provided the matrix S is D-symmetric, i.e. S�D = DS 2
. This is true when

the operator D does not mix the mode w with the other modes. We can

then regard w as an eigenmode of D because the matrix S provides us with

an identi�cation of the mode w with the corresponding mode in the dual

space. Hence the energy norm directly tells us about the convergence rate

of the algorithm. S will also be D-symmetric for standard iterative methods

like Jacobi-relaxation and can be made so as well for SOR or Gau�-Seidel

relaxation.

By choosing w as the zero-mode the theorem shows how important the correct

treatment of this mode is. The closer the range of the interpolation operator

A is to the zero-mode and the smaller the energy norm of the residual part

v the better the convergence will be. (In the limiting case where the two

are identical, the di�erence vector is zero and the error of the zero-mode is

eliminated perfectly, as expected.) It is not only important that the zero-

mode is approximated well by the interpolation operator on the last point,

the convergence will also be better when the di�erence vector between zero-

mode and the mode used for the interpolation has a small energy norm and

is as smooth as possible.

The theorem also serves to explain a �nding by Kalkreuter [11]. He found

that it is possible to eliminate critical slowing down in a multigrid algorithm

(actually a two-grid) for the standard Laplace equation even with interpolation

operators that are not able to represent the zero-mode (which is a constant

in this case) exactly, but only approximately. In the light of our theorem this

could be understood if the di�erence vector has a small energy norm. This,

however, has not been tested.

Thus we have seen the importance of the correct treatment of the zero-mode.

Other methods to remove convergence problems caused by the zero-mode can

be thought of. Kalkreuter [11] proposed a simple rescaling of the approximate

solution
e
� in addition to a multigrid or a relaxation algorithm to improve

the convergence. This method completely eliminates critical slowing down in

the simplest model problem, the Laplace equation on a two-point grid. The

rescaling amounts to using the approximate solution
e
� itself as interpolation

operator A.

2 Actually, this is a nice example for the necesssity to distinguish endomorphisms and

bilinear forms: treating D as an endomorphism, not as a bilinear form, we would transform

it using the wrong relation and loose theD-symmetry property after the transformation: We

have S�D = DS. Now if we transform both using the transformation for endomorphisms,

we get (S0)�D0 =
�
U

�

S
�(U�1)�

�
U

�1
DU! Here there is no cancellation as it would be with

the correct transformation: ST
0

D
0 =

�
U

�

S
�(U�1)�

�
U

�

DU. Only if U is orthogonal or

unitary do we get the same cancellation.
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The motivation for this updating scheme can be found in the following argu-

ment: Consider again the equation D� = f . Solving this gives � = D�1f =

(B�1

0
D)

�1B�1

0
f where we have inserted a unit matrix. Let us �x the righthand-

side and increase the criticality of the problem. The more critical it gets the

smaller the lowest eigenvalue "0 of (B
�1

0
D) will be. The solution � will then

have larger and larger contributions from the lowest eigenmode of (B�1

0
D).

Therefore � itself will be a good approximation to the bad-converging mode

and can be used as interpolation operator.

We see that this method is very similar to the principle of indirect elimina-

tion. However, the principle of indirect elimination will always provide us with

an approximation to the zero-mode without any contribution from a given

righthandside, whereas Kalkreuter's method will only work well for large crit-

icality: The interpolation operators used by the methods are A = Sn
�
(0)

for

the principle of indirect elimination and A = Sn
�
(0)

+B�n
0 f for Kalkreuter's

method. Even more important, the principle of indirect elimination can be

used several times to remove more than just one mode, this is impossible with

the other approach. On the other hand for large criticality and the case of

only one bad-converging mode, Kalkreuter's method has the advantage of not

needing auxilliary iterations to calculate A because
e� is used.

Kalkreuter used this method in addition to a usual multigrid or relaxation

method. He found that there is no strong improvement for a multigrid algo-

rithm, but for standard local relaxation the asymptotical critical slowing down

(i.e. critical slowing down for �xed grid size and in�nitely many iterations) was

eliminated for the Laplace equation with periodic boundary conditions. This

is what we expect for a method that treats the lowest mode of the problem

correctly because in this case it is the eigenvalue of the second-lowest mode

that determines the convergence and this scales with the size of the grid, not

with the lowest eigenvalue. So for increasing grid sizes critical slowing down

should still be present; this in agreement with Kalkreuter's results.

4. Killing Instantons

4.1. The Dirac operator

Our example for a discretized di�erential equation with a small number of

bad-converging modes is taken from theoretical high-energy physics, namely

the two-dimensional Dirac equation on the lattice in a gauge �eld background

with periodic boundary conditions.

For an introduction to Lattice Gauge Theory consult [6]. Here we only present
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the framework: Consider a regular, d-dimensional (hyper-)cubic lattice �
0
with

lattice constant a, lattice points z and directed links (z; �). The opposite link

is then denoted by (z + �;��), where z + � means the next neighbour of z

in �-direction. The direction index � runs from �d to d. Usually, the lattices

used will be �nite with an extension of L points in each dimension so that the

number of degrees of freedom is n = L
d
.

A lattice gauge theory is de�ned by a gauge group G which might for exam-

ple be U(1) or SU(2). Elements of the gauge group act on a vector space V

which for the examples above would be C and C2
, respectively. The computa-

tions presented below were done in two dimensions with gauge group U(1), so

that instantons can occur. A lattice gauge �eld (in this case) assigns a U(1)-

\matrix" U(z; �) (which is simply a phase) to every link of the lattice, subject

to the condition U(z; �) = U(z+�;��)�1. These matrices are distributed ran-

domly with a Boltzmannian probability distribution / exp(��SW (U)), where

SW is the standard Wilson action of lattice gauge theory

SW (U) =

X

p

Tr(1� U(@p)) with U(@p) = U(b4)U(b3)U(b2)U(b1)

for a plaquette p of the lattice with links b1:::b4 at its boundary. This dis-

tribution leads to a correlation between the gauge �eld matrices with �nite

correlation length � for �nite �. The case � = 0 corresponds to a completely

random choice of the matrices (� = 0), for � =1 all matrices are 1 (� =1).

In this sense, � is a disorder parameter, the smaller � the shorter the correla-

tion length and the larger the disorder.

The Dirac operator acts on matter �elds � living on the nodes of the lattice.

In Kogut-Susskind formulation [12] it is de�ned as

(D= �) (z) =
1

a

dX

�=1

��;z (U(z; �)
�

�(z + �)� U(z;��)� �(z � �)) :

Here the ��;z = �1 are the remnants of the Dirac matrices 

�
in the continuum.

As the Dirac operator itself is not positive de�nite, we will use its square D=
2

in the following. The squared Dirac has the property of totally decoupling the

even and odd parts of the lattice; if we color the lattice points in checkerboard

fashion, any red point is only coupled to other red points, so that we can

restrict our attention to one of the sub-lattices. This will be especially useful

because it lifts the degeneracy of the eigenvalues: Usually each eigenvalue of

the Dirac operator is degenerated twice, but we can choose the eigenvectors

to live separated on the sub-lattices. For the sake of brevity we will generally

speak of the Dirac operator even when we mean the squared Dirac.
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Fig. 1. The Atiyah-Singer theorem on the lattice: Shown are the �ve lowest eigen-

values of the staggered squared Dirac operator in a U(1) gauge �eld at � = 10 on

an 182-lattice for di�erent topological charges Q. Only one of the two sub-lattices

is taken into account, on the full lattice each eigenvalue is degenerated twice.

4.2. The instanton problem

Many algorithms for solving the Dirac equation become problematic in the

presence of instantons. Instantons are gauge �eld con�gurations that are topo-

logically non-trivial but possess zero energy. Such con�gurations are only pos-

sible for certain choices of the dimension and the gauge group, in two di-

mensions instantons can occur when the gauge group is U(1), see [13] for an

introduction. The Atiyah-Singer theorem states that at instanton charge Q

the spectrum in the continuum will possess 2jQj exact zero-modes [1]; these

become modes with extremely small eigenvalues on the lattice [7]. For the

purpose of this paper it is not necessary to have an understanding of what an

instanton is, it is only important that they are special gauge �eld con�gura-

tions giving rise to almost-zero-modes on the lattice. Figure 1 shows the lower

part of the spectrum of the squared Dirac operator on an 18
2
-lattice at � = 10

for di�erent instanton charges Q, taking only one of the two sublattices into

account. Clearly the Atiyah-Singer theorem is nicely re
ected on the lattice.

When instantons are present, the condition number of the Dirac operator

becomes very large and the problem is ill-posed. In [10] this problem is in-

vestigated in detail for the Parallel Transported Multigrid. In this section, we

want to use the principle of indirect elimination to show how an algorithm

which converges well in the absence of instantons can be adapted to a case
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with instantons.

The idea is very simple: If m bad-converging modes are present, use the prin-

ciple of indirect elimination m times to calculate approximations Ai
to these

modes.

The method presented here could be applied to a Conjugate Gradient algo-

rithm. For this algorithm, Dilger [7] has found that the number of iterations

needed strongly increasses with the instanton charge, therefore Conjugate Gra-

dient would bene�t from the application of the method described here.

However, we will choose the ISU algorithm on small lattices and at quite large

values of � for a U(1) gauge �eld as an example. This algorithm has been

described in detail in [2]. As it is in some parts based on the principle of indirect

elimination, some remarks will be made on this method in the next section.

For this section it is not necessary to understand how ISU works, it su�ces

to know that for the parameters chosen the ISU algorithm converges well for

instanton charges 0 or �1 at large � but badly for larger instanton charges. The
reason is that the algorithm in its standard form contains one interpolation

operator on the last point (which is calculated as an approximation to the

zero-mode) and so it is able to eliminate one zero-mode, but not more.

In the improved algorithm one tries to solve the equation DAi
= 0 with the

given algorithm. As it eliminates all other modes quickly the approximate so-

lution will converge against a linear combination of the bad-converging modes.

Then we start the procedure again, but now orthogonalizing the approximate

solution to the interpolation operator we already know, doing this successively

for all m bad-converging modes. (As the instanton charge can be easily mea-

sured, one usually knows beforehand how many operators are needed; if one

does not for some reason, a dynamical approach can be chosen: Simply pro-

ceed calculating the next interpolation operator until the convergence rate of

the trivial equation becomes good enough.)

The overall work for this procedure is proportional to the square of the number

of bad-converging modes, as is the work of actually applying the interpolation

operators to eliminate them. (The number gets squared because of the need to

calculate an e�ective operator on the last point layer. However, the e�ective

operator only needs to be calculated once for each con�guration.) This restricts

the method to cases where the number of bad-converging modes is not too

large, which usually is the case for instanton charges.

Figure 2 shows the performance of the usual ISU method compared to the

improved version for the Dirac operator in a U(1) gauge �eld with di�erent

instanton charges. We measured the asymptotic convergence time, i.e. the

number of iterations asymptotically needed to reduce the error by a factor

of e. The improved version of ISU used a number of interpolation operators
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Fig. 2. Performance of the standard and the improved ISU algorithm for the elimina-

tion of instanton modes. The data were generated on one sub-lattice of an 182-lattice

at � = 10 with a U(1) gauge �eld. The improved algorithm uses Q interpolation

operators on the last point to eliminate the almost-zero modes. (The number of

con�gurations evaluated for the di�erent topological charges was 217, 113, and 22.

)

on the last point equal to the instanton charge which equals the number of

bad-converging modes. The data were generated on one sub-lattice of an 18
2
-

lattice at � = 10. For this high value of �, the convergence in the absence

of instantons is good, as can be seen from the value at Q = 1. The standard

method works well for instanton charge 0 or 1, as explained above, and its

sensitivity to higher instanton charges is striking. The improved method shows

no dependence on the instanton charge, the convergence is good in all cases.

Note also that the standard deviation is much higher for the usual method

because it is a�ected by 
uctuations in the eigenvalues of the bad-converging

modes.

Clearly the improved method is superior|the cost of calculating the instanton

modes is about 10 iterations for each instanton plus the cost of the orthogo-

nalization, whereas the saving in the solution of the �nal equations is of the

order of hundreds of iterations depending on how much we want to reduce the

residual.

5. PIE and ISU

We have seen above that the principle of indirect elimination will only be

helpful when the number of bad-converging modes is not too large. In the

case of simple relaxation methods, however, this number is of order O(n), so
storing them would cost O(n2), where n is the number of degrees of freedom
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in the system. So it seems that the method is useless in such cases. In this

section we want to explain how the Iteratively Smoothing Unigrid algorithm

(ISU) presented in [2] can be regarded as the local application of the principle

of indirect elimination. We will only present the basic idea here. Some famil-

iarity with the basic multigrid idea is assumed in this section, see [4,5,9] for

introductions.

We can associate a length scale (e.g. a wavelength) with each modes of our

system. Because they are local, relaxation methods eliminate all those modes

corresponding to a length scale of the order of one lattice spacing. Usually there

will be O(n=2) of these. Of the remaining modes O(n=4) will be associated

with length scale 2a (a is the lattice spacing), O(n=8) with scale 4a and so

on. So there will be many bad-converging modes with a small length scale

and only a few corresponding to a large scale. The ISU algorithm is a method

to calculate interpolation operators that are able to span the space of these

modes. These operators are restricted to parts of the lattice, the size of the

domain being determined by the scale of the mode that is to be approximated

by the operator.

To be more speci�c, let us start with the smallest scale 2a. As in usual multi-

grid methods, we divide the hypercubic lattice into (overlapping) hypercubes

or blocks [x] of side length 3. Then we try to solve the equation Dj[x]A
[1]

x (z) = 0

using a relaxation method. Here Dj[x] is the restriction of D to the block [x]

using Dirichlet boundary conditions. What remains after a few iterations will

be the slowest-converging mode on this scale and can therefore be used as in-

terpolation operator on the �rst block-lattice. Repeating this for all the small

hypercubes, we know the shapes of the bad-converging modes on scale 2a. Now

we do the same on the next scale, dividing the lattice into larger blocks (of side

length 7, agreeing with the formula 2
j�1). Again we try to solve the equation

Dj[x]A
[2]

x (z) = 0, where [x] now denotes the larger blocks. The important point

is that we use the interpolation operators on the smaller scale that are already

known for this calculation to eliminate contributions from the bad-converging

modes on the smaller scale. In this way we proceed to larger and larger hyper-

cubes, always using the interpolation operators already known. This method

would only fail if a large number of bad-converging modes lived on a large

length-scale.

It has been found that this algorithm is able to eliminate critical slowing down

completely for the case of the two-dimensional Laplace equation in an SU(2)

gauge �eld background at arbitrarily large values of the gauge �eld disorder

and the lattice size. An improved version has been shown to do the same

for the two-dimensional squared Dirac equation, except for extremely large

disorder (� � 2 or smaller). See [2] for details.

An idea that is similar in spirit to the principle of indirect elimination has been
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discussed in [3, section 4.6]. Brandt proposes to do relaxations on the funda-

mental lattice with arbitrary starting vectors to determine \typical shapes of a

slow-to-converge error" which could then be used to determine good multigrid

interpolation operators. Unfortunately, this idea su�ers from a severe disease:

The number of modes that converge badly under simple relaxation is huge

(about half of the number of grid points). What one will get by this procedure

is a mixture of low-lying eigenmodes with contributions depending on their

eigenvalues. The time needed to arrive at a function that consists only of the

lowest eigenmodes will be proportional to the lattice size, so the method will

not work without critical slowing down.

The di�erence to the ISU algorithm is that this is a so-called unigrid method.

It allows for interpolation operators living on di�erent length-scales, whereas

standard multigrid algorithms only use interpolation operators living on small

domains. On each length scale we need not represent all modes that converge

badly on this and on all higher scales; only the modes that belong to the

scale corresponding to a certain lattice constant have to be dealt with. The

next-coarser length-scale will then take care of the modes corresponding to

this scale and in their computation the smaller scales are already taken into

account.

6. Conclusions

We have presented a simple method to improve the convergence of solution

algorithms for discretized di�erential equations when the number of bad-

converging modes is small. The principle of indirect elimination used to do

this is based on the general idea that an algorithm can be used to identify

its own bad-converging modes. Conceptionally, the method is similar to the

general idea of accelerating algorithms described in [16]: One tries to �nd out

what the slow modes of the algorithm are and uses this knowledge to improve

the algorithm. For example, multigrid methods are based on the fact that the

slow modes are the smooth modes that can be obtained by smooth interpola-

tion. The principle of indirect elimination serves to automatize this process in

the case when the number of slow modes is small so that it su�ces to know

them without doing further analysis of their structure.

The method has been studied for the case of the Dirac equation in a gauge �eld

background with instantons and worked extremely well. Applying it locally

leads to a multigrid method called the Iteratively Smoothing Unigrid.
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